Supplementary Information

Solvent Mediated Precipitating Synthesis and Optical Properties of Polyhydrido Cu₁₃ Nanoclusters with Four Vertexsharing Tetrahedrons

Xinzhang Lin,^{ad} Jie Tang,^{ad} Chenyu Zhu,^a Li Wang,^b Yang Yang,^{ad} Ren`an Wu,^b Hongjun Fan,^{*c} Chao Liu,^{*a} and Jiahui Huang^{*a}

^a Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

^b Laboratory of High-Resolution Mass Spectrometry Technologies, Dalian Institute of

Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

^c State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical

Physics, Chinese Academy of Sciences, Dalian 116023, China

^d University of Chinese Academy of Sciences, Beijing 100049, China

* Corresponding to: fanhj@dicp.ac.cn; indicp.ac.cn; <a

1. Figures

Figure S1. The schematic illustration of the SMPS synthetic route (a), electronic photos

of single crystals shot on MI 8 AI dual camera (b-c) and microscope (d).

Figure S2. The packing arrangement of twelve $Cu_{13}H_{10}(SR)_3(PPh_3)_7$ nanoclusters in a unit cell from a, b, c directions, respectively. The hydrogen atoms are omitted for clarity. Color code: blue, Ag; orange, S; magenta, P; green, Cl; yellow, F; grey, C.

Figure S3. The top view (a) and side view (b) of the surface protected mono-layer of $Cu_{13}H_{10}(SR)_3(PPh_3)_7$ nanoclusters. One PPh₃ locates in the C₃ symmetry axis, and other 6 PPh₃ along with 3 thiolates are arranged symmetrically around the C₃ axis.

Figure S4. The S-Ag connecting mode in Cu₁₃H₁₀(SR)₃(PPh₃)₇ nanoclusters. Color code:

blue, Ag; orange, S; magenta, P; green, Cl; yellow, F; grey, C.

Figure S5. ¹H NMR of $Cu_{13}H_{10}(SR)_3(PPh_3)_7$ and $Cu_{13}D_{10}(SR)_3(PPh_3)_7$ nanoclusters.

Figure S6. ²H NMR of $Cu_{13}H_{10}(SR)_3(PPh_3)_7$ and $Cu_{13}D_{10}(SR)_3(PPh_3)_7$ nanoclusters.

Figure S7. The optimized structure of $Cu_{13}H_{10}(SR)_3(PPh_3)_7$ nanoclusters. (a) Only H atoms bound to Cu atoms are shown. (b) All H atoms are shown.

Figure S8. (a) Skeleton structure and (b) total structure for structural comparison between experimental and optimized $Cu_{13}H_{10}(SR)_3(PPh_3)_7$ nanoclusters.

Figure S9. The calculated UV-vis absorption spectrum of Cu₁₃H₁₀(SR)₃(PPh₃)₇ nanoclusters. (Note: We show the simulated spectra in order to confirm that the calculated peaks are able to reproduce the experimental spectrum with certain half-width broadening Gaussian (40 nm), therefore are not conflicted with the experimental spectrum. Please note that simulated spectra strongly depend on the half-width used in the simulation. For example, with a smaller half-width (<25 nm) the simulated spectra will have a neat band with maximum around 340 nm, therefore the calculated adsorptions do not directly predict the experimental spectra)

Figure S10. HOMO and LUMO of Cu₁₃H₁₀(SR)₃(PPh₃)₇ nanoclusters.

Figure S11. The fluorescence spectra of Cu₁₃ nanoclusters at different temperatures.

