Supporting Information

Transition Metal-Free Photochemical C–F Activation for the Preparation of Difluorinated-Oxindole Derivatives

Bianca Matsuo,^{*} Jadab Majhi,^{*} Albert Granados,^{*} Mohammed Sharique,^{*} Robert T. Martin,^b Osvaldo Gutierrez,^{b,c*} and Gary A. Molander^{**}

^aRoy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States

^bDepartment of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.

^cDepartment of Chemistry, Texas A&M University, College Station, Texas 77843, USA

‡: These authors contributed equally

* To whom correspondence should be addressed:

Email: og.labs@tamu.edu and gmolandr@sas.upenn.edu

Table of Contents

1.	General Considerations	3
2.	Preparation of Non-Commercial Starting Materials	4
3.	Optimization of the Reaction Conditions	5
	Table S1: Optimization of the Reaction Conditions	6
	Table S2: Optimization of Reaction Condition: Catalyst	7
4. activ	General Procedure: Photoinduced preparation of difluorinated-oxindole derivatives via C-F vation	7
5.	Characterization Data for Oxindole Products	8
6. C-F	Procedure for the Photoinduced Large Scale Preparation of Difluorinated-Oxindole Derivatives via Activation	a .30
7.	Unsuccessful Substrates	.30
8.	Mechanistic Studies	.31
	Quantum Yield Experiment	.31
	UV-VIS	.34
	Fluorescence Quenching Experiment	.34

9.	NMR Spectra of Synthesized Compounds	37	
10. Density Functional Theory (DFT) Calculations			
	General Remarks	85	
	Full Reference of Gaussian16 software:	87	
	Computational Analysis	87	
11.	Coordinates and Energies	92	
12.	References	.118	

1. General Considerations

All reagents were purchased and used as received from their respective suppliers unless otherwise noted. For purple light irradiation, a Kessil PR160L-purple LED lamp (52 W High Luminous DEX 2100 LED, $\lambda_{max} = 390$ nm) was placed 2 cm away from the reaction vials. The reaction was cooled with two compact fans, ensuring that the surface temperature of the vial did not exceed 35 °C. Reactions were monitored by ¹H NMR, ¹⁹F NMR, or TLC using silica gel F254 plates (60 Å porosity, 250 µm thickness). TLC analysis was performed using EtOAc/hexanes and visualized using permanganate stain, ceric ammonium molybdate (Hanessian's) stain, and/or UV light. Flash chromatography was accomplished using an automated system (monitoring at 254 nm and 280 nm in conjunction with an evaporative light scattering detector) with silica cartridges (60 Å porosity, 20-40 µm). Accurate mass measurement analyses were conducted using electron ionization (EI) or electrospray ionization (ESI). The signals were mass measured against an internal lock mass reference of perfluorotributylamine (PFTBA) for EI-GCMS, and leucine enkephalin for ESI-LCMS. The utilized software calibrates the instruments and reports measurements by use of neutral atomic masses. The mass of the electron is not included. IR spectra were recorded using either neat oil or solid products. Data are presented as follows: wavenumber (cm⁻¹) peak shape/intensity (w = weak, m = medium, s = strong, vs = very strong, br = broad). Melting points (°C) are uncorrected. NMR spectra [¹H, ¹³C (¹H decoupled), ¹¹B, ¹⁹F (¹H coupled and decoupled)] were obtained at 298 K. ¹H NMR (600.4 and 400 MHz) chemical shifts are referenced to residual, non-deuterated CHCl₃ (§ 7.26). ¹³C (¹H decoupled) NMR (151 and 101 MHz) chemical shifts are reported relative to CDCl₃ (§ 77.16). ¹⁹F NMR (376 MHz) spectra are ¹H decoupled unless otherwise noted. ¹⁹F NMR spectra were referenced to hexafluorobenzene (δ –164.9). Data are presented as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, dd = doublet of doublet, td = triplet of doublet, dt = doublet of triplet), coupling constant J (Hz) and integration.

2. Preparation of Non-Commercial Starting Materials

The following compounds were prepared according to the established procedures, and all spectral data matched that which was reported in the literature.

List of prepared N-arylmethacrylamides¹

Figure S1. N-Arylmethacrylamides used in the scope of the transformation.

List of prepared trifluoromethyl carbonyl compounds²

Figure S2. Trifluoromethylated compounds used in the scope of the transformation.

3. Optimization of the Reaction Conditions

To a 4 mL vial equipped with a magnetic stir bar was added HCO₂Na (20.4 mg, 0.3 mmol, 3.0 equiv), KHCO₃ (10 mg, 0.1 mmol, 1.0 equiv) and acrylamide (17.5 mg, 0.1 mmol, 1.0 equiv). The vial was capped and then charged with dry solvent (1.0 mL, c = 0.1 M) and closed with a cap. Ethyl trifluoroacetate (120 µL, 1.0 mmol, 10.0 equiv), followed by 4-methoxythiophenol (2.8 mg, 2.5 µL, 0.02 mmol, 0.20 equiv) were added by syringe, and the vial was sealed with Parafilm. The reaction was then irradiated with a Kessil[®] PR160-390 nm lamp at 2 cm (as mentioned in the general considerations section). The reaction was stirred for 16 h of irradiation without the use of cooling fan (temperature of the vial at ~ 50 °C). After 16 h of irradiation, the reaction was quenched slowly with ice-cold H₂O (5 mL) and extracted with EtOAc (3 x 5 mL). The combined organic extracts were washed with brine (10 mL), dried (Na₂SO₄), then decanted, and the solvent was removed via rotary evaporation. The crude material was then redissolved in CH₂Cl₂ and evaporated onto 2-3 g of silica to be purified via automated flash silica column chromatography eluting with 15-30% EtOAc/hexane to afford the desired product. The crude reaction material was analyzed by ¹⁹F NMR in CDCl₃ using 4-bromo-2-fluoro-1-iodobenzene as an internal standard.

Me	+ CF ₃ CO ₂ Et	ArSH (20 mol %) HCO ₂ Na (3.0 equiv) KHCO ₃ (1.0 equiv)	F CO ₂ Et
Me 1 (1.0 equiv)	2 (10.0 equiv)	DMSO (0.1 M) 390 nm Kessil Lamp open-to-air, 16 h	3 Me
entry	entry deviation from std condition		yield (%)
1	none		95
2	0.10 equiv of ArSH		50
3	7.0 equiv of 2		64
4	5.0 equiv of 2		50
5	0.10 equiv of Ar ¹ SH		22
6	6 DMF		traces
7	DMA		0
8	MeOH		traces
9	HFIP		traces
10	tetramethylene sulfoxide		30
11	sulfolane		traces
12	violet LED 427 nm		10
13	rt, fan on		53
14	1.0 ec	quiv of HCO ₂ Na	10
15	1,4-cyclohexadiene	e (1.0 equiv) instead HCO ₂ Na	11
16	16 0.5 equiv base		95
17	0.2 equiv base		82
18	without base		56
19	under Ar		76
20	in the presence of TEMPO		0
21	in the	dark (at 60 °C)	0

Table S1: Optimization of the Reaction Conditions

ArSH = 4-methoxybenzenethiol. $Ar^{1}SH = 4$ -chlorobenzenethiol.

Table S2: Optimization of Reaction Condition: Catalyst

^a absence of base. ^b in the dark, at 80 °C.

4. General Procedure: Photoinduced Preparation of Difluorinated Oxindole Derivatives via C-F Activation

To an 8 mL vial equipped with a magnetic stir bar was added HCO₂Na (102 mg, 1.50 mmol, 3.0 equiv), KHCO₃ (50 mg, 0.50 mmol, 1.0 equiv) and the desired acrylamide (0.5 mmol, 1.0 equiv). The vial was capped, and then charged with dry DMSO (5.0 mL, c = 0.1 M) and closed with a cap. Then, ethyl trifluoroacetate (600 µL, 5.0 mmol, 10.0 equiv), 4-methoxythiophenol (14 mg, 12 µL, 0.10 mmol, 0.20 equiv) were added by syringe, and the vial was sealed with Parafilm. The reaction was then irradiated with a Kessil[®] PR160-390 nm lamp at 2 cm. The reaction was stirred for 24 h of irradiation without the use of cooling fan. After 24 h of irradiation, the reaction was quenched

slowly with ice-cold H_2O (20 mL) and extracted with EtOAc (3 x 20 mL). The combined organic extracts were washed with brine (10 mL), dried (Na₂SO₄), then decanted, and the solvent was removed via rotary evaporation. The crude material was then redissolved in CH_2Cl_2 and evaporated onto 2-3 g of silica to be purified via automated flash silica column chromatography eluting with 15-30% EtOAc/hexane to afford the desired product.

