Supporting Information: Thermal site energy fluctuations in photosystem I: New insights from MD/QM/MM calculations

Sebastian Reiter,[†] Ferdinand L. Kiss,[†] Jürgen Hauer,[‡] and

Regina de Vivie-Riedle*,†

†Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 11, 81377 Munich, Germany

Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany

E-mail: regina.de_vivie@cup.uni-muenchen.de

Contents

1	Details on Structure Preparation S-3								
2	Molecular Dynamics Validation	S-5							
3	QM Method Asessment	S-9							
	3.1 Further Chlorophyll Absorption Spectra in Diethyl Ether	S-9							
	3.2 Truncation of the Phytyl Chain	S-10							
4	Data Set of Averaged Site Energies	S-11							
5	Statistical Considerations	S-16							
	5.1 Site Energy Convergence with the Number of Snapshots	S-16							
	5.2 ANOVA and HSD Analysis	S-17							
6	Comparison with Literature Data	S-18							
7	Dimer Excited States	S-19							
8	Excitonic Red-Shift of the Triad B31-B32-B33	S-22							
9	Exciton Energies and Fluctuations	S-23							
R	eferences	S-29							

1 Details on Structure Preparation

Table S1 lists all amino acids that were missing in the crystal structure of cyanobacterial PSI and were added manually with the *Modeller* interface^{S1} to *UCSF Chimera*.^{S2} The residue ID refers to the original numbering in the crystal structure. Partially resolved phytyl chains of the chlorophyll residues were replaced with methyl groups and the affected residues renamed from CLA to CLX, to distinguish them later in the MD simulations. Other missing side chains were replaced manually. Figure S1 illustrates all modifications on the chlorophyll residues in the crystal structure.

Table S1: Amino acids added to the crystal structure of 1JB0. Residue IDs are given according to the original numbering of the pdb file.

chain	res. ID	res. name
А	1 to 12 263 to 265	MET, THR, ILE, SER, PRO, PRO, GLU, ARG, GLU, PRO, LYS, VAL GLY, VAL, ILE
В	740	GLY
Е	70 to 75	PRO, PRO, LYS, LYS, GLY, LYS
F	-22 to 0	MET, ARG, ARG, PHE, LEU, ALA, LEU, LEU, LEU, VAL, LEU, THR, LEU, TRP, LEU, GLY, PHE, THR, PRO, LEU, ALA, SER, ALA
K	1 to 19	MET, VAL, LEU, ALA, THR, LEU, PRO, ASP, THR, THR, TRP, THR, PRO, SER, VAL, GLY, LEU, VAL, VAL
	33	ALA
	44 to 54	PRO, ILE, ALA, LEU, PRO, ALA, LEU, PHE, GLU, GLY, PHE
	78 to 83	GLN, TYR, ALA, GLY, ALA, LEU
L	1 to 3	ALA, GLU, GLU
X	1 to 6	ALA, THR, LYS, SER, ALA, LYS

Figure S1: Chlorophyll *a* residue types after modification, as used in the MD simulations. IDs in parentheses refer to the standard chlorophyll numbering, the other notation indicates the chain and residue given in the crystal structure PDB (1JB0).^{S3} Red: Intact chlorophylls, blue: phytyl chain replaced with $-CH_3$, magenta: $-COOCH_3$ and $-CH=CH_2COOCH_3$ added to residue J1303 and phytyl chain replaced with $-CH_3$, green: $-COOCH_3$ added to residue J1304 and phytyl chain replaced with $-CH_3$.

2 Molecular Dynamics Validation

Proper equilibration of the MD simulations was confirmed by checking the convergence of temperature (T), total energy (E), pressure (p), density (ρ) and the box vectors (fig. S2). Average values of T, p, ρ and E are provided in tab. S2.

Figure S2: Key thermodynamic parameters during MD trajectories.

Table S2: Thermodynamic averages and standard deviations during the MD simulations.

Traj.	$\langle T \rangle$ [K]	$\langle p \rangle$ [bar]	$\langle \rho \rangle [\mathrm{g} \mathrm{L}^{-1}]$	$\langle E \rangle [\mathrm{kJ} \mathrm{mol}^{-1}]$
1	300.0 ± 0.5	1 ± 39	1043.5 ± 0.6	$(-8.278 \pm 0.007) \times 10^{6}$
2	300.0 ± 0.5	1 ± 37	1043.5 ± 0.6	$(-8.277 \pm 0.007) \times 10^{6}$
3	300.0 ± 0.5	1 ± 38	1043.6 ± 0.6	$(-8.277 \pm 0.007) \times 10^{6}$
4	300.0 ± 0.5	1 ± 38	1043.6 ± 0.6	$(-8.277 \pm 0.007) \times 10^{6}$
5	300.0 ± 0.5	1 ± 37	1043.5 ± 0.6	$(-8.277 \pm 0.007) \times 10^{6}$

To assess the quality of the trajectories, we evaluated the mass-weighted RMSD of the protein $C\alpha$ backbone, the porphyrin units of the CLA/CLX residues and the BCR and PQN cofactors with respect to the crystal structure. Each frame of the trajectory was aligned to the protein $C\alpha$ atoms of the reference. Hydrogen atoms and all atoms missing in the crystal structure were excluded from the analysis. In all production simulations, the RMSD of the protein backbone as well as that of the cofactors is converged (fig. S3). The time-averaged RMSD (fig. S4) is between 1 Å and 2 Å, which is below the 2.5 Å resolution of the crystal structure, thus validating the sampled geometries.

Figure S3: RMSD of different residue groups vs. the crystal structure in each production trajectory over time. CLA: Chlorophyll porphyrin units; BCR: β -carotene, PQN: phylloquinone.

We also calculated the area per lipid of the POPC membrane (table S3, fig. S5) using the $FATSLiM \ 0.2.2$ toolbox^{S4} and applying a cutoff distance of 2.9 nm for leaflet identification.

Figure S4: Time-averaged RMSD of different residue groups vs. the crystal structure in each production trajectory. Error bars signify the standard deviation across the trajectory. CLA: Chlorophyll porphyrin units; BCR: β -carotene, PQN: phylloquinone.