2. Tables

Compound	Cu ₁₃ H ₁₀ (C ₆ H ₃ SFCl) ₃ (C ₁₈ H ₁₅ P) ₇ , 3(C ₆ H ₁₄)				
Formula	C162 H166 Cl3 Cu13 F3 P7 S3				
Formula weight	3415.30				
Radiation type, wavelength (Å)	Cu Kα radiation, 1.54178 Å				
Crystal system	trigonal				
Space group	R -3				
a, b, c (Å)	28.5683(3), 28.5683(3), 32.4803(6)				
α, β, γ (°)	90, 90, 120				
V (Å ³)	22957.2(6)				
Z	6				
Temperature (K)	173				
Density (mg /m³)	1.482				
Absorption coefficient	3.870				
F(000)	10470				
Cell measurement theta range	4.49 to 68.25				
Index ranges	-34 <=h<=34, -34 <=k<=34, -39<=l<=39				
Theta range for absorption correction	0.5913 to 0.7531				
Reflections collected	9362				
Independent reflections	8768				
Data / restraints / parameters	9362 / 276 / 644				
Goodness-of-fit on F2	1.040				
Final R indices [I>2sigma(I)]	R1= 0.0465, wR2= 0.1315				
R indices (all data)	R1= 0.0487, wR2= 0.1335				

Table S1. Crystal data and structure refinement for $Cu_{13}H_{10}(SR)_3(PPh_3)_7$ nanoclusters.

Atom 1	Atom 2	X-ray lengths (Å)	Optimized lengths
			(Å)
Cu1	Cu2	2.6017(7)	2.57
Cu1	S1	2.262(1)	2.34
Cu1	Cu1	2.565(1)	2.61
Cu1	Cu3	2.5013(9)	2.51
Cu1	Cu4	2.790(1)	2.71
Cu2	Cu3	2.4904(9)	2.46
Cu2	S1	2.2850(9)	2.32
Cu2	P1	2.2364(8)	2.28
Cu2	Cu4	2.7920(8)	2.73
Cu3	Cu4	2.415(1)	2.37
Cu3	Cu5	2.5412	2.54
Cu3	Cu4	2.4704(9)	2.46
Cu4	P2	2.2402(9)	2.27
Cu5	Р3	2.229	2.28
Cu1	H _t	1.65	1.67
Cu1	H _{w2}	1.62(5)	1.67
Cu2	H _{w1}	1.66(4)	1.72
Cu3	H _{w1}	1.71(5)	1.66
Cu3	H _{w2}	1.65(6)	1.69
Cu3	Hb	1.70(6)	1.70
Cu4	H _{w1}	1.74(3)	1.69
Cu4	H _{w2}	2.03(4)	1.90
Cu4	Hb	1.76(5)	1.79
Cu5	Hb	1.69	1.73
Max deviation	-	-	0.13
Average deviation	-	-	0.04

Table S2. Selected bond lengths (Å) of Cu₁₃H₁₀(SR)₃(PPh₃)₇ nanoclusters.

Note: H_t : the H atom at the top; H_b : the H atoms at the bottom; H_{w1} : the H atoms at the position 1 in the waist; H_{w2} : the H atoms at the position 2 in the waist.

	Ranges	Averages
Cu-Cu lengths (Å)	2.415-2.792	2.57
Cu-P lengths (Å)	2.229-2.240	2.237
Cu-S lengths (Å)	2.262-2.285	2.274
Cu-S-Cu angels (°)	69.8-69.8	69.8

Table S3. Crystal data analysis of $Cu_{13}H_{10}(SR)_3(PPh_3)_7$ nanoclusters.

Table S4. Comparison of Cu-Cu lengths in the kernel for $Cu_{13}H_{10}(SR)_3(PPh_3)_7$ nanoclusters and other previously reported Cu nanoclusters.

	Average Cu-Cu lengths (Å)	References
$Cu_{13}H_9(C_6H_3SFCI)_3(C_{18}H_{15}P)_7$	2.57	-
Bulk Cu	2.56	-
Van der Waals radii *2	2.80	-
[Cu ₁₁ (TBBT) ₉ (PPh ₃) ₆] ²⁺	3.01	1
$[Cu_{13}(S_2CN^nBu_2)_6(acetylide)_4]^+$	2.64	2
$Cu_{23}(^{t}BuC\equiv C)_{13}(CF_{3}COO)_{6}$	2.64	3
$[Cu_{25}H_{10}(SPhCl_2)_{18}]^{3-}$	2.60	4
$[Cu_{25}H_{22}(PPh_3)_{12}]^+$	2.64	5
$[Cu_{29}Cl_4H_{22}(Ph_2phen)_{12}]Cl$	2.65	6
$Cu_{30}H_{18}(S_2P(OnPr)_2)_{12}$	2.66	7
[Cu ₃₂ (PET) ₂₄ H ₈ Cl ₂](PPh ₄) ₂	2.66	8