5. Characterization Data for Oxindole Products

Ethyl 3-(1,3-Dimethyl-2-oxoindolin-3-yl)-2,2-difluoropropanoate, 3 (0.130 g, 90%) was prepared according to the General Procedure. The desired compound was obtained as a dense, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 7.29 (td, J = 7.7, 1.3 Hz, 1H), 7.21 – 7.16 (m, 1H), 7.04 (td, J = 7.5, 1.0 Hz, 1H), 6.8 – 6.84 (m, 1H), 4.06 – 4.00 (m, 1H), 3.97 – 3.91 (m, 1H), 3.23 (s, 3H), 2.86 – 2.72 (m, 2H), 1.39 (s, 3H), 1.19 (t, J = 7.2 Hz, 3H).

¹³**C** NMR (CDCl₃, 151 MHz) δ 179.0, 163.7 (t, J_{CF} = 32.2 Hz), 143.5, 131.0, 128.7, 123.9, 122.3, 114.7 (dd, J_{CF} = 255.3, 248.8 Hz), 108.5, 63.0, 44.5 (d, J_{CF} = 6.0 Hz), 41.3 (dd, J_{CF} = 24.5, 22.3 Hz), 26.5, 25.6, 13.8.

¹⁹F NMR (CDCl₃, 376 MHz) δ -102.0 (d, J = 267.6 Hz, 1F), -109.2 (d, J = 267.6 Hz, 1F).

FT-IR (cm⁻¹, neat, ATR) 2970 (w), 1761 (m), 1715 (s), 1099 (s), 754 (s). **HRMS** (ESI) calcd for C₁₅H₁₈F₂NO₃ [M + H]⁺: 298.1255, found: 298.1253.

Ethyl 3-(1,3-Dimethyl-2-oxo-5-phenoxyindolin-3-yl)-2,2-difluoropropanoate, 4 (0.136 g, 70%) was prepared according to the General Procedure. The desired compound was obtained as a dense, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 7.33 – 7.29 (m, 2H), 7.06 (tt, *J* = 7.4, 1.1 Hz, 1H), 6.97 (dq, *J* = 4.6, 2.4 Hz, 2H), 6.96 – 6.94 (m, 2H), 6.81 (d, *J* = 9.1 Hz, 1H), 4.16 – 4.07 (m, 2H), 3.22 (s, 3H), 2.83 (ddd, *J* = 17.3, 15.1, 12.5 Hz, 1H), 2.68 (dt, *J* = 19.2, 15.1 Hz, 1H), 1.39 (s, 3H), 1.26 (t, *J* = 7.2 Hz, 3H).

¹³**C** NMR (CDCl₃, 151 MHz) δ 178.9, 163.6 (t, J_{CF} = 32.2 Hz), 158.4, 152.5, 139.4, 133.0, 130.0, 123.1, 119.8, 118.0, 116.6, 114.8 (dd, J_{CF} = 254.1, 250.2 Hz), 109.3, 63.3, 45.1 (d, J_{CF} = 4.8 Hz), 41.3 (t, J_{CF} = 22.9 Hz), 26.8, 25.8, 14.1.

¹⁹F NMR (CDCl₃, 376 MHz) δ -103.7 (d, J = 266.9 Hz, 1F), -107.6 (d, J = 267.0 Hz, 1F).

FT-IR (cm⁻¹, neat, ATR) 2970 (w), 1761 (m), 1715 (s), 1099 (s), 754 (s). **HRMS** (ESI) calcd for C₂₁H₂₂F₂NO₄ [M + H]⁺: 390.1511, found: 390.1512.

Ethyl 3-(5-(*tert***-Butyl)-1,3-dimethyl-2-oxoindolin-3-yl)-2,2-difluoropropanoate**, **5** (0.132 g, 75%) was prepared according to the General Procedure. The compound was obtained as a dense, colorless oil.

¹H NMR (600 MHz, CDCl₃) δ 7.23 (dd, *J* = 8.2, 1.9 Hz, 1H), 7.18 (d, *J* = 1.9 Hz, 1H), 6.71 (d, *J* = 8.2 Hz, 1H), 3.98 (dq, *J* = 10.7, 7.2 Hz, 1H), 3.84 (dq, *J* = 10.7, 7.2 Hz, 1H), 3.13 (s, 3H), 2.77 – 2.64 (m, 2H), 1.32 (s, 3H), 1.24 (s, 9H), 1.10 (t, *J* = 7.2 Hz, 3H).

¹³**C** NMR (151 MHz, CDCl₃) δ 179.3, 163.9 (t, J_{CF} = 32.1 Hz), 145.7, 141.1, 130.8, 125.3, 121.4, 115.0 (dd, J_{CF} = 255.7, 249.0 Hz), 107.9, 63.0, 45.0 (d, J_{CF} = 5.5 Hz), 41.3 (dd, J_{CF} = 24.1, 22.2 Hz), 34.8, 31.9, 26.6, 25.9, 14.0.

¹⁹F NMR (376 MHz, CDCl₃) δ -102.4 (d, J = 267.2 Hz, 1F), -108.3 (d, J = 267.0 Hz, 1F).

FT-IR (cm⁻¹, neat, ATR) 2965 (w), 1760 (m), 1713 (s), 1051 (s), 751 (s). **HRMS** (ESI) calcd for $C_{19}H_{26}F_2NO_3 [M + H]^+$: 354.1875, found: 354.1886.

Ethyl 2,2-Difluoro-3-(1,3,5-trimethyl-2-oxoindolin-3-yl)propanoate, 6 (0.105 g, 68%) was prepared according to the General Procedure. The compound was obtained as a dense, colorless oil.

¹H NMR (600 MHz, CDCl₃) δ 7.09 – 7.07 (m, 1H), 6.99 (s, 1H), 6.74 (d, *J* = 7.9 Hz, 1H), 4.01 (dq, *J* = 10.8, 7.2 Hz, 1H), 3.94 (dq, *J* = 10.7, 7.2 Hz, 1H), 3.20 (s, 3H), 2.85 – 2.70 (m, 2H), 2.32 (s, 3H), 1.37 (s, 3H), 1.20 (t, *J* = 7.2 Hz, 3H).

¹³**C** NMR (151 MHz, CDCl₃) δ 179.1, 163.9 (t, J_{CF} = 32.2 Hz), 141.3, 131.9, 131.2, 129.1, 124.9, 114.9 (dd, J_{CF} = 255.3, 248.8 Hz), 108.4, 63.1, 44.8 (d, J_{CF} = 6.1 Hz), 41.5 (dd, J_{CF} = 24.6, 22.2 Hz), 26.7, 25.8, 21.3, 14.0.

¹⁹F NMR (376 MHz, CDCl₃) δ -101.6 (d, J = 267.1 Hz, 1F), -109.4 (d, J = 267.3 Hz, 1F).

FT-IR (cm⁻¹, neat, ATR) 2950 (w), 1760 (m), 1710 (s), 1050 (s), 784 (s). **HRMS** (ESI) calcd for $C_{16}H_{20}F_2NO_3 [M + H]^+$: 312.1406, found: 312.1412.

Ethyl 3-(5-Fluoro-1,3-dimethyl-2-oxoindolin-3-yl)-2,2-difluoropropanoate, 7 (0.115 g, 73%) was prepared according to the General Procedure. The desired compound was obtained as a dense, colorless oil.

¹H NMR (600 MHz, CDCl₃) δ 7.03 – 6.93 (m, 2H), 6.78 (dd, *J* = 8.5, 4.1 Hz, 1H), 4.15 – 4.02 (m, 2H), 3.21 (s, 3H), 2.88 – 2.66 (m, 2H), 1.39 (s, 3H), 1.25 (t, *J* = 7.2 Hz, 3H).

¹³**C** NMR (CDCl₃, 151 MHz) δ 178.5, 163.4 (t, $J_{C-F} = 32.2$ Hz), 159.0 (d, J = 240.4 Hz), 139.2 (d, $J_{C-F} = 2.0$ Hz), 132.6, 114.8 (d, $J_{C-F} = 23.5$ Hz), 114.5 (dd, $J_{C-F} = 254.5$, 249.6), 111.9 (d, $J_{C-F} = 24.7$ Hz), 108.8, 63.0, 44.9 (d, $J_{C-F} = 5.3$ Hz), 41.0 (dd, $J_{C-F} = 24.2$, 22.2 Hz), 26.6, 25.4, 13.7.