Membrane leaflets were identified by the phosphatidylcholine headgroups, while protein and cofactors were used as interacting groups. The average area per lipid across both membrane leaflets $\langle A \rangle$ is $0.642 \,\mathrm{nm^2}$, which is in good agreement with previously reported values for POPC bilayers ($0.604 \,\mathrm{nm^2}$, $^{S5} 0.655 \,\mathrm{nm^2}$, $^{S6} 0.631 \,\mathrm{nm^2 S^7}$). The time-averaged lipid bilayer thickness $\langle D \rangle$ (fig. S6), defined as the distance between the P atom layers in the upper and lower leaflet, converged to $3.67 \,\mathrm{nm}$ after equilibration, which also corresponds well with previous theoretical ($3.725 \,\mathrm{nm}$, $^{S6} 3.75 \,\mathrm{nm}$, and experimental reports ($3.7 \,\mathrm{nm}$, S8).

Table S3: Bilayer thickness $\langle D \rangle$ and average area per lipid at 300 K in the full membrane $(\langle A \rangle)$, the lower (stromal) leaflet $(\langle A_L \rangle)$ and the upper (lumenal) leaflet $(\langle A_U \rangle)$.

Traj.	$\langle A \rangle \ [\mathrm{nm}^2]$	$\langle A_L \rangle \ [\mathrm{nm}^2]$	$\langle A_U \rangle \ [\mathrm{nm}^2]$	$\langle D \rangle$ [nm]
1	0.642 ± 0.003	0.630 ± 0.005	0.655 ± 0.006	3.68 ± 0.02
2	0.642 ± 0.005	0.634 ± 0.006	0.651 ± 0.006	3.67 ± 0.02
3	0.642 ± 0.004	0.630 ± 0.006	0.655 ± 0.014	3.67 ± 0.02
4	0.641 ± 0.004	0.628 ± 0.006	0.654 ± 0.005	3.67 ± 0.01
5	0.640 ± 0.004	0.630 ± 0.006	0.650 ± 0.005	3.67 ± 0.01

Figure S5: Area per lipid in each production trajectory over time.

Figure S6: Bilayer thickness in each production trajectory over time.

3 QM Method Asessment

3.1 Further Chlorophyll Absorption Spectra in Diethyl Ether

Figure S7: a) Absorption spectra of a single chlorophyll molecule, axially coordinated by two diethyl ether ligands and implicitly solvated in diethyl ether at different levels of theory, compared to an experimental spectrum. Stick spectra were convoluted by Gaussians ($\sigma = 0.05 \text{ eV}$). Excited states with an oscillator strength < 0.1 are indicated by dotted lines. b) Optimized structure (r²SCAN-3c) used for these benchmark calculations. Hydrogens are omitted for clarity.

3.2 Truncation of the Phytyl Chain

The effects of truncating the phytyl chain at various lengths in the QM region were tested in one MD snapshot for chlorophyll eC-A1. The rest of the phytyl chain and the protein environment were described by point charges and the QM calculations were performed at the DFT/MRCI level as described in the main article. These test calculations were conducted with the basis set def2-SV(P) as the largest QM region was not computationally feasible otherwise. As the phytyl chain is not involved in the excitation, the site energies are nearly identical for different truncation schemes (table S4) and thus allow a truncation after the first carbon.

Table S4: DFT/MRCI site energies and oscillator strengths in one MD snapshot for chlorophyll eC-A1 with the phytyl chain truncated after the first (C1), sixth (C6) and twelfth (C12) carbon.

	(C1	(C6	C12		
State	E [eV]	f	E [eV]	f	E [eV]	f	
1	1.872	0.33578	1.870	0.33873	1.869	0.34035	
2	2.075	0.07015	2.077	0.07000	2.074	0.06990	
3	2.849	0.40940	2.853	0.42848	2.850	0.41902	
4	3.009	0.25724	3.017	0.25709	3.013	0.24418	

4 Data Set of Averaged Site Energies

Figure S8: Site energies for each chlorophyll residue, ordered by ascending arithmetic mean (blue triangles) in 40 MD snapshots. Black lines signify the median, red lines its bootstrapped 95% confidence interval. The green boxes extend from the beginning of the second to the end of the third quartile, whiskers extend to the minimum and maximum values of the data or to 1.5 times the interquartile range in case of outliers (gray diamonds).

Table S5: Arithmetic mean and median of the site energy distributions for each chlorophyll with (subscript env) and without (subscript vac) point charge environment in 40 MD snapshots. Table rows are sorted in ascending order by the mean of the site energy E_{env}^{mean} , same as in fig. 8 of the main paper. The column *ID (MD)* refers to the residue ID used in our MD simulations, while *Name* denotes the standard residue numbering scheme in PSI^{S3,S9} and *ID (x-ray)* is the residue ID used in the crystal structure PDB (1JB0).^{S3}