Table S5. The experimental and calculated ${}^{1}H$ NMR chemical shifts (δ) for 10 hydrides

Hydrides	δ _{exp} (ppm)	δ _{cal} (ppm)	
H _{top}	0.6	1.9	
H _{bottom}	2.6	2.9	
H _{waist-1}	2.75	3.1	
H _{waist-2}	2.78	3.4	

of $Cu_{13}H_{10}(SR)_3(PPh_3)_7$ nanoclusters.

Table S	S6. ⁻	The a	ttribution ar	nd transi	tion dipole r	noment of	the	different absorption
peaks	in	the	calculated	UV-vis	absorption	spectrum	of	Cu ₁₃ H ₁₀ (SR) ₃ (PPh ₃) ₇
nanocl	uste	ers.						

Wavelength (nm)	Attribution ^a	Transition dipole moment ^b
364.1	$Cu(3d) \rightarrow Cu(4p)$	0.002
356.0	$Cu(3d) \rightarrow Cu(4p)$	0.015
342.4	Cu(3d) \rightarrow ligand π^*	0.045
340.5	Cu(3d) \rightarrow ligand π^*	0.025
328.2	$Cu(3d) \rightarrow Cu(4p)$	0.001
326.3	Cu(3d) \rightarrow ligand π^*	0.031
311.8	$Cu(3d) \rightarrow Cu(4p)$	0.016
304.4	Cu(3d) \rightarrow ligand π^*	0.025
300.9	Cu(3d) \rightarrow ligand π^*	0.025

^a Attribution: according to the maximum contribution to the absorption.

^b Transition dipole moment: corresponding to the absorption intensity in the UV absorption spectrum.