¹⁹**F** NMR (CDCl₃, 376 MHz) δ -103.0 (d, *J* = 267.7 Hz, 1F), -108.4 (d, *J* = 267.7 Hz, 1F), -124.1 (s, 1F).

FT-IR (cm⁻¹, neat, ATR) 2963 (w), 1725 (m), 1142 (vs), 1075, 726 (m). **HRMS** (EI) calcd for C₁₅H₁₆F₃NO₃ [M]: 315.1082, found: 315.1091.

Ethyl 3-(5-Chloro-1,3-dimethyl-2-oxoindolin-3-yl)-2,2-difluoropropanoate, 8 (0.035 g, 51%, 0.2 mmol scale) was prepared according to the General Procedure. The desired compound was obtained as a dense, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 7.31 – 7.27 (m, 1H), 7.18 (d, J = 2.1 Hz, 1H), 6.81 (d, J = 8.2 Hz, 1H), 4.16 – 4.05 (m, 2H), 3.24 (s, 3H), 2.90 – 2.71 (m, 2H), 1.41 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H).

¹³**C** NMR (CDCl₃, 151 MHz) δ 178.4, 163.3 (t, J_{C-F} = 32.1 Hz), 141.9, 132.6, 128.5, 127.7, 124.3, 114.4 (dd, J_{C-F} = 254.5, 249.6 Hz), 109.4, 63.1, 44.7 (d, J_{C-F} = 5.9 Hz), 41.1 (dd, J_{C-F} = 24.7, 22.3 Hz), 26.6, 25.4, 13.7.

¹⁹F NMR (CDCl₃, 376 MHz) δ -99.1 (d, *J* = 268.6 Hz, 1F), -106.0 (d, *J* = 268.6 Hz, 1F).

FT-IR (cm⁻¹, neat, ATR) 2963 (w), 1725 (m), 1142 (vs), 1075, 726 (m). **HRMS** (ESI) calcd for C₁₅H₁₇ClF₂NO₃ [M+H]⁺: 332.0865, found: 332.0857.

Ethyl 3-(6-Chloro-1,3-dimethyl-2-oxoindolin-3-yl)-2,2-difluoropropanoate, 9 (0.082 g, 52%, 2:1 mixture of regioisomers) was prepared according to the General Procedure. The desired compound was obtained as a dense, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 7.28 – 7.24 (m, 1H), 7.13 (d, *J* = 7.9 Hz, 0.6H), 7.04 (dd, *J* = 7.9, 1.9 Hz, 0.6H), 7.01 – 6.98 (m, 1H), 6.88 (d, *J* = 1.9 Hz, 0.55H), 6.80 – 6.79 (m, 1H), 6.90 – 6.77 (m, 1H), 4.12 (q, *J* = 7.1 Hz, 2H), 4.02 (dd, *J* = 10.8, 7.2 Hz, 0.5H), 3.24 (s, 3H), 3.23 (s, 1.8H), 2.91 – 2.73 (m, 2.5H), 1.55 (s, 3H), 1.40 (s, 1.6H), 1.29 (t, *J* = 7.2 Hz, 3H), 1.24 (t, *J* = 7.2 Hz, 1.6H).

¹³**C** NMR (CDCl₃, 151 MHz) δ 178.8, 178.1, 163.3 (t, $J_{C-F} = 32.3$ Hz), 145.0, 144.5, 134.4, 131.2, 129.7, 129.3, 127.6, 124.8, 123.4, 122.0, 116.1 – 112.6 (m), 109.1, 106.9, 63.1, 62.9, 45.5 (d, $J_{C-F} = 4.6$ Hz), 44.2 (d, $J_{C-F} = 5.4$ Hz), 41.1 (dd, $J_{C-F} = 24.3$, 22.3 Hz), 40.1 – 38.8 (m), 26.6, 26.5, 25.4, 22.4, 13.8, 13.7.

¹⁹**F** NMR (CDCl₃, 376 MHz) δ -102.8 (d, *J* = 267.6 Hz, 0.5F), -105.9 (d, *J* = 264.3 Hz, 1F), -108.5 (d, *J* = 264.4 Hz, 1F), -108.7 (d, *J* = 267.6 Hz, 0.5F).

FT-IR (cm⁻¹, neat, ATR) 2963 (w), 1725 (m), 1142 (vs), 1075, 726 (m). **HRMS** (EI) calcd for C₁₅H₁₇ClF₂NO₃ [M+H]⁺: 332.0865, found: 332.0822.

Ethyl 3-(7-Chloro-1,3-dimethyl-2-oxoindolin-3-yl)-2,2-difluoropropanoate, 10 (0.083 g, 50%) was prepared according to the General Procedure. The desired compound was obtained as a dense, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 7.21 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.07 (dd, *J* = 7.4, 1.2 Hz, 1H), 6.95 (dd, *J* = 8.2, 7.3 Hz, 1H), 4.08 (dq, *J* = 10.7, 7.1 Hz, 1H), 3.99 (dq, *J* = 10.8, 7.2 Hz, 1H), 3.60 (s, 3H), 2.84 (ddd, *J* = 15.9, 15.1, 12.7 Hz, 1H), 2.72 (ddd, *J* = 20.5, 15.0, 13.7 Hz, 1H), 1.38 (s, 3H), 1.23 (t, *J* = 7.2 Hz, 3H).

¹³**C** NMR (CDCl₃, 151 MHz) δ 179.4, 163.8 (t, J_{CF} = 31.9 Hz), 139.6, 134.1, 131.1, 123.3, 122.6, 116.5 – 113.0 (m), 116.1, 63.4, 44.5 (d, J_{CF} = 5.5 Hz), 41.7 (dd, J_{CF} = 24.4, 22.3 Hz), 30.1, 26.2, 14.0.

¹⁹F NMR (CDCl₃, 376 MHz) δ -102.7 (d, J = 267.5 Hz, 1F), -108.3 (d, J = 267.5 Hz, 1F).

FT-IR (cm⁻¹, neat, ATR) 2970 (w), 1762 (m), 1608 (s), 1466 (s), 1089 (s), 778 (m). **HRMS** (EI) calcd for $C_{15}H_{17}ClF_2NO_3$ [M+H]⁺: 332.0860, found: 332.0825.

Ethyl 3-(6-Bromo-1,3-dimethyl-2-oxoindolin-3-yl)-2,2-difluoropropanoate, 11 (0.084 g, 45%, obtained as a 2:1 mixture of regioisomers) was prepared according to the General Procedure. The desired compound was obtained as a dense, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 7.18 – 7.16 (m, 2.5H), 7.05 (d, J = 7.9 Hz, 0.6H), 7.01 (d, J = 1.7 Hz, 0.6H), 6.81 (dd, J = 5.6, 3.1 Hz, 1H), 4.14 – 4.05 (m, 2.7H), 4.03 – 3.97 (m, 0.7H), 3.33 – 3.23 (m, 1.8H), 3.22 (s, 3H), 3.20 (s, 1.9H), 2.85 – 2.69 (m, 2.5H), 1.54 (s, 3H), 1.37 (s, 1.9H), 1.27 (t, J = 7.2 Hz, 3H), 1.22 (t, J = 7.2 Hz, 2H).

¹³**C** NMR (CDCl₃, 151 MHz) δ 178.7, 178.3, 163.6 (t, *J* = 32.1 Hz), 163.3 (t, *J* = 32.3 Hz), 145.4, 144.8, 130.0, 129.9, 129.4, 126.7, 125.3, 125.1, 122.2, 119.7, 116.4 – 112.8 (m), 112.0, 107.6, 63.2, 63.1, 46.4 (d, *J* = 4.5 Hz), 44.4 (d, *J* = 5.4 Hz), 41.1 (dd, *J* = 24.4, 22.1 Hz), 38.9 (t, *J* = 22.9 Hz), 26.7, 26.6, 25.5, 22.4, 13.9, 13.8.

¹⁹**F** NMR (CDCl₃, 376 MHz) δ -102.8 (d, *J* = 267.6 Hz, 0.6F), -105.9 (d, *J* = 264.3 Hz, 1F), -108.1 (d, *J* = 264.2 Hz, 1F), -108.7 (d, *J* = 267.6 Hz, 06F).

FT-IR (cm⁻¹, neat, ATR) 2970 (w), 1763 (s), 1694 (m), 1424 (s), 1306 (s), 1098 (s), 755 (m). **HRMS** (EI) calcd for C₁₅H₁₇BrF₂NO₃ [M+H]⁺: 376.0354, found: 376.0368.