index	ID (MD)	Name	ID (x-ray)	$E_{\rm env}^{\rm mean}$ [eV]	$E_{\rm vac}^{\rm mean}$ [eV]	$\Delta E_{\mathrm{struct}}^{\mathrm{mean}}$ [eV]	$\Delta E_{\rm elec}^{\rm mean}~[{\rm eV}]$	$E_{\rm env}^{\rm med}$ [eV]	$E_{\rm vac}^{\rm med}$ [eV]	$\Delta E_{\mathrm{struct}}^{\mathrm{med}}$ [eV]	$\Delta E_{\rm elec}^{\rm med}$ [eV]
0	2407	B22	1222	1.853455	1.879903	-0.035949	-0.009847	1.85000	1.87425	-0.041602	-0.00880
1	2417	B32	1232	1.864715	1.904375	-0.011477	-0.023060	1.86125	1.90520	-0.010652	-0.02040
2	2349	A10	1110	1.868052	1.891107	-0.024744	-0.006455	1.86435	1.89500	-0.020852	-0.00785
3	2390	B5	1205	1.868535	1.921047	0.005196	-0.035912	1.87155	1.92025	0.004398	-0.03350
4	2386	B1	1201	1.871347	1.903722	-0.012129	-0.015775	1.86785	1.90600	-0.009852	-0.01585
5	2374	A35	1135	1.873417	1.902643	-0.013209	-0.012625	1.87375	1.90500	-0.010852	-0.01185
6	2403	B18	1218	1.875532	1.911070	-0.004782	-0.018937	1.87815	1.91530	-0.000552	-0.01565
7	2392	B7	1207	1.876372	1.905655	-0.010197	-0.012682	1.87115	1.90300	-0.012852	-0.01295
8	2359	A20	1120	1.878215	1.901123	-0.014729	-0.006307	1.87310	1.90055	-0.015302	-0.00680
9	2409	B24	1224	1.878295	1.899550	-0.016302	-0.004655	1.88140	1.90030	-0.015552	-0.00480
10	2415	B30	1230	1.880343	1.903687	-0.012164	-0.006745	1.88195	1.90460	-0.011252	-0.00875
11	2366	A27	1127	1.880590	1.922427	0.006576	-0.025237	1.87870	1.92430	0.008448	-0.02605
12	2406	B21	1221	1.881983	1.918415	0.002563	-0.019832	1.87350	1.91455	-0.001302	-0.01860
13	2382	PL1	1801	1.882463	1.911225	-0.004627	-0.012162	1.88210	1.91410	-0.001752	-0.01370
14	2373	A34	1134	1.883987	1.901632	-0.014219	-0.001045	1.87855	1.90890	-0.006952	0.00045
15	2342	A3	1103	1.885278	1.907900	-0.007952	-0.006022	1.88865	1.90915	-0.006702	-0.00545
16	2389	B4	1204	1.885675	1.916680	0.000828	-0.014405	1.88980	1.91905	0.003198	-0.01395
17	2378	A39	1139	1.886075	1.916050	0.000198	-0.013375	1.87785	1.91280	-0.003052	-0.01310
18	2354	A15	1115	1.886747	1.907238	-0.008614	-0.003890	1.87765	1.90600	-0.009852	-0.00470
19	2367	A28	1128	1.886975	1.909623	-0.006229	-0.006047	1.89170	1.91175	-0.004102	-0.00395
20	2398	B13	1213	1.887160	1.900198	-0.015654	0.003563	1.88080	1.89745	-0.018402	0.00140
21	2351	A12	1112	1.887660	1.911280	-0.004572	-0.007020	1.89635	1.91160	-0.004252	-0.00980
22	2365	A26	1126	1.887768	1.914357	-0.001494	-0.009990	1.88235	1.91430	-0.001552	-0.01250
23	2337	eC-A1	1011	1.888330	1.901138	-0.014714	0.003793	1.88025	1.89670	-0.019152	0.00325
24	2425	J2	1302	1.889665	1.917935	0.002083	-0.011670	1.88575	1.91325	-0.002602	-0.00775
25	2422	B38	1238	1.889822	1.910750	-0.005102	-0.004327	1.88605	1.91080	-0.005052	-0.00615
26	2427	K1	1401	1.890318	1.904300	-0.011552	0.002618	1.89625	1.90960	-0.006252	0.00370
27	2418	B33	1233	1.891440	1.900678	-0.015174	0.007363	1.89255	1.89590	-0.019952	0.00890
28	2377	A38	1138	1.891883	1.916625	0.000773	-0.008142	1.88820	1.90995	-0.005902	-0.00785
29	2431	M1	1601	1.892145	1.914368	-0.001484	-0.005622	1.88950	1.92235	0.006498	-0.00160
30	2353	A14	1114	1.892545	1.909417	-0.006434	-0.000272	1.89315	1.91350	-0.002352	0.00130
31	2430	L3	1503	1.894138	1.913080	-0.002772	-0.002342	1.90385	1.91655	0.000698	-0.00525