Ato	m Cart	tesian coordi	nates	Atom	m Cartesian coordinates		
Cu	-1.140727	0.980773	1.147265	Н	-0.903860	4.502955	7.020957
Cu	0.071319	3.220855	0.809310	С	0.450668	2.914898	6.495071
Cu	0.943413	1.751237	-0.970113	С	0.889056	2.026731	5.523060
Cu	2.667505	0.147788	-1.228286	Н	1.702447	1.331443	5.735284
Cu	0.002291	0.003261	-2.559161	С	0.281717	2.053291	4.276449
Cl	-2.460602	4.962380	4.706847	Н	0.637879	1.365705	3.508735
S	-1.593498	2.910974	2.395866	С	2.417023	4.561209	2.987016
Ρ	1.608245	4.809262	1.369205	С	3.228684	3.427205	3.118452
Ρ	4.798460	0.478703	-1.939958	Н	3.353214	2.734669	2.282421
Ρ	0.003185	0.004850	-4.843256	С	3.859395	3.146231	4.325379
F	1.043716	2.928660	7.691503	Н	4.479670	2.250450	4.406855
С	-0.767368	2.932898	3.966825	С	3.663721	3.986508	5.422077
С	-1.175846	3.808883	4.984908	Н	4.138789	3.758314	6.378527
С	-0.578510	3.809345	6.245989	С	2.832191	5.098571	5.305919
Н	2.657237	5.742819	6.170272	С	5.624130	-1.034104	-2.567941
С	2.209869	5.391260	4.091349	С	6.394817	-1.066376	-3.733870
Н	1.558456	6.264454	4.008960	Н	6.529467	-0.159642	-4.327103
С	0.829999	6.466479	1.445651	С	6.980892	-2.260573	-4.155419
С	-0.529748	6.524848	1.781251	н	7.578375	-2.274817	-5.069981
Н	-1.081645	5.606628	2.003479	С	6.805261	-3.430221	-3.417489
С	-1.190522	7.750856	1.822159	Н	7.264752	-4.363241	-3.751217
Н	-2.249228	7.775520	2.087565	С	6.043871	-3.404546	-2.247893
С	-0.506259	8.925292	1.514660	Н	5.903407	-4.309030	-1.651866
Н	-1.027171	9.885260	1.535787	С	5.454847	-2.214618	-1.831775
С	0.846427	8.873673	1.176383	Н	4.855334	-2.202230	-0.920105
Н	1.386075	9.791810	0.933637	С	-1.307693	-1.045951	-5.568106
С	1.514049	7.650856	1.144795	С	-1.165406	-1.771786	-6.755135
Н	2.571225	7.618757	0.871407	Н	-0.241810	-1.694145	-7.334837
С	3.016847	5.015826	0.215492	С	-2.189045	-2.615537	-7.187507
С	4.264511	5.498881	0.628453	Н	-2.065497	-3.189624	-8.108468
Н	4.427097	5.757179	1.677980	С	-3.359711	-2.736876	-6.440318
С	5.305238	5.632919	-0.288412	Н	-4.154099	-3.409763	-6.770805
Н	6.278231	5.999141	0.045913	С	-3.510486	-2.014611	-5.256198
С	5.109573	5.284420	-1.623754	Н	-4.414978	-2.126670	-4.653476
С	3.871748	4.800258	-2.044198	С	-2.486666	-1.179991	-4.818137
Н	3.722338	4.507280	-3.085522	Н	-2.582392	-0.651723	-3.866078
С	2.830920	4.664131	-1.128284	Cu	-0.281312	-1.479237	1.145610
Н	1.866850	4.268325	-1.458463	Cu	-2.826269	-1.548199	0.801833
С	5.906434	1.041067	-0.595440	Cu	-1.985505	-0.057414	-0.974856
С	5.438385	2.064882	0.238931	Cu	-1.458837	2.238025	-1.229004
Н	4.460897	2.518423	0.050576	Cl	-3.081187	-4.616617	4.692795

Table S7. Cartesian coordinates of the optimized structure of Cu₁₃H₁₀(SR)₃(PPh₃)_{7.}