Ethyl 3-(1,3-Dimethyl-2-oxo-2,3-dihydro-1*H*-benzo[*f*]indol-3-yl)-2,2-difluoropropanoate, 12 (0.026 g, 20%) was prepared according to the General Procedure. The desired compound was obtained as a dense, colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.83 (m, 2H), 7.79 (d, J = 8.5 Hz, 1H), 7.56 – 7.49 (m, 1H), 7.39 – 7.33 (m, 1H), 7.22 (d, J = 8.6 Hz, 1H), 3.44 (dq, J = 10.6, 7.1 Hz, 1H), 3.35 (s, 3H), 3.29 – 3.01 (m, 3H), 1.64 (s, 3H), 0.96 (t, J = 7.1 Hz, 3H).

¹³**C** NMR (CDCl₃, 101 MHz) δ 180.2, 162.9 (t, J_{CF} = 33.8 Hz), 141.5, 130.5, 130.2, 129.8, 129.7, 127.2, 123.6, 122.4, 122.2, 114.5 (dd, J_{CF} = 254.9, 248.7 Hz), 110.0, 62.5, 45.8 (d, J_{CF} = 6.9 Hz), 42.1 (dd, J_{CF} = 24.9, 22.3 Hz), 26.8, 24.8, 13.5.

¹⁹F NMR (CDCl₃, 376 MHz) δ -101.6 (d, J = 266.5 Hz, 1F), -110.6 (d, J = 266.5 Hz, 1F).

FT-IR (cm⁻¹, neat, ATR) 2930 (w), 1765 (m), 1713 (s), 1175 (m), 1062 (m), 747 (m). **HRMS** (ESI) calcd for $C_{19}H_{20}F_2NO_3$ [M + H]⁺: 348.1411, found: 348.1401.

Ethyl 3-(1,3-Dimethyl-2-oxoindolin-3-yl)-2,2-difluorobutanoate, 13 (0.124 g, 80%, dr = 1:1, based on ¹H NMR of the crude mixture) was prepared according to the General Procedure. The compound was obtained as a colorless oil. Data reported for one diastereoisomer.

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 (dd, J = 7.6, 1.7 Hz, 1H), 7.29 (td, J = 7.7, 1.3 Hz, 1H), 7.07 (td, J = 7.6, 1.1 Hz, 1H), 6.84 (d, J = 7.7 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 3.22 (s, 3H), 3.11 – 2.93 (m, 1H), 1.46 (d, J = 2.6 Hz, 3H), 1.31 (t, J = 7.1 Hz, 3H), 0.87 (d, J = 7.1, 3H).

¹³**C** NMR (101 MHz, CDCl₃) δ 179.4, 164.3 (t, J_{CF} = 33.2 Hz), 143.7, 131.3, 128.6, 125.6, 122.9, 118.0 (t, J_{CF} = 253.2 Hz), 108.4, 63.3, 50.0 (d, J_{CF} = 2.0 Hz), 43.3 (t, J_{CF} = 21.3 Hz), 26.6, 23.3, 14.2, 10.1.

¹⁹F NMR (376 MHz, CDCl₃) δ -105.1 (d, J = 258.4 Hz, 1F), -107.6 (d, J = 258.4 Hz, 1F).

FT-IR (cm⁻¹, neat, ATR) 2950 (w), 1762 (m), 1709 (s), 1482 (m), 1452 (m), 1080 (s), 751 (s). **HRMS** (ESI) calcd for $C_{16}H_{20}F_2NO_3$ [M + H]:⁺ 312.1406, found: 312.1391.

Ethyl 2,2-Difluoro-3-(1-methyl-2-oxo-1,2,5,6-tetrahydro-4*H*-pyrrolo[3,2,1-*ij*]quinolin-1yl)propanoate, 14 (0.081 g, 50%) was prepared according to the General Procedure. The compound was obtained as a dense, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 7.04 – 7.00 (m, 2H), 6.92 (t, *J* = 7.5 Hz, 1H), 4.03 (dq, *J* = 10.7, 7.2 Hz, 1H), 3.95 (dq, *J* = 10.7, 7.2 Hz, 1H), 3.77 – 3.67 (m, 2H), 2.84 – 2.70 (m, 4H), 2.01 (ttd, *J* = 6.7, 5.1, 2.9 Hz, 2H), 1.40 (s, 3H), 1.20 (t, *J* = 7.2 Hz, 3H).

¹³**C** NMR (151 MHz, CDCl₃) δ 178.0, 163.9 (t, J_{CF} = 32.2 Hz), 139.5, 129.7, 127.5, 122.0, 122.0, 121.9, 115.0 (dd, J_{CF} = 255.2, 248.9 Hz), 63.2, 46.0 (d, J_{CF} = 5.9 Hz), 41.4 (dd, J_{CF} = 24.4, 22.2 Hz), 39.3, 25.4, 25.0, 21.4, 14.0.

¹⁹**F** NMR (CDCl₃, 376 MHz) δ -102.0 (d, J = 267.0 Hz, 1F), -108.9 (d, J = 267.0 Hz, 1F).

FT-IR (cm⁻¹, neat, ATR) 2950 (w), 1762 (m), 1709 (s), 1482 (m), 1452 (m), 1080 (s), 751 (s). **HRMS** (ESI) calcd for $C_{17}H_{20}F_2NO_3$ [M + H]⁺: 324.1406, found: 324.1431.

Ethyl 2,2-Difluoro-2-(1'-methyl-2'-oxospiro[cyclopentane-1,3'-indolin]-2-yl)acetate, 15 (0.145 g, 90%, dr = 2:1, based on ¹H NMR of the crude mixture) was prepared according to the General Procedure. The compound was obtained as a dense, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 7.20 – 7.18 (m, 1H), 7.07 (d, J = 8.9 Hz, 1H), 6.97 (td, J = 7.5, 1.0 Hz, 1H), 6.73 (d, J = 7.5 Hz, 1H), 3.74 – 3.62 (m, 2H), 3.12 (s, 3H), 3.00 (dtd, J = 19.5, 11.3, 7.9 Hz, 1H), 2.55 – 2.47 (m, 1H), 2.29 – 2.20 (m, 1H), 2.15 – 2.07 (m, 2H), 2.00 – 1.93 (m, 1H), 1.91 (ddd, J = 14.0, 8.6, 4.1 Hz, 1H), 1.09 (t, J = 7.2 Hz, 3H).

¹³**C** NMR (151 MHz, CDCl₃) δ 178.1, 163.8 (t, J_{CF} = 32.2 Hz), 144.2, 131.3, 128.6, 122.5, 122.5, 115.4 (dd, J_{CF} = 256.2, 250.4 Hz), 108.2, 62.9, 53.9 (d, J_{CF} = 5.2 Hz), 53.5 (dd, J_{CF} = 25.4, 22.9 Hz), 39.2, 26.4, 24.8, 22.2, 14.0.

¹⁹F NMR (CDCl₃, 376 MHz) δ -105.8 (d, J = 258.5 Hz, 1F), -114.6 (d, J = 258.5 Hz, 1F).

FT-IR (cm⁻¹, neat, ATR) 2956 (w), 1763 (m), 1710 (s), 1482 (m), 1420 (m), 1078 (s), 751 (s). **HRMS** (ESI) calcd for $C_{17}H_{20}F_2NO_3 [M + H]^+$: 324.1406, found: 324.1410.

Ethyl 2,2-Difluoro-2-(1'-methyl-2'-oxospiro[cyclopentane-1,3'-indolin]-2-yl)acetate, 16 (0.115 g, 68%, dr = 2:1, based on ¹H NMR of the crude mixture) was prepared according to the General Procedure. The compound was obtained as a dense, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 7.26 – 7.23 (m, 1H), 7.10 (dd, J = 7.5, 1.7 Hz, 1H), 7.01 (td, J = 7.5, 1.0 Hz, 1H), 6.79 (d, J = 7.7 Hz, 1H), 3.82 (dq, J = 10.8, 7.1 Hz, 1H), 3.74 (dq, J = 10.8, 7.1 Hz, 1H), 3.19 (s, 3H), 2.81 (dddd, J = 20.2, 12.7, 9.0, 3.4 Hz, 1H), 2.47 (qd, J = 13.2, 3.8 Hz, 1H),

2.23 (qt, *J* = 13.4, 3.9 Hz, 1H), 2.08 – 2.04 (m, 1H), 1.90 – 1.85 (m, 1H), 1.75 (td, *J* = 13.7, 3.9 Hz, 1H), 1.68 – 1.62 (m, 1H), 1.60 – 1.54 (m, 1H), 1.45 (dtd, *J* = 17.2, 13.2, 3.8 Hz, 1H), 1.16 (t, *J* = 7.1 Hz, 3H).