index	ID (MD)	Name	ID (x-ray)	$E_{\rm env}^{\rm mean}$ [eV]	$E_{\rm vac}^{\rm mean}$ [eV]	$\Delta E_{\mathrm{struct}}^{\mathrm{mean}}$ [eV]	$\Delta E_{\rm elec}^{\rm mean}~[{\rm eV}]$	$E_{\rm env}^{\rm med}$ [eV]	$E_{\rm vac}^{\rm med}$ [eV]	$\Delta E_{\mathrm{struct}}^{\mathrm{med}}$ [eV]	$\Delta E_{\rm elec}^{\rm med}$ [eV]
32	2416	B31	1231	1.894322	1.912292	-0.003559	-0.001370	1.89275	1.90910	-0.006752	-0.00140
33	2405	B20	1220	1.894405	1.913845	-0.002007	-0.002840	1.88835	1.91235	-0.003502	-0.00260
34	2347	A8	1108	1.894467	1.909172	-0.006679	0.001895	1.89460	1.91625	0.000398	0.00280
35	2393	B8	1208	1.894478	1.923815	0.007963	-0.012737	1.89720	1.93460	0.018748	-0.01475
36	2404	B19	1219	1.896085	1.924205	0.008353	-0.011520	1.90680	1.93340	0.017548	-0.01180
37	2338	eC-A2	1022	1.897437	1.902822	-0.013029	0.011215	1.89485	1.89735	-0.018502	0.01175
38	2412	B27	1227	1.897847	1.924983	0.009131	-0.010535	1.89450	1.91955	0.003698	-0.01080
39	2411	B26	1226	1.898017	1.910083	-0.005769	0.004535	1.90785	1.91685	0.000998	0.00450
40	2375	A36	1136	1.898157	1.923840	0.007988	-0.009082	1.90490	1.93095	0.015098	-0.00455
41	2410	B25	1225	1.898637	1.930700	0.014848	-0.015462	1.89610	1.92665	0.010798	-0.01495
42	2345	A6	1106	1.898895	1.916257	0.000406	-0.000762	1.89740	1.91895	0.003098	-0.00180
43	2341	A2	1102	1.899025	1.911435	-0.004417	0.004190	1.89980	1.91345	-0.002402	0.00290
44	2363	A24	1124	1.899347	1.910568	-0.005284	0.005380	1.89210	1.90565	-0.010202	0.00745
45	2364	A25	1125	1.899860	1.914992	-0.000859	0.001468	1.90525	1.92215	0.006298	0.00375
46	2395	B10	1210	1.899963	1.909255	-0.006597	0.007308	1.89910	1.90850	-0.007352	0.00400
47	2358	A19	1119	1.899990	1.923783	0.007931	-0.007192	1.90235	1.92805	0.012198	-0.00715
48	2371	A32	1132	1.900000	1.923892	0.008041	-0.007292	1.89365	1.91495	-0.000902	-0.00355
49	2372	A33	1133	1.900048	1.918360	0.002508	-0.001712	1.89730	1.91955	0.003698	-0.00260
50	2414	B29	1229	1.900293	1.900165	-0.015687	0.016728	1.89235	1.89380	-0.022052	0.01635
51	2381	K2	1402	1.900640	1.903497	-0.012354	0.013743	1.89280	1.89495	-0.020902	0.01250
52	2376	A37	1137	1.902035	1.920567	0.004716	-0.001932	1.89370	1.91190	-0.003952	-0.00140
53	2380	B37	1237	1.902203	1.937223	0.021371	-0.018420	1.90285	1.93750	0.021648	-0.02170
54	2420	B35	1235	1.902540	1.929632	0.013781	-0.010492	1.90075	1.92495	0.009098	-0.00945
55	2340	A1	1101	1.903197	1.914115	-0.001737	0.005683	1.89890	1.91095	-0.004902	0.00565
56	2384	eC-B2	1012	1.903217	1.908553	-0.007299	0.011265	1.91300	1.92015	0.004298	0.01020
57	2394	B9	1209	1.904045	1.919852	0.004001	0.000793	1.90680	1.91695	0.001098	-0.00070
58	2352	A13	1113	1.904180	1.917625	0.001773	0.003155	1.90705	1.91805	0.002198	0.00345
59	2370	A31	1131	1.904322	1.907128	-0.008724	0.013795	1.89750	1.90560	-0.010252	0.01190
60	2355	A16	1116	1.905285	1.928820	0.012968	-0.006935	1.90920	1.93720	0.021348	-0.00125
61	2356	A17	1117	1.905665	1.918992	0.003141	0.003273	1.89605	1.90460	-0.011252	0.00580
62	2397	B12	1212	1.905957	1.926785	0.010933	-0.004227	1.90250	1.92595	0.010098	-0.00645
63	2426	J3	1303	1.905977	1.925720	0.009868	-0.003142	1.90380	1.92390	0.008048	-0.00345
64	2344	A5	1105	1.905982	1.919150	0.003298	0.003433	1.90475	1.91565	-0.000202	0.00365
65	2357	A18	1118	1.906210	1.919397	0.003546	0.003413	1.90670	1.92210	0.006248	0.00390
66	2387	B2	1202	1.906287	1.921128	0.005276	0.001760	1.90095	1.92060	0.004748	0.00170
67	2428	L1	1501	1.906370	1.916643	0.000791	0.006328	1.90890	1.91910	0.003248	0.00750
68	2348	A9	1109	1.906925	1.918485	0.002633	0.005040	1.91365	1.92270	0.006848	0.00500

Table S5: continued.

index	ID (MD)	Name	ID (x-ray)	$E_{\rm env}^{\rm mean}$ [eV]	$E_{\rm vac}^{\rm mean}$ [eV]	$\Delta E_{\rm struct}^{\rm mean} \ [{\rm eV}]$	$\Delta E_{\rm elec}^{\rm mean}~[{\rm eV}]$	$E_{\rm env}^{\rm med}$ [eV]	$E_{\rm vac}^{\rm med}$ [eV]	$\Delta E_{\mathrm{struct}}^{\mathrm{med}}$ [eV]	$\Delta E_{\rm elec}^{\rm med}~[{\rm eV}]$
69	2391	B6	1206	1.907240	1.924843	0.008991	-0.001002	1.89950	1.92360	0.007748	0.00190
70	2383	eC-B1	1021	1.908070	1.917340	0.001488	0.007330	1.90215	1.92280	0.006948	0.00755
71	2362	A23	1123	1.908513	1.910687	-0.005164	0.014425	1.90500	1.90355	-0.012302	0.01465
72	2429	L2	1502	1.908653	1.924425	0.008573	0.000828	1.91415	1.92875	0.012898	0.00230
73	2369	A30	1130	1.908765	1.920622	0.004771	0.004743	1.91015	1.92150	0.005648	0.00490
74	2343	A4	1104	1.909773	1.912655	-0.003197	0.013718	1.90770	1.90795	-0.007902	0.01220
75	2360	A21	1121	1.909940	1.917733	0.001881	0.008808	1.91550	1.91685	0.000998	0.00660
76	2419	B34	1234	1.910905	1.917778	0.001926	0.009728	1.90875	1.91445	-0.001402	0.01045
77	2421	B36	1236	1.911068	1.919745	0.003893	0.007923	1.90750	1.91250	-0.003352	0.00830
78	2400	B15	1215	1.911920	1.926585	0.010733	0.001935	1.90230	1.91895	0.003098	0.00295
79	2396	B11	1211	1.912047	1.924960	0.009108	0.003688	1.91555	1.92525	0.009398	0.00710
80	2399	B14	1214	1.913243	1.922330	0.006478	0.007513	1.90670	1.92305	0.007198	0.00830
81	2385	eC-B3	1023	1.914633	1.901227	-0.014624	0.030005	1.91480	1.89380	-0.022052	0.03080
82	2423	B39	1239	1.914892	1.926077	0.010226	0.005415	1.91195	1.92310	0.007248	0.00785
83	2401	B16	1216	1.916793	1.928077	0.012226	0.005315	1.91105	1.92530	0.009448	0.00450
84	2432	X1	1701	1.918455	1.922808	0.006956	0.012248	1.92350	1.92270	0.006848	0.01230
85	2368	A29	1129	1.918708	1.926020	0.010168	0.009288	1.91675	1.92590	0.010048	0.01065
86	2346	A7	1107	1.921690	1.920180	0.004328	0.018110	1.92790	1.92585	0.009998	0.01760
87	2408	B23	1223	1.921953	1.925617	0.009766	0.012935	1.92700	1.92660	0.010748	0.01320
88	2424	J1	1301	1.922465	1.923923	0.008071	0.015143	1.92060	1.92065	0.004798	0.01645
89	2361	A22	1122	1.923098	1.931405	0.015553	0.008293	1.91965	1.92830	0.012448	0.00875
90	2402	B17	1217	1.923480	1.922458	0.006606	0.017623	1.91955	1.91950	0.003648	0.01715
91	2379	A40	1140	1.925195	1.924612	0.008761	0.017183	1.92930	1.92395	0.008098	0.01895
92	2413	B28	1228	1.927463	1.932893	0.017041	0.011170	1.92815	1.93645	0.020598	0.00980
93	2388	B3	1203	1.927652	1.924952	0.009101	0.019300	1.92865	1.92045	0.004598	0.01755
94	2350	A11	1111	1.928800	1.939572	0.023721	0.005828	1.93405	1.94195	0.026098	0.00475
95	2339	eC-A3	1013	1.929500	1.925275	0.009423	0.020825	1.92450	1.92815	0.012298	0.02185

Table S5: continued.