С	6.199449	2.490281	1.323304	S	-1.729263	-2.837790	2.389298
н	5.817256	3.281036	1.971398	Р	-4.971654	-1.013315	1.357998
С	7.427047	1.888530	1.595739	Р	-2.809857	3.918650	-1.941332
С	7.898908	0.870001	0.769950	F	-3.072503	-0.571143	7.686092
С	7.143770	0.446522	-0.323321	С	-2.164673	-2.135348	3.960221
н	7.516513	-0.361535	-0.956264	С	-2.722931	-2.928290	4.975297
С	5.006827	1.685503	-3.297446	С	-3.024174	-2.413380	6.236730
С	6.155962	2.464274	-3.467540	Н	-3.465073	-3.042840	7.009324
н	6.979957	2.380700	-2.754171	С	-2.762276	-1.075838	6.489257
С	6.243186	3.356296	-4.535567	С	-2.208503	-0.251065	5.520294
Н	7.141663	3.964841	-4.662403	Н	-2.011318	0.800085	5.735308
С	5.184818	3.476987	-5.437702	С	-1.925810	-0.788165	4.273182
Н	5.254775	4.181304	-6.269754	Н	-1.504727	-0.135230	3.508058
С	4.036461	2.702375	-5.272352	С	-5.165115	-0.190422	2.976064
Н	3.197315	2.795256	-5.965648	С	-4.588304	1.078868	3.110838
С	3.947122	1.813701	-4.203386	Н	-4.047976	1.533680	2.277051
Н	3.037984	1.225984	-4.057028	С	-4.663584	1.764004	4.318463
Н	-4.197364	2.748575	4.402614	Н	-6.243448	2.467444	-6.273727
С	-5.297249	1.173436	5.412477	С	-4.353288	2.151061	-5.276937
Н	-5.339696	1.697798	6.369449	Н	-4.014086	1.378925	-5.971314
С	-5.844984	-0.102255	5.293084	С	-3.539018	2.516794	-4.207480
Н	-6.318327	-0.576731	6.155388	Н	-2.575176	2.023596	-4.061932
С	-5.783760	-0.786061	4.077866	С	-1.911897	5.390317	-2.567623
Н	-6.214673	-1.786401	3.992738	С	-2.267967	6.073574	-3.734093
С	-6.016561	-2.516996	1.431337	Н	-3.119538	5.736294	-4.328494
С	-5.386698	-3.723066	1.768234	С	-1.526829	7.178570	-4.154689
Н	-4.316026	-3.740763	1.992905	Н	-1.812246	7.702919	-5.069685
С	-6.116650	-4.909266	1.806771	С	-0.427246	7.611854	-3.415317
Н	-5.608032	-5.837930	2.072915	Н	0.151095	8.476528	-3.748303
С	-7.475082	-4.905500	1.495963	С	-0.070105	6.939925	-2.245145
С	-8.107427	-3.708822	1.156797	Н	0.782405	7.271010	-1.647908
С	-7.383643	-2.518331	1.127418	С	-0.806212	5.834575	-1.829899
Н	-7.885091	-1.587377	0.853195	Н	-0.518563	5.309643	-0.917537
С	-5.853957	0.103522	0.203649	С	1.569605	-0.604771	-5.566343
С	-6.898427	0.940156	0.615716	С	2.128763	-0.117843	-6.752219
Н	-7.205300	0.950007	1.664709	Н	1.600396	0.643340	-7.332321
С	-7.534779	1.774375	-0.301281	С	3.372205	-0.581671	-7.182855
Н	-8.340404	2.431881	0.032282	Н	3.808940	-0.186803	-8.102822
С	-7.132374	1.781757	-1.635799	С	4.061831	-1.535004	-6.435173
Н	-7.619792	2.444875	-2.352996	Н	5.042404	-1.885934	-6.764341
С	-6.091755	0.954434	-2.055271	С	3.509966	-2.027648	-5.252253
Н	-5.760903	0.974377	-3.095761	Н	4.058207	-2.755489	-4.649289
С	-5.453918	0.120778	-1.139330	С	2.274368	-1.559036	-4.815897
н	-4.627760	-0.514815	-1.468865	Н	1.863500	-1.906678	-3.864618