¹³**C** NMR (151 MHz, CDCl₃) δ 177.5, 164.3 (t, J_{CF} = 32.7 Hz), 143.6, 132.3, 128.5, 123.3, 122.0, 116.1 (dd, J_{CF} = 258.3, 251.8 Hz), 108.2, 62.9, 48.0 (t, J_{CF} = 21.7 Hz), 46.5 (d, J_{CF} = 4.4 Hz), 37.9, 26.4, 25.4, 20.1, 19.8, 14.0.

¹⁹F NMR (CDCl₃, 376 MHz) δ -107.7 (d, J = 259.2 Hz, 1F), -112.9 (d, J = 259.2 Hz, 1F).

FT-IR (cm⁻¹, neat, ATR) 2934 (m), 1763 (m), 1708 (s), 1482 (m), 1494 (m), 1066 (m), 756 (s). **HRMS** (ESI) calcd for $C_{18}H_{22}F_2NO_3$ [M + H]⁺: 338.1562, found: 338.1564.

Ethyl 3-(1-Benzyl-3-methyl-2-oxoindolin-3-yl)-2,2-difluoropropanoate, 17 (0.091g, 68%) was prepared according to the General Procedure. The compound was obtained as a dense, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 7.25 – 7.22 (m, 4H), 7.20 – 7.16 (m, 1H), 7.11 (d, *J* = 6.4 Hz, 1H), 7.07 (td, *J* = 7.8, 1.2 Hz, 1H), 6.92 (t, *J* = 7.1 Hz, 1H), 6.63 (d, *J* = 7.8 Hz, 1H), 4.91 (d, *J* = 15.8 Hz, 1H), 4.82 (d, *J* = 15.8 Hz, 1H), 3.92 (dq, *J* = 10.7, 7.1 Hz, 1H), 3.77 (dq, *J* = 10.7, 7.1 Hz, 1H), 2.87 – 2.71 (m, 2H), 1.38 (s, 3H), 1.05 (t, *J* = 7.2 Hz, 3H).

¹³**C** NMR (151 MHz, CDCl₃) δ 179.2, 163.9 (t, J_{CF} = 32.0 Hz), 142.8, 136.0, 131.1, 129.0, 128.7, 127.9, 127.5, 124.2, 122.5, 115.0 (dd, J_{CF} = 256.2, 248.2 Hz), 109.8, 63.2, 44.8 (d, J_{CF} = 6.5 Hz), 44.3, 41.3 (dd, J_{CF} = 24.8, 22.1 Hz), 26.5, 13.9.

¹⁹F NMR (376 MHz, CDCl₃) δ -101.2 (d, J = 266.8 Hz), -109.1 (d, J = 266.9 Hz).

FT-IR (cm⁻¹, neat, ATR) 2950 (w), 1758 (s), 1611 (s), 1467 (s), 1327 (s), 1082 (s), 754 (m). **HRMS** (ESI) calcd for $C_{21}H_{22}F_2NO_3$ [M + H]⁺: 374.1562, found: 374.1550.

Ethyl 2,2-difluoro-3-(3-methyl-2-oxo-1-phenylindolin-3-yl)propanoate, 18 (0.072 g, 40%) was prepared according to the General Procedure. The compound was obtained as a dense, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 7.54 – 7.51 (m, 2H), 7.45 – 7.38 (m, 3H), 7.25 (dd, *J* = 7.4, 1.3 Hz, 1H), 7.21 (td, *J* = 7.7, 1.3 Hz, 1H), 7.07 (td, *J* = 7.5, 1.0 Hz, 1H), 6.80 (dt, *J* = 7.9, 0.8 Hz, 1H), 4.02 (dq, *J* = 10.7, 7.1 Hz, 1H), 3.92 (dq, *J* = 10.8, 7.2 Hz, 1H), 2.98 – 2.82 (m, 2H), 1.52 (s, 3H), 1.19 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 178.3, 163.6 (t, *J* = 32.1 Hz), 143.6, 134.6, 130.6, 129.7, 128.6, 128.3, 126.9, 124.2, 122.6, 114.8 (dd, *J* = 255.6, 248.9 Hz), 109.8, 63.0, 44.6 (d, *J* = 6.2 Hz), 41.8 (dd, *J* = 24.6, 22.1 Hz), 25.9, 13.8.

¹⁹F NMR (376 MHz, CDCl₃) δ -101.5 (d, J = 267.9 Hz), -109.0 (d, J = 267.9 Hz).

FT-IR (cm⁻¹, neat, ATR) 2970 (w), 1758 (m), 1712 (s), 1612 (m), 1482 (m), 1453 (m), 1278 (s), 1028 (s), 754 (s). **HRMS** (ESI) calcd for $C_{20}H_{20}F_2NO_3$ [M + H]⁺: 360.1411, found: 360.1411.

Phenethyl 3-(1,3-Dimethyl-2-oxoindolin-3-yl)-2,2-difluoropropanoate, 19 (0.093 g, 76%) was prepared according to the General Procedure. The desired compound was obtained as a dense, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 7.35 – 7.31 (m, 2H), 7.28 – 7.24 (m, 2H), 7.21 – 7.18 (m, 2H), 6.97 (td, J = 7.5, 1.0 Hz, 1H), 6.91 – 6.88 (m, 1H), 6.82 – 6.80 (m, 1H), 4.14 – 4.10 (m, 1H), 4.09 – 4.04 (m, 1H), 3.21 (s, 3H), 2.90 – 2.83 (m, 2H), 2.82 – 2.67 (m, 2H), 1.35 (s, 3H).

¹³**C** NMR (CDCl₃, 151 MHz) δ 178.8, 163.3 (t, J_{CF} = 32.2 Hz), 143.5, 137.1, 130.7, 129.1, 128.7, 128.7, 127.0, 123.8, 122.2, 114.6 (dd, J_{CF} = 255.3, 248.8 Hz), 108.5, 67.2, 44.4 (d, J_{CF} = 6.5 Hz), 41.4 (dd, J_{CF} = 24.8, 22.1 Hz), 34.6, 26.5, 25.5.

¹⁹F NMR (CDCl₃, 376 MHz) -101.2 (d, *J* = 268.2 Hz, 1F), -109.9 (d, *J* = 268.2 Hz, 1F).

FT-IR (cm⁻¹, neat, ATR) 2935 (w), 1768 (m), 1712 (s), 1063 (m), 752 (s). **HRMS** (ESI) calcd for C₂₁H₂₂F₂NO₃ [M + H]:⁺ 374.1568, found: 374.1573.

2-Cyclohexylethyl 3-(1,3-Dimethyl-2-oxoindolin-3-yl)-2,2-difluoropropanoate, 20 (0.087 g, 46%) was prepared according to the General Procedure. The desired compound was obtained as a dense, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 7.29 (td, J = 7.7, 1.3 Hz, 1H), 7.18 (dd, J = 7.5, 1.2 Hz, 1H), 7.04 (td, J = 7.6, 1.0 Hz, 1H), 6.85 (dt, J = 7.9, 0.7 Hz, 1H), 4.01 (dt, J = 10.8, 7.1 Hz, 1H), 3.90 (dt, J = 10.8, 7.1 Hz, 1H), 3.23 (s, 3H), 2.88 – 2.69 (m, 2H), 1.73 – 1.62 (m, 4H), 1.44 (qd, J = 7.0, 1.2 Hz, 2H), 1.39 (s, 3H), 1.33 – 1.10 (m, 5H), 0.97 – 0.83 (m, 2H).

¹³**C** NMR (CDCl₃, 151 MHz) δ 179.2, 163.9 (t, J_{CF} = 32.1 Hz), 143.7, 131.2, 128.9, 124.1, 122.5, 115.0 (dd, J_{CF} = 255.5, 249.0 Hz), 108.7, 65.6, 44.8 (d, J_{CF} = 6.0 Hz), 41.5 (dd, J_{CF} = 24.5, 22.2 Hz), 35.7, 34.7, 33.4, 33.4, 26.7, 26.7, 26.4, 25.8.

¹⁹F NMR (CDCl₃, 376 MHz) -98.7 (d, *J* = 267.8 Hz, 1F), -106.1 (d, *J* = 267.3 Hz, 1F).

FT-IR (cm⁻¹, neat, ATR) 2935 (w), 1768 (m), 1712 (s), 1063 (m), 752 (s). **HRMS** (ESI) calcd for C₂₁H₂₈F₂NO₃ [M + H]:⁺ 380.2032, found: 380.2008.