Table S6: Arithmetic mean and median of the site energy distributions for the reaction center chlorophylls including the point charge environment in 200 MD snapshots. The column *ID* (*MD*) refers to the residue ID used in our MD simulations, while *Name* denotes the standard residue numbering scheme in PSI^{S3,S9} and *ID* (*x-ray*) is the residue ID used in the crystal structure PDB (1JB0).^{S3}

index	ID (MD)	Name	ID (x-ray)	$E_{\rm env}^{\rm mean}$ [eV]	$E_{\rm env}^{\rm med}$ [eV]
0	2384	eC-B2	1012	1.892429	1.89065
1	2338	eC-A2	1022	1.893950	1.89290
2	2337	eC-A1	1011	1.896057	1.89335
3	2383	eC-B1	1021	1.906744	1.90615
4	2385	eC-B3	1023	1.915238	1.91550
5	2339	eC-A3	1013	1.915286	1.91185

Figure S9: Site energies for the RC chlorophylls, ordered by ascending arithmetic mean (blue triangles) in 200 MD snapshots. Black lines signify the median, red lines its bootstrapped 95% confidence interval. The green boxes extend from the beginning of the second to the end of the third quartile, whiskers extend to the minimum and maximum values of the data or to 1.5 times the interquartile range in case of outliers (gray diamonds).

5 Statistical Considerations

5.1 Site Energy Convergence with the Number of Snapshots

Figure S10: Convergence of the mean site energy for each chlorophyll with the number of snapshots.

5.2 ANOVA and HSD Analysis

The raw results of the statistical analysis are provided as csv-files at 10.5281/zenodo.6576313.

A one-way ANOVA was performed to assess the significance of the mean site energies. The analysis showed that there is a statistically significant difference in the site energies between at least two chlorophylls (F(95, 3744) = 4.175, p = 0.000). Tukey's Honestly Significant Difference (HSD) test for multiple comparisons found that the mean site energies were significantly different for 165 pairs of chlorophylls, based on p < 0.05. They correspond to the extreme cases of red and blue chlorophylls discussed in the main manuscript.

An ANOVA analysis for the site energies of the RC chlorophylls in 200 MD snapshots also revealed significant differences (F(5, 1194) = 10.148, p = 0.000). Tukey's HSD test found seven out of 15 pairs of RC chlorophylls with significantly different mean site energies, based on p < 0.05.

Concerning the structural site energy shifts, an ANOVA analysis shows significant differences in at least two pairs of chlorophylls (F(95, 3744) = 2.043, p = 0.000). The same holds for the electrostatic shifts (F(95, 3744) = 19.413, p = 0.000). Tukey's HSD test reveals significant differences in ΔE_{struct} in 29 out of 4560 possible pairs of chlorophylls. For ΔE_{elec} , 1479 pairs of chlorophylls with statistically significant differences are found.

6 Comparison with Literature Data

Figure S11: Correlation of previously published site energies with the present work. Adolphs *et al.*^{S10} employed the charge density coupling (CDC) method for the protein in standard (st) and non-standard (ns) protonation states. Damjanovic *et al.*^{S11} and Yin *et al.*^{S12} performed semi-empirical and first quantum chemical calculations. Brüggemann *et al.*,^{S13} Byrdin *et al.*^{S9} and Vaitekonis *et al.*^{S14} performed fits of optical spectra. Energies are given in eV. The diagonal plots illustrate the kernel density estimate (KDE) of each data set.

7 Dimer Excited States

Figure S12: Selected chlorophyll pairs to compute excited states at the QM(ω B97X-D4/def2-TZVP)/MM level of theory.

Figure S13: Natural transition orbitals and excitation energies for the first and second excited state of selected chlorophyll pairs in PSI at the $QM(\omega B97X-D4/def2-TZVP)/MM$ level (isovalue: 0.02). The name above the figures refers to the chlorophyll, on which the excitation is localized. Numbers next to the arrows denote the singular value of the transition.

Figure S13 (cont.): Natural transition orbitals and excitation energies for the first and second excited state of selected chlorophyll pairs in PSI at the $QM(\omega B97X-D4/def2-TZVP)/MM$ level (isovalue: 0.02). The name above the figures refers to the chlorophyll, on which the excitation is localized. Numbers next to the arrows denote the singular value of the transition.

8 Excitonic Red-Shift of the Triad B31-B32-B33

Figure S14: Natural transition orbitals for the Q_y states of the triad B31-B32-B33 in PSI at the QM(ω B97X-D4/def2-TZVP)/MM level (isovalue: 0.02). Numbers next to the arrows denote the weight of the transition. In the left column the entire triad was treated quantum mechanically, in the right column only one of the monomers was included in the QM region. The resulting difference in the excitation energies can be attributed to excitonic coupling including both short- and long-range effects. The results show that the excited states remain localized on one of the monomers (cf. also fig. S13) and that excitonic coupling shifts the collective absorption band of this chlorophyll triad further to the red.