С	-3.852139	4.595507	-0.597083	Cu	1.419250	0.495246	1.148937
С	-4.509806	3.676793	0.231755	Cu	2.752270	-1.673891	0.806099
н	-4.416668	2.604062	0.038933	Cu	1.044955	-1.689957	-0.974285
С	-5.260183	4.120932	1.316075	Cu	-1.205287	-2.381197	-1.232478
н	-5.758071	3.393491	1.959736	Cl	5.526022	-0.361806	4.706638
С	-5.348955	5.484050	1.594297	S	3.315960	-0.081079	2.397263
н	-5.921638	5.828820	2.458015	Р	3.361359	-3.799804	1.361494
С	-4.697808	6.403290	0.774064	Р	-1.983653	-4.390806	-1.947657
н	-4.765929	7.473024	0.985677	F	2.012532	-2.383965	7.688456
С	-3.952257	5.963431	-0.319363	С	2.921599	-0.811112	3.966497
н	-3.435283	6.691571	-0.947867	С	3.884724	-0.898081	4.984058
С	-3.958356	3.497066	-3.299924	С	3.586496	-1.417675	6.244296
С	-5.207581	4.102623	-3.469184	Н	4.350055	-1.484677	7.018887
н	-5.547513	4.856793	-2.754659	С	2.297022	-1.861136	6.493012
С	-6.023573	3.733447	-4.537694	С	1.308412	-1.794177	5.521442
н	-7.000091	4.206959	-4.663685	Н	0.299545	-2.151023	5.733248
С	-5.598555	2.758049	-5.441296	С	1.634983	-1.279257	4.275695
н	0.861052	-1.241367	3.508434	Н	-1.426246	-7.230335	-2.762743
С	2.740229	-4.380162	2.977154	С	-0.211290	-7.079155	-4.542906
С	1.352202	-4.516404	3.106689	Н	-0.133315	-8.161469	-4.670191
н	0.691233	-4.276666	2.270246	С	0.423069	-6.222460	-5.444137
С	0.792085	-4.924302	4.312216	Н	0.998662	-6.634815	-6.275956
н	-0.293984	-5.013056	4.392406	С	0.326411	-4.840719	-5.278113
С	1.616419	-5.177605	5.409222	Н	0.827258	-4.160194	-5.970518
н	1.180157	-5.476722	6.364610	С	-0.399322	-4.319527	-4.209374
С	2.995394	-5.012999	5.295081	Н	-0.453556	-3.238414	-4.062099
н	3.639761	-5.185228	6.159889	С	-3.705949	-4.348202	-2.577318
С	3.561345	-4.617240	4.082156	С	-4.118346	-4.998977	-3.743874
Н	4.643300	-4.489028	4.001323	Н	-3.400191	-5.569514	-4.336248
С	5.185825	-3.952234	1.440298	С	-5.444999	-4.908514	-4.166951
С	5.913748	-2.803155	1.778831	Н	-5.755388	-5.418612	-5.081872
Н	5.392390	-1.867581	2.002385	С	-6.370458	-4.170837	-3.430180
С	7.305929	-2.841116	1.820885	Н	-7.407759	-4.101446	-3.765182
Н	7.854557	-1.935811	2.088039	С	-5.968432	-3.524556	-2.260134
С	7.983452	-4.019102	1.512130	Н	-6.681665	-2.949923	-1.665021
С	7.264941	-5.165643	1.171376	С	-4.644005	-3.610621	-1.842298
Н	7.792302	-6.090654	0.927735	н	-4.334260	-3.097919	-0.930191
С	5.872113	-5.135096	1.138301	С	-0.250962	1.666638	-5.565654
Н	5.317970	-6.035272	0.862777	С	-0.950148	1.908352	-6.752581
С	2.838619	-5.121146	0.204331	Н	-1.344324	1.070656	-7.333981
С	2.635508	-6.444510	0.614342	С	-1.169203	3.217500	-7.182575
Н	2.777650	-6.716387	1.663396	Н	-1.727838	3.399119	-8.103424
С	2.233330	-7.411641	-0.304695	С	-0.689667	4.290752	-6.433116
Н	2.065868	-8.438450	0.027302	н	-0.875396	5.315710	-6.761762

С	2.029094	-7.065397	-1.639354	С	0.010788	4.058148	-5.249139
Н	1.700492	-7.818349	-2.358249	Н	0.365525	4.896399	-4.644649
С	2.226458	-5.750081	-2.056864	С	0.221884	2.753420	-4.813519
Н	2.046975	-5.472397	-3.097585	Н	0.726873	2.570554	-3.861601
С	2.626679	-4.781748	-1.138719	Н	-8.044841	-5.837344	1.515283
Н	2.763949	-3.747904	-1.466540	Н	-9.171811	-3.701726	0.911541
С	-2.051631	-5.632543	-0.604389	Н	-2.093656	-8.041241	2.450572
С	-0.927702	-5.746160	0.224741	Н	-4.094208	-7.856552	0.977270
Н	-0.043177	-5.131912	0.032159	Н	9.075298	-4.045892	1.534171
С	-0.940418	-6.617987	1.309098	Н	8.013043	2.210294	2.459411
Н	-0.062202	-6.687811	1.953482	Н	8.861486	0.396424	0.977085
С	-2.078930	-7.373116	1.586718	Н	5.927605	5.374888	-2.340896
С	-3.199910	-7.265479	0.766008	Н	0.033921	-1.717106	-2.344111
С	-3.188625	-6.399798	-0.327306	Н	-1.504118	0.834379	-2.342809
Н	-4.077227	-6.312684	-0.956073	Н	1.474959	0.891784	-2.340411
С	-1.041120	-5.173679	-3.304536	Н	-2.656068	-1.578101	-0.906308
С	-0.941182	-6.558162	-3.475335	Н	-0.038698	3.092096	-0.899337
Н	2.697218	-1.510087	-0.902154	Н	-2.392514	1.212219	0.061054
Н	2.245785	1.466587	0.065627	Н	-0.001670	-0.001858	1.876952
Н	0.147358	-2.678057	0.059490				