Isopropyl 3-(1,3-Dimethyl-2-oxoindolin-3-yl)-2,2-difluoropropanoate, 21 (0.084 g, 54%) was prepared according to the General Procedure. The desired compound was obtained as a dense, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 7.28 (td, J = 7.7, 1.2 Hz, 1H), 7.21 (d, J = 7.4 Hz, 1H), 7.03 (td, J = 7.5, 1.0 Hz, 1H), 6.85 (d, J = 7.8 Hz, 1H), 4.85 – 4.79 (m, 1H), 3.22 (s, 3H), 2.84 – 2.71 (m, 2H), 1.39 (s, 3H), 1.24 (d, J = 6.3 Hz, 3H), 1.14 (d, J = 6.3 Hz, 3H).

¹³**C** NMR (CDCl₃, 151 MHz) δ 179.3, 163.3 (t, J_{CF} = 31.9 Hz), 143.6, 131.4, 128.8, 124.2, 122.5, 115.0 (dd, J_{CF} = 255.1, 249.7 Hz), 108.6, 71.6, 44.8 (d, J_{CF} = 4.9 Hz), 41.2 (dd, J_{CF} = 24.1, 22.0 Hz), 26.7, 25.8, 21.7, 21.6.

¹⁹F NMR (CDCl₃, 376 MHz) δ -103.1 (d, J = 268.1 Hz, 1F), -108.5 (d, J = 267.9 Hz, 1F).

FT-IR (cm⁻¹, neat, ATR) 2970 (w), 1709 (s), 1611 (s), 1231 (m), 741 (s). **HRMS** (ESI) calcd for $C_{16}H_{19}F_2NNaO_3 [M + Na]^+$: 334.1231, found: 334.1234.

Cyclohexyl 3-(1,3-Dimethyl-2-oxoindolin-3-yl)-2,2-difluoropropanoate, 22 (0.070 g, 57%) was prepared according to the General Procedure. The desired compound was obtained as a dense, colorless oil.

¹H NMR (600 MHz, CDCl₃) δ 7.28 (td, J = 7.7, 1.3 Hz, 1H), 7.25 – 7.19 (m, 1H), 7.03 (td, J = 7.5, 1.0 Hz, 1H), 6.86 – 6.84 (m, 1H), 4.60 (tt, J = 9.1, 3.8 Hz, 1H), 3.22 (s, 3H), 2.88 – 2.64 (m, 1H), 4.60 (tt, J = 9.1, 3.8 Hz, 1H), 3.22 (s, 3H), 2.88 – 2.64 (m, 1H), 4.60 (tt, J = 9.1, 3.8 Hz, 1H), 3.22 (s, 3H), 2.88 – 2.64 (m, 1H), 4.60 (tt, J = 9.1, 3.8 Hz, 1H), 3.22 (s, 3H), 2.88 – 2.64 (m, 1H), 4.60 (tt, J = 9.1, 3.8 Hz, 1H), 3.22 (s, 3H), 2.88 – 2.64 (m, 1H), 4.60 (tt, J = 9.1, 3.8 Hz, 1H), 3.22 (s, 3H), 2.88 – 2.64 (m, 1H), 4.60 (tt, J = 9.1, 3.8 Hz, 1H), 3.22 (s, 3H), 2.88 – 2.64 (m, 1H), 4.60 (tt, J = 9.1, 3.8 Hz, 1H), 3.22 (s, 3H), 2.88 – 2.64 (m, 1H), 4.60 (tt, J = 9.1, 3.8 Hz, 1H), 3.22 (s, 3H), 2.88 – 2.64 (m, 1H), 4.60 (tt, J = 9.1, 3.8 Hz, 1H), 3.22 (s, 3H), 2.88 – 2.64 (m, 1H), 4.60 (tt, J = 9.1, 3.8 Hz, 1H), 3.22 (s, 3H), 2.88 – 2.64 (m, 1H), 4.60 (tt, J = 9.1, 3.8 Hz, 1H), 3.22 (s, 3H), 3.8 Hz, 1H), 3.8

2H), 1.85 – 1.78 (m, 1H), 1.75 – 1.61 (m, 3H), 1.64 – 1.41 (m, 2H), 1.39 (s, 3H), 1.38 – 1.21 (m, 4H).

¹³**C** NMR (CDCl₃, 151 MHz) δ 179.1, 163.0 (t, J_{CF} = 31.9 Hz), 143.4, 131.3, 128.6, 124.0, 122.3, 114.8 (dd, J_{CF} = 254.8, 249.9 Hz), 108.4, 76.0, 44.6 (d, J_{CF} = 4.9 Hz), 41.0 (dd, J_{CF} = 24.0, 21.8 Hz), 31.1, 31.0, 26.5, 25.6, 25.2, 23.5, 23.5.

¹⁹F NMR (CDCl₃, 376 MHz) -103.2 (d, *J* = 268.2 Hz, 1F), -108.2 (d, *J* = 268.2 Hz, 1F).

FT-IR (cm⁻¹, neat, ATR) 2937 (w), 1756 (m), 1715 (s), 1062 (w), 754 (m). **HRMS** (ESI) calcd for C₁₉H₂₄F₂NO₃ [M + H]⁺: 352.1724, found: 352.1727.

Adamantan-1-yl 3-(1,3-Dimethyl-2-oxoindolin-3-yl)-2,2-difluoropropanoate, 23 (0.101 g, 50%) was prepared according to the General Procedure. The desired compound was obtained as a dense, colorless oil.

¹H NMR (600 MHz, CDCl₃) δ 7.28 (td, *J* = 7.7, 1.3 Hz, 1H), 7.26 – 7.25 (m, 1H), 7.05 (td, *J* = 7.5, 1.0 Hz, 1H), 6.85 (d, *J* = 7.7 Hz, 1H), 3.22 (s, 3H), 2.88 – 2.57 (m, 2H), 2.17 (s, 3H), 2.04 (s, 6H), 1.64 (s, 6H), 1.39 (s, 3H).

¹³**C** NMR (CDCl₃, 151 MHz) δ 179.3, 162.1 (t, J_{CF} = 31.6 Hz), 143.2, 131.8, 128.4, 124.1, 122.6, 114.7 (dd, J_{CF} = 254.5, 251.2 Hz), 108.4, 84.7, 44.7 (t, J_{CF} = 4.4 Hz), 41.0, 40.7 (d, J_{CF} = 22.3 Hz), 36.0, 31.0, 26.5, 25.6.

¹⁹F NMR (CDCl₃, 376 MHz) δ -104.6 (d, J = 265.9 Hz, 1F), -106.6 (d, J = 265.9 Hz, 1F).

FT-IR (cm⁻¹, neat, ATR) 2919 (s), 2852 (m), 1717 (s), 1046 (m), 753 (m). **HRMS** (ESI) calcd for C₂₃H₂₇F₂NNaO₃ [M + Na]:⁺ 426.1857, found: 426.1835.

Ethyl 2-((1,3-Dimethyl-2-oxoindolin-3-yl)methyl)-2,3,3,3-tetrafluoropropanoate, 24 (0.135 g, 78%, dr = 2:1, based on ¹H NMR of the crude mixture) was prepared according to the General Procedure. The desired compound was obtained as a dense, colorless oil and the major compound's data is reported.

¹H NMR (600 MHz, CDCl₃) δ 7.30 – 7.27 (m, 1H), 7.11 – 7.08 (m, 1H), 7.02 – 6.99 (m, 1H), 6.87 – 6.84 (m, 1H), 3.91 – 3.85 (m, 1H), 3.67 – 3.60 (m, 1H), 3.22 (s, 3H), 2.93 – 2.76 (m, 2H), 1.38 (s, 3H), 1.05 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (CDCl₃, 151 MHz) δ 179.0, 164.3 (d, J_{CF} = 23.4 Hz), 144.2, 129.7, 128.9, 124.5, 121.9, 121.4 (dd, J_{CF} = 286.4, 28.1 Hz), 108.5, 92.3 (dq, J_{CF} = 208.2, 31.1 Hz), 63.2, 44.7 (d, J_{CF} = 2.7 Hz), 37.5 (d, J_{CF} = 18.5 Hz), 26.5, 25.8, 13.5.

¹⁹F NMR (CDCl₃, 376 MHz) δ -82.4 (d, J = 6.8 Hz, 3F), -184.1 (q, J = 6.8 Hz, 1F).

FT-IR (cm⁻¹, neat, ATR) 2930 (w), 1713 (s), 1199 (s), 1051 (m), 754 (m). **HRMS** (ESI) calcd for C₁₆H₁₈F₄NO₃ [M + H]⁺: 348.1223, found: 348.1229.