9 Exciton Energies and Fluctuations

Table S7: Mean exciton energies and chlorophyll contributions to each exciton. Chlorophylls were assigned to an exciton domain if their weight w_i in the excitonic wavefunction was larger than 0.1. Contribution coefficients c_i of each chlorophyll to the respective exciton are also provided. Table rows are sorted in ascending order by the exciton energy E_{exc} . The column *ID* (*MD*) refers to the residue ID used in our MD simulations, while *Name* denotes the standard residue numbering scheme in PSI^{S3,S9} and *ID* (*x-ray*) is the residue ID used in the crystal structure PDB (1JB0).^{S3}

Exciton	$E_{\rm exc}$ [eV]	name	ID (MD)	ID (x-ray)	w_i	c_i
0	1.828042	B31	2416	1231	0.195118	-0.441721
		B32	2417	1232	0.649384	0.805844
		B33	2418	1233	0.152557	-0.390586
1	1.848102	B22	2407	1222	0.932454	-0.965636
2	1.855110	A32	2371	1132	0.300483	0.548163
		B7	2392	1207	0.637277	-0.798296
3	1.855323	eC-A1	2337	1011	0.494504	-0.703210
		eC-B1	2383	1021	0.378447	0.615181
4	1.857625	A18	2357	1118	0.140398	-0.374697
		A10	2349	1110	0.798581	0.893634
5	1.858303	A14	2353	1114	0.442904	0.665511
		A12	2351	1112	0.527440	-0.726251
6	1.861035	K1	2427	1401	0.243838	-0.493799
		A34	2373	1134	0.503734	0.709742
		A33	2372	1133	0.146774	-0.383111
7	1.861079	B4	2389	1204	0.100653	-0.317259
		B5	2390	1205	0.716660	0.846557
8	1.863934	A35	2374	1135	0.760822	0.872251
9	1.866067	B19	2404	1219	0.217122	-0.465964
		B18	2403	1218	0.698064	0.835502
10	1.867530	A21	2360	1121	0.178706	0.422736
		A20	2359	1120	0.778045	-0.882069
11	1.868081	A27	2366	1127	0.613017	0.782954
		A26	2365	1126	0.333531	-0.577521
12	1.868466	B1	2386	1201	0.878091	0.937065
13	1.870030	B24	2409	1224	0.661983	0.813623
		B25	2410	1225	0.178490	-0.422481
14	1.870608	A38	2377	1138	0.365919	0.604912
		A39	2378	1139	0.581874	-0.762807
15	1.871598	B37	2380	1237	0.357380	-0.597813
		B38	2422	1238	0.596142	0.772102
16	1.874623	B29	2414	1229	0.152928	-0.391060
		B30	2415	1230	0.769399	0.877154

continued on next page

Exciton	$E_{\rm exc}$ [eV]	name	ID (MD)	ID (x-ray)	w_i	c_i
17	1 875401	A 15	2354	1115	0 255024	0 504999
11	1.070401	A 28	2367	1128	0.200024 0.182773	-0 427519
		A20	2301	1120	0.162715	0.602252
		10	2.042	1105	0.302101	0.002202
18	1.875542	KI	2427	1401	0.123142	0.350916
		A3	2342	1103	0.244751	0.494723
		A15	2354	1115	0.376818	-0.613855
		A28	2367	1128	0.122904	-0.350577
19	1.876628	B20	2405	1220	0.161884	-0.402348
		B21	2406	1221	0.708178	0.841533
20	1.879461	PL1	2382	1801	0.280999	0.530093
		A37	2376	1137	0.189624	0.435459
		A36	2375	1136	0.165709	-0.407074
21	1.880295	eC-A2	2338	1022	0.146223	-0.382391
		PL1	2382	1801	0.567957	0.753629
22	1.880905	eC-B3	2385	1023	0.103896	0.322330
		eC-A2	2338	1022	0.300868	-0.548514
		A25	2364	1125	0.164430	0.405500
		A16	2355	1116	0.135008	-0.367435
23	1.882831	eC-B2	2384	1012	0.540912	-0.735467
		eC-A3	2339	1013	0.163749	0.404659
24	1.884245	eC-A2	2338	1022	0.160273	-0.400342
		A36	2375	1136	0.165179	-0.406422
		A37	2376	1137	0.173057	0.416001
		A16	2355	1116	0.138346	0.371949
25	1.884562	B33	2418	1233	0.355979	-0.596640
		B31	2416	1231	0.382522	0.618484
		B23	2408	1223	0.106091	-0.325716
26	1.885946	B13	2398	1213	0.852941	-0.923548
27	1.886643	A28	2367	1128	0.219895	0.468930
		A2	2341	1102	0.177815	-0.421681
		A5	2344	1105	0.109066	0.330252
		A6	2345	1106	0.263407	-0.513231
		J2	2425	1302	0.121208	-0.348149
28	1.887070	J2	2425	1302	0.132203	-0.363597
		A2	2341	1102	0.159052	0.398813
		A6	2345	1106	0.195989	-0.442706
		A28	2367	1128	0.286312	-0.535082
29	1.887657	B27	2412	1227	0.545232	-0.738398
30	1.888189	B4	2389	1204	0.605488	0.778131
31	1.888801	B35	2420	1235	0.364311	0.603582
01	1.000001	B36	2421	1236	0.165751	-0.407125
	1 200070	то	0405	1909	0.607440	0.025100
32	1.890070	J2 A.c	2425	1302	0.097440	-0.835129
		Ab	2345	1106	0.216526	0.405323
33	1.890081	B26	2411	1226	0.334362	-0.578240
		B2	2387	1202	0.191483	0.437587

Table S7: continued.