References

- (1) Li, H.; Zhai, H.; Zhou, C.; Song, Y.; Ke, F.; Xu, W. W.; Zhu, M., Atomically Precise
 Copper Cluster with Intensely near-Infrared Luminescence and Its Mechanism.
 J. Phys. Chem. Lett. 2020, 11, 4891-4896.
- (2) Chakrahari, K. K.; Liao, J. H.; Kahlal, S.; Liu, Y. C.; Chiang, M. H.; Saillard, J. Y.; Liu,
 C. W., [Cu₁₃{S₂CNⁿBu₂}₆(acetylide)₄]⁺: A Two-Electron Superatom. *Angew. Chem. Int. Ed.* 2016, 55, 14704-14708.
- (3) Han, B.-L.; Liu, Z.; Feng, L.; Wang, Z.; Gupta, R. K.; Aikens, C. M.; Tung, C.-H.; Sun,
 D., Polymorphism in Atomically Precise Cu₂₃ Nanocluster Incorporating Tetrahedral [Cu₄]⁰ Kernel. J. Am. Chem. Soc. **2020**, 142, 5834-5841.
- (4) Sun, C. F.; Mammen, N.; Kaappa, S.; Yuan, P.; Deng, G. C.; Zhao, C. W.; Yan, J. Z.;
 Malola, S.; Honkala, K.; Hakkinen, H.; Teo, B. K.; Zheng, N. F., Atomically Precise,
 Thiolated Copper-Hydride Nanoclusters as Single-Site Hydrogenation Catalysts
 for Ketones in Mild Conditions. *ACS Nano* 2019, *13*, 5975-5986.
- (5) Nguyen, T. A.; Jones, Z. R.; Goldsmith, B. R.; Buratto, W. R.; Wu, G.; Scott, S. L.;
 Hayton, T. W., A Cu₂₅ Nanocluster with Partial Cu(0) Character. *J. Am. Chem. Soc.* **2015**, *137*, 13319-24.
- (6) Nguyen, T.-A. D.; Jones, Z. R.; Leto, D. F.; Wu, G.; Scott, S. L.; Hayton, T. W., Ligand-Exchange-Induced Growth of an Atomically Precise Cu₂₉ Nanocluster from a Smaller Cluster. *Chem. Mater.* **2016**, *28*, 8385-8390.

- (7) Barik, S. K.; Huo, S. C.; Wu, C. Y.; Chiu, T. H.; Liao, J. H.; Wang, X.; Kahlal, S.; Saillard, J. Y.; Liu, C. W., Polyhydrido Copper Nanoclusters with a Hollow Icosahedral Core:
 [Cu₃₀H₁₈{E₂P(OR)₂}₁₂] (E=S or Se; R=*n*Pr, *i*Pr or *i*Bu). *Chem. Eur. J.* **2020**, *26*, 10471-10479.
- (8) Lee, S.; Bootharaju, M. S.; Deng, G.; Malola, S.; Baek, W.; Hakkinen, H.; Zheng, N.; Hyeon, T., [Cu₃₂(PET)₂₄H₈Cl₂](PPh₄)₂: A Copper Hydride Nanocluster with a Bisquare Antiprismatic Core. *J. Am. Chem. Soc.* **2020**, *142*, 13974–13981.