Ethyl 3-(1,3-Dimethyl-2-oxoindolin-3-yl)-2-fluoropropanoate, 25 (0.056 g, 40%, dr = 1:1, based on ¹H NMR of the crude mixture) was prepared according to the General Procedure. The desired compound was obtained as a dense, colorless oil (data for diastereomer A).

¹**H** NMR (600 MHz, CDCl₃) δ 7.32 – 7.28 (m, 1H), 7.24 – 7.21 (m, 1H), 7.09 (t, *J* = 7.5 Hz, 1H), 6.87 (d, *J* = 7.7 Hz, 1H), 4.71 – 4.59 (m, 1H), 4.20 – 4.10 (m, 2H), 3.21 (s, 3H), 2.60 – 2.52 (m, 1H), 2.36 – 2.25 (m, 1H), 1.43 (s, 3H), 1.25 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (CDCl₃, 151 MHz) δ 179.7, 169.4 (d, J_{CF} = 22.9 Hz), 143.7, 132.0, 128.6, 123.0, 122.7, 108.5, 86.7 (d, J_{CF} = 185.8 Hz), 61.8, 45.9, 40.1 (d, J_{CF} = 20.2 Hz), 26.5, 24.3, 14.2.

¹⁹F NMR (CDCl₃, 376 MHz) δ -194.1 (s, 1F).

FT-IR (cm⁻¹, neat, ATR) 2974 (w), 1758 (m), 1711 (s), 1612 (m), 1105 (m), 1062 (m), 754 (m). **HRMS** (ESI) calcd for C₁₅H₁₈FNNaO₃ [M + Na]⁺: 302.1168, found: 302.1171.

Ethyl 3-(1,3-Dimethyl-2-oxoindolin-3-yl)-2-fluoropropanoate, 25 (0.056 g, 40%, dr = 1:1, based on ¹H NMR of the crude mixture) was prepared according to the General Procedure. The desired compound was obtained as a dense, colorless oil (data for diastereomer B).

¹H NMR (600 MHz, CDCl₃) δ 7.31 – 7.27 (m, 1H), 7.22 – 7.19 (m, 1H), 7.08 – 7.04 (m, 1H), 6.86 (d, *J* = 7.8 Hz, 1H), 4.85 – 4.73 (m, 1H), 4.14 – 3.98 (m, 2H), 3.23 (s, 3H), 2.65 – 2.39 (m, 2H), 1.42 (s, 3H), 1.21 (t, *J* = 7.1 Hz, 3H).

¹³**C** NMR (CDCl₃, 151 MHz) δ 179.6, 169.3 (d, J_{CF} = 23.4 Hz), 143.3, 132.3, 128.4, 123.6, 122.6, 108.4, 87.0 (d, J_{CF} = 186.9 Hz), 61.8, 46.2, 39.4 (d, J_{CF} = 19.6 Hz), 26.5, 24.9, 14.1.

¹⁹F NMR (CDCl₃, 376 MHz) δ -193.5 (s, 1F).

FT-IR (cm⁻¹, neat, ATR) 2972 (w), 1757 (m), 1709 (s), 1612 (m), 1110 (m), 1026 (w), 753 (m). **HRMS** (ESI) calcd for $C_{15}H_{18}FNNaO_3$ [M + Na]⁺: 302.1168, found: 302.1171.

3-(1,3-Dimethyl-2-oxoindolin-3-yl)-2,2-difluoro-*N***-phenylpropanamide, 26** (0.103 g, 60%) was prepared according to the General Procedure. The desired compound was obtained as a dense, colorless oil.

¹H NMR (600 MHz, CDCl₃) δ 7.53 (br s, 1H), 7.33 – 7.30 (m, 2H), 7.30 – 7.27 (m, 2H), 7.25 – 7.23 (m, 1H), 7.16 – 7.12 (m, 2H), 6.92 – 6.89 (m, 1H), 6.80 (d, *J* = 7.7 Hz, 1H), 3.21 (s, 3H), 3.05 – 2.85 (m, 2H), 1.40 (s, 3H).

¹³**C** NMR (CDCl₃, 151 MHz) δ 179.3, 161.5 (t, J_{CF} = 27.8 Hz), 143.0, 135.9, 130.9, 129.0, 128.5, 125.5, 124.4, 122.7, 120.2, 116.7 (dd, J_{CF} = 257.2, 254.0 Hz), 108.2, 44.6 (d, J_{CF} = 5.4 Hz), 40.4 (dd, J_{CF} = 24.5, 22.3 Hz), 26.6, 25.9.

¹⁹F NMR (CDCl₃, 376 MHz) δ -101.0 (d, J = 260.2 Hz, 1F), -110.3 (d, J = 260.2 Hz, 1F).

FT-IR (cm⁻¹, neat, ATR) 3290 (w, br.), 1693 (s), 1612 (m), 909 (m), 729 (s). **HRMS** (ESI) calcd for $C_{19}H_{19}F_2N_2O_2$ [M + H]⁺: 345.1415, found: 345.1400.

3-(1,3-Dimethyl-2-oxoindolin-3-yl)-2,2-difluoro*N,N***-diphenylpropanamide**, **27** (0.110 g, 52%) was prepared according to the General Procedure. The desired compound was obtained as a white solid (mp = 130 - 132 °C).

¹H NMR (600 MHz, CDCl₃) δ 7.35 (td, *J* = 7.7, 1.3 Hz, 1H), 7.31 – 7.25 (m, 5H), 7.24 – 7.19 (m, 2H), 7.11 (td, *J* = 7.5, 1.0 Hz, 1H), 7.07 – 7.02 (m, 4H), 6.88 – 6.86 (m, 1H), 3.18 – 3.09 (m, 1H), 3.12 (s, 3H), 2.86 – 2.77 (m, 1H), 1.37 (s, 3H).

¹³**C** NMR (CDCl₃, 151 MHz) δ 179.5, 163.1 (d, J_{CF} = 28.9 Hz), 143.5, 131.8, 129.1 (2C), 128.3, 127.6 (br), 124.7, 122.5, 118.1 (dd, J_{CF} = 262.1, 253.4 Hz), 108.2, 44.8 (dd, J_{CF} = 4.9, 2.2 Hz), 41.5 (dd, J_{CF} = 24.5, 21.8 Hz), 26.4, 26.1.

¹⁹**F** NMR (CDCl₃, 376 MHz) -92.4 (d, J = 280.1 Hz, 1F), -100.1 (d, J = 280.1 Hz, 1F).

FT-IR (cm⁻¹, neat, ATR) 2925 (w), 1715 (s), 1686 (s), 1046 (m), 758 (s). **HRMS** (ESI) calcd for C₂₅H₂₃F₂N₂O₂ [M + H]:⁺ 421.1728, found: 421.1741.

3-(1,3-Dimethyl-2-oxoindolin-3-yl)-2,2-difluoro-*N*-(**4-fluorophenyl)**propenamide, **28** (0.097 g, 54%) was prepared according to the General Procedure. The desired compound was obtained as a white solid (mp = 120 - 122 °C).

¹**H** NMR (600 MHz, CDCl₃) δ 7.61 (br s, 1H), 7.34 – 7.25 (m, 2H), 7.25 – 7.20 (m, 1H), 7.15 (td, *J* = 7.7, 1.3 Hz, 1H), 6.99 – 6.95 (m, 2H), 6.91 (td, *J* = 7.5, 1.0 Hz, 1H), 6.81 (dt, *J* = 7.8, 0.7 Hz, 1H), 3.20 (s, 3H), 3.03 – 2.94 (m, 1H), 2.92 – 2.83 (m, 1H), 1.39 (s, 3H).

¹³**C** NMR (CDCl₃, 151 MHz) δ 179.3, 161.5 (t, $J_{CF} = 28.1$ Hz), 160.1 (d, $J_{CF} = 245.2$ Hz), 143.0, 132.0 (d, $J_{CF} = 2.7$ Hz), 130.9, 128.6, 124.4, 122.7, 122.1 (d, $J_{CF} = 7.6$ Hz), 116.7 (d, $J_{CF} = 25.7$, 253.4 Hz), 115.7 (d, $J_{CF} = 22.3$ Hz), 108.2, 44.6 (d, $J_{CF} = 5.4$ Hz), 40.4 (dd, J = 24.8, 22.1 Hz), 26.6, 25.8.

¹⁹**F** NMR (CDCl₃, 376 MHz) δ -100.8 (d, *J* = 260.2 Hz, 1F), -110.3 (d, *J* = 260.2 Hz, 1F), -119.4 (s, 1F).