 $continued \ on \ next \ page$

Eveitor	F [dV]	nomo	ID (MD)	ID (v rov)	au.	0.
Exciton	Lexc [ev]	name	ID (MD)	ID (x-ray)	w_i	c_i
		B10	2395	1210	0.132953	-0.364627
34	1.890788	B8	2393	1208	0.117774	-0.343182
		B9	2394	1209	0.558238	0.747153
		B17	2402	1217	0.209701	-0.457931
35	1.891450	A31	2370	1131	0.431046	-0.656541
		L3	2430	1503	0.234599	0.484354
36	1.891923	M1	2431	1601	0.682920	-0.826390
		B26	2411	1226	0.138329	0.371927
37	1.892697	A17	2356	1117	0.274275	-0.523713
		A24	2363	1124	0.114487	-0.338359
		A26	2365	1126	0.229358	0.478914
38	1.893645	L3	2430	1503	0.676789	0.822672
39	1.893818	A19	2358	1119	0.427088	0.653520
		A8	2347	1108	0.307000	-0.554076
40	1.893838	B8	2393	1208	0.158821	-0.398523
		B19	2404	1219	0.128308	-0.358202
		B26	2411	1226	0.139354	-0.373302
		B20	2405	1220	0.142135	0.377008
41	1.893865	B20	2405	1220	0.111430	-0.333811
		B8	2393	1208	0.287124	-0.535839
		M1	2431	1601	0.121646	-0.348778
		B10	2395	1210	0.131978	0.363288
42	1.894098	A8	2347	1108	0.557365	0.746569
		A19	2358	1119	0.197224	0.444099
		A23	2362	1123	0.103607	-0.321880
43	1.895421	B23	2408	1223	0.118736	0.344581
		B14	2399	1214	0.240402	-0.490308
		B15	2400	1215	0.173575	0.416623
		B34	2419	1234	0.113378	-0.336717
44	1.896178	A4	2343	1104	0.268726	-0.518388
		A3	2342	1103	0.129138	0.359358
		A9	2348	1109	0.101682	-0.318876
		A2	2341	1102	0.337640	0.581068
45	1.897241	A33	2372	1133	0.190437	0.436391
		A27	2366	1127	0.153116	0.391301
		A26	2365	1126	0.249558	0.499558
46	1.898247	B10	2395	1210	0.100942	-0.317713
		A1	2340	1101	0.232190	0.481861
		A38	2377	1138	0.132243	-0.363653
47	1.898388	B10	2395	1210	0.136873	-0.369964
		A1	2340	1101	0.310317	-0.557061
		A38	2377	1138	0.178030	0.421936
48	1.898794	A24	2363	1124	0.118554	0.344317
		B10	2395	1210	0.101067	0.317910

Table S7: continued.

 $continued \ on \ next \ page$

Exciton	$E_{\rm exc}$ [eV]	name	ID (MD)	ID (x-ray)	w_i	c_i
49	1.898831	B10	2395	1210	0.126285	-0.355366
50	1.899570	A30	2369	1130	0.464012	-0.681184
		A29	2368	1129	0.232011	0.481676
		K2	2381	1402	0.109151	0.330380
51	1.899850	K2	2381	1402	0.726171	0.852157
52	1.900646	B30	2415	1230	0.109560	0.330999
		J1	2424	1301	0.101269	-0.318228
		B29	2414	1229	0.600378	0.774840
53	1.903487	B19	2404	1219	0.260007	0.509908
		B16	2401	1216	0.240773	-0.490687
		B20	2405	1220	0.235371	0.485151
		A13	2352	1113	0.128478	-0.358438
54	1.903513	A13	2352	1113	0.729275	-0.853976
55	1.903947	L1	2428	1501	0.597210	0.772793
		L2	2429	1502	0.337425	-0.580883
56	1.904647	A36	2375	1136	0.106929	-0.327000
		A24	2363	1124	0.101461	0.318529
		A17	2356	1117	0.214894	-0.463566
		A25	2364	1125	0.111551	0.333992
57	1.904731	B25	2410	1225	0.149997	0.387294
		B12	2397	1212	0.413936	0.643379
		B11	2396	1211	0.135412	-0.367984
58	1.905707	B25	2410	1225	0.235655	0.485443
		B14	2399	1214	0.105429	-0.324698
		B12	2397	1212	0.392341	-0.626371
59	1.906036	A22	2361	1122	0.107270	-0.327520
		J3	2426	1303	0.116709	-0.341628
		A19	2358	1119	0.104776	0.323691
		A23	2362	1123	0.484701	0.696204
60	1.906093	J3	2426	1303	0.823790	0.907629
61	1.907203	A9	2348	1109	0.664706	0.815295
		A4	2343	1104	0.174504	-0.417737
62	1.908090	A38	2377	1138	0.222040	-0.471211
		A39	2378	1139	0.234728	-0.484487
		A1	2340	1101	0.282835	-0.531822
63	1.908553	A31	2370	1131	0.119445	0.345608
		B6	2391	1206	0.346391	-0.588550
		L1	2428	1501	0.101030	-0.317852
64	1.909289	A5	2344	1105	0.459890	-0.678152
		A7	2346	1107	0.142323	0.377257
		A9	2348	1109	0.137955	0.371422
65	1.909864	B11	2396	1211	0.119742	0.346038
		X1	2432	1701	0.295189	0.543313
		B35	2420	1235	0.226218	-0.475624

Table S7: continued.

 $continued \ on \ next \ page$

Exciton	$E_{\rm exc}$ [eV]	name	ID (MD)	ID (x-ray)	w_i	c_i
		B36	2421	1236	0.101370	-0.318387
66	1 911168	L2	2429	1502	0 417685	-0 646285
00	1.011100	B39	2423	1239	0 199829	-0.447022
		L1	2428	1501	0 204593	-0 452320
			2120	1001	0.201000	0.102020
67	1.912181	B6	2391	1206	0.135390	0.367954
		B39	2423	1239	0.277248	0.526544
		B2	2387	1202	0.121776	-0.348964
68	1.912666	B39	2423	1239	0.155128	0.393862
		B11	2396	1211	0.337936	-0.581323
69	1.914460	B11	2396	1211	0.130986	-0.361920
		B3	2388	1203	0.145256	0.381125
		B10	2395	1210	0.113752	-0.337271
		B2	2387	1202	0.243389	-0.493345
70	1.915101	A21	2360	1121	0.289830	0.538359
		A18	2357	1118	0.156792	-0.395970
		A22	2361	1122	0.214854	-0.463523
71	1.916105	A18	2357	1118	0.285880	0.534678
72	1.916961	A18	2357	1118	0.265878	0.515634
73	1.918735	B37	2380	1237	0.349259	0.590981
		B38	2422	1238	0.220158	0.469210
74	1.919690	A4	2343	1104	0.135612	0.368256
		A40	2379	1140	0.289933	-0.538454
		eC-A3	2339	1013	0.190786	0.436791
75	1.921137	eC-A3	2339	1013	0.167977	0.409850
		A4	2343	1104	0.116551	-0.341395
77	1.921671	B15	2400	1215	0.139387	0.373346
	1.021011	B16	2401	1216	0.218466	-0.467404
78	1.923494	A14	2353	1114	0.290541	0.539019
		A12	2351	1112	0.259554	0.509465
79	1.924126	B16	2401	1216	0.121233	0.348186
		X1	2432	1701	0.202728	0.450253
		B23	2408	1223	0.153157	-0.391352
		B34	2419	1234	0.171598	-0.414244
80	1.924600	J1	2424	1301	0.540084	-0.734904
81	1.925327	B31	2416	1231	0.103011	-0.320953
		B15	2400	1215	0.148255	0.385039
		B16	2401	1216	0.162039	0.402540
		B32	2417	1232	0.121666	-0.348806
		B33	2418	1233	0.123588	-0.351551
82	1.926194	A29	2368	1129	0.180379	0.424710
		B39	2423	1239	0.114209	-0.337949
		eC-B3	2385	1023	0.292771	-0.541083
83	1.928196	A40	2379	1140	0.212333	-0.460796
84	1.929014	A40	2379	1140	0.195152	-0.441760

Table S7: continued.

continued on next page

Exciton	$E_{\rm exc}$ [eV]	name	ID (MD)	ID (x-ray)	w_i	c_i
		eC-B3	2385	1023	0.108588	-0.329527
85	1.932087	A11	2350	1111	0.236406	-0.486216
		B28	2413	1228	0.166345	-0.407854
86	1.932273	A11	2350	1111	0.156550	-0.395664
		B36	2421	1236	0.133267	-0.365057
87	1.934053	A7	2346	1107	0.100599	0.317173
		B3	2388	1203	0.243536	-0.493494
		B17	2402	1217	0.103352	0.321484
88	1.934916	B17	2402	1217	0.123412	0.351300
		B3	2388	1203	0.174263	-0.417448
89	1.937186	A22	2361	1122	0.124780	-0.353243
90	1.938129	B17	2402	1217	0.214266	0.462889
91	1.939676	B17	2402	1217	0.136998	0.370132
		B3	2388	1203	0.131734	0.362952
92	1.940546	B28	2413	1228	0.362478	-0.602061
93	1.947943	eC-B1	2383	1021	0.117403	-0.342641
94	1.954418	eC-A1	2337	1011	0.206972	0.454942
		eC-B1	2383	1021	0.264167	0.513972
95	1.962741	B23	2408	1223	0.270108	-0.519719
		B31	2416	1231	0.131710	-0.362919

Table S7: continued.

Figure S15: Exciton energies in three selected MD frames, analogous to Fig. 8 of the main article. Each dot signifies a chlorophyll and is colored by the lowest energy exciton domain that this chlorophyll belongs to $(w_i > 0.1)$. Connecting lines represent the coupling strength $(V_{ij} > 1 \text{ meV})$ with thicker lines denoting stronger coupling. The energy axis is centered around the mean of all exciton energies.

References

- (S1) Sali, A.; Blundell, T. L. Comparative Protein Modelling by Satisfaction of Spatial Restraints. J. Mol. Biol. 1993, 234, 779–815.
- (S2) Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. UCSF Chimera-a Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612.
- (S3) Jordan, P.; Fromme, P.; Witt, H. T.; Klukas, O.; Saenger, W.; Krauß, N. Three-Dimensional Structure of Cyanobacterial Photosystem I at 2.5 Å Resolution. *Nature* 2001, 411, 909–917.
- (S4) Buchoux, S. FATSLiM: A Fast and Robust Software to Analyze MD Simulations of Membranes. Bioinformatics 2017, 33, 133–134.
- (S5) Leftin, A.; Molugu, T. R.; Job, C.; Beyer, K.; Brown, M. F. Area per Lipid and Cholesterol Interactions in Membranes from Separated Local-Field 13C NMR Spectroscopy. *Biophys. J.* 2014, 107, 2274–2286.
- (S6) Skjevik, A. g. A.; Madej, B. D.; Dickson, C. J.; Teigen, K.; Walker, R. C.; Gould, I. R. All-Atom Lipid Bilayer Self-Assembly with the AMBER and CHARMM Lipid Force Fields. *Chem. Commun.* 2015, *51*, 4402–4405.
- (S7) Shahane, G.; Ding, W.; Palaiokostas, M.; Orsi, M. Physical Properties of Model Biological Lipid Bilayers: Insights from All-Atom Molecular Dynamics Simulations. J. Mol. Model. 2019, 25, 76.
- (S8) Kučerka, N.; Tristram-Nagle, S.; Nagle, J. F. Structure of Fully Hydrated Fluid Phase Lipid Bilayers with Monounsaturated Chains. J. Membrane Biol. 2006, 208, 193–202.
- (S9) Byrdin, M.; Jordan, P.; Krauss, N.; Fromme, P.; Stehlik, D.; Schlodder, E. Light Harvesting in Photosystem I: Modeling Based on the 2.5-Å Structure of Photosystem I from Synechococcus Elongatus. *Biophys. J.* 2002, *83*, 433–457.
- (S10) Adolphs, J.; Müh, F.; Madjet, M. E.-A.; am Busch, M. S.; Renger, T. Structure-Based Calculations of Optical Spectra of Photosystem I Suggest an Asymmetric Light-Harvesting Process. J. Am. Chem. Soc. 2010, 132, 3331–3343.
- (S11) Damjanović, A.; Vaswani, H. M.; Fromme, P.; Fleming, G. R. Chlorophyll Excitations in Photosystem I of Synechococcus Elongatus. J. Phys. Chem. B 2002, 106, 10251–10262.
- (S12) Yin, S.; Dahlbom, M. G.; Canfield, P. J.; Hush, N. S.; Kobayashi, R.; Reimers, J. R. Assignment of the Qy Absorption Spectrum of Photosystem-I from Thermosynechococcus Elongatus Based on CAM-B3LYP Calculations at the PW91-Optimized Protein Structure. J. Phys. Chem. B 2007, 111, 9923–9930.
- (S13) Brüggemann, B.; Sznee, K.; Novoderezhkin, V.; van Grondelle, R.; May, V. From Structure to Dynamics: Modeling Exciton Dynamics in the Photosynthetic Antenna PS1. J. Phys. Chem. B 2004, 108, 13536–13546.
- (S14) Vaitekonis, S.; Trinkunas, G.; Valkunas, L. Red Chlorophylls in the Exciton Model of Photosystem I. *Photosynth. Res.* 2005, *86*, 185–201.