FT-IR (cm⁻¹, neat, ATR) 3280 (w, br.), 1693 (s), 1614 (m), 1552 (m), 1060 (w), 755 (w). **HRMS** (ESI) calcd for $C_{19}H_{18}F_3N_2O_2$ [M + H]⁺: 363.1320, found: 363.1306.

N-(4-Chlorophenyl)-3-(1,3-dimethyl-2-oxoindolin-3-yl)-2,2-difluoropropanamide, 29 (0.133 g, 41%) was prepared according to the General Procedure. The desired compound was obtained as a white solid (mp = 160 - 161 °C).

¹H NMR (600 MHz, CDCl₃) δ 7.44 (br. s, 1H), 7.30 – 7.24 (m, 4H), 7.22 (d, *J* = 7.2 Hz, 1H), 7.16 – 7.12 (m, 1H), 6.90 (t, *J* = 7.5 Hz, 1H), 6.80 (d, *J* = 7.7 Hz, 1H), 3.22 (s, 3H), 3.05 – 2.94 (m, 1H), 2.94 – 2.85 (m, 1H), 1.40 (s, 3H).

¹³**C** NMR (CDCl₃, 151 MHz) δ 179.3, 161.5 (t, J_{CF} = 28.1 Hz), 143.1, 134.5, 130.9, 130.7, 129.1, 128.6, 124.5, 122.7, 121.4, 116.7 (dd, J_{CF} = 258.2, 259.7 Hz), 108.2, 44.6 (d, J_{CF} = 5.4 Hz), 40.4 (dd, J_{CF} = 24.8, 22.1 Hz), 26.6, 25.8.

¹⁹F NMR (CDCl₃, 376 MHz) δ -100.5 (d, J = 260.8 Hz, 1F), -110.6 (d, J = 260.8 Hz, 1F).

FT-IR (cm⁻¹, neat, ATR) 3260 (w, br.), 1693 (s), 1060 (m), 756 (m). **HRMS** (ESI) calcd for $C_{19}H_{18}ClF_2N_2O_2$ [M + H]:⁺ 379.1025, found: 379.1020.

3-(1,3-Dimethyl-2-oxoindolin-3-yl)-2,2-difluoro-*N*-(4-methoxyphenyl)propenamide, **30** (0.037 g, 20%) was prepared according to the General Procedure. The desired compound was obtained as a dense, colorless oil.

¹H NMR (600 MHz, CDCl₃) δ 7.33 (br s, 1H), 7.26 – 7.22 (m, 1H), 7.24 – 7.18 (m, 2H), 7.17 (td, J = 7.7, 1.3 Hz, 1H), 6.93 (td, J = 7.5, 1.0 Hz, 1H), 6.86 – 6.79 (m, 3H), 3.79 (s, 3H), 3.22 (s, 3H), 3.07 – 2.85 (m, 2H), 1.40 (s, 3H).

¹³**C** NMR (CDCl₃, 151 MHz) δ 179.3, 161.2 (t, J_{CF} = 27.8 Hz), 157.3, 143.1, 131.0, 128.9, 128.5, 124.5, 122.7, 122.0, 116.9 (dd, J_{CF} = 257.5, 253.7 Hz), 114.2, 108.2, 55.6, 40.4 (dd, J_{CF} = 24.8, 22.1 Hz), 26.6, 25.9.

¹⁹F NMR (CDCl₃, 376 MHz) δ -100.8 (d, J = 260.2 Hz, 1F), -110.5 (d, J = 260.2 Hz, 1F).

FT-IR (cm⁻¹, neat, ATR) 3280 (w, br.) 2935 (w), 1693 (s), 1511 (s), 1242 (s), 1057 (m), 826 (m), 751 (m). **HRMS** (ESI) calcd for C₂₀H₂₁F₂N₂O₃ [M + H]⁺: 375.1520, found: 375.1530.

3-(1,3-Dimethyl-2-oxoindolin-3-yl)-2,2-difluoro*N***-(***o***-tolyl)propenamide, 31** (0.054 g, 30%) was prepared according to the General Procedure. The desired compound was obtained as a dense, colorless oil.

¹H NMR (600 MHz, CDCl₃) δ 7.72 – 7.68 (m, 1H), 7.39 (br. s, 1H), 7.27 – 7.24 (m, 1H), 7.20 – 7.15 (m, 2H), 7.14 - 7.11 (m, 1H), 7.10 – 7.06 (m, 1H), 6.96 – 6.91 (m, 1H), 6.81 (d, *J* = 7.7 Hz, 1H), 3.23 (s, 3H), 3.09 – 2.99 (m, 1H), 2.97 – 2.88 (m, 1H), 2.05 (s, 3H), 1.41 (s, 3H).

¹³C NMR (CDCl₃, 151 MHz) δ 179.3, 161.4 (t, *J* = 27.5 Hz), 143.1, 133.9, 131.1, 130.6, 128.7, 128.4, 126.9, 126.0, 124.5, 122.7, 122.2, 117.0 (dd, *J* = 257.2, 253.9 Hz), 108.1, 44.6 (d, *J* = 5.4 Hz), 40.2 (dd, *J* = 24.5, 21.8 Hz), 26.6, 26.0, 17.3.

¹⁹F NMR (CDCl₃, 376 MHz) -100.8 (d, J = 261.3 Hz, 1F), -110.2 (d, J = 261.3 Hz, 1F).

FT-IR (cm⁻¹, neat, ATR) 3290 (w, br), 2924 (w), 1697 (s), 1612 (m), 1048 (m), 750 (s). **HRMS** (ESI) calcd for $C_{20}H_{21}F_2N_2O_2$ [M + H]⁺: 359.1571, found: 359.1565.

3-(2,2-difluoro-2-phenylethyl)-1,3-dimethylindolin-2-one, 32 (0.080 g, 53%) was prepared according to the General Procedure. The desired compound was obtained as a dense, colorless oil.

¹H NMR (600 MHz, CDCl₃) δ 7.32–7.30 (m, 1H), 7.28–7.21 (m, 4H), 7.09–7.07 (m, 2H), 7.03 (td, J = 7.5, 1.0 Hz, 1H), 6.74 (d, J = 7.7 Hz, 1H), 3.02–2.93 (m, 1H), 2.96 (s, 3H), 2.73 (ddd, J = 19.5, 15.2, 9.1 Hz, 1H), 1.35 (s, 3H).

¹³C NMR (CDCl₃, 151 MHz) δ 179.3, 143.2, 136.3 (t, $J_{CF} = 26.1$ Hz), 132.0, 129.9 (2C), 128.2 (2C), 128.1, 125.3 (t, $J_{CF} = 6.4$ Hz), 124.2, 122.5, 121.8 (dd, $J_{CF} = 243.3$, 242.8 Hz), 108.2, 45.9 (t, $J_{CF} = 27.7$ Hz), 45.4 (d, $J_{CF} = 4.2$ Hz), 26.5, 26.3.

¹⁹F NMR (CDCl₃, 376 MHz) δ -87.2 (d, J = 246.7 Hz, 1F), -93.30(d, J = 247.0 Hz, 1F).

FT-IR (cm⁻¹, neat, ATR) 2990 (w), 1720 (s), 1650 (m), 1124 (s), 730 (s). **HRMS** (ESI) calcd for C₁₈H₁₈F₂NO [M + H]⁺: 302.1351, found: 302.1358

3-(2,2-Difluoro-2-(3-(trifluoromethyl)phenyl)ethyl)-1,3-dimethylindolin-2-one, 33 (0.089 g, 53%) was prepared according to the General Procedure. The desired compound was obtained as a dense, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 7.57 (d, J = 7.8 Hz, 1H), 7.41 (t, J = 7.8 Hz, 1H), 7.37 – 7.32 (m, 1H), 7.28 – 7.21 (m, 1H), 7.18 – 7.13 (m, 2H), 7.02 – 6.98 (m, 1H), 6.72 (d, J = 7.8 Hz, 1H), 3.08 – 2.97 (m, 1H), 2.92 (s, 3H), 2.81 – 2.71 (m, 1H), 1.35 (s, 3H).

¹³C NMR (CDCl₃, 151 MHz) δ 178.9, 142.8, 137.0 (t, $J_{CF} = 27.0$ Hz), 131.3, 130.5 (q, $J_{CF} = 32.7$ Hz), 129.1 (t, $J_{CF} = 6.0$ Hz), 128.8, 128.4, 126.7 (m), 123.6 (q, $J_{CF} = 272.5$ Hz), 124.1 (d, $J_{CF} = 2.7$ Hz), 122.5, 122.0 (m), 121.0 (t, $J_{CF} = 243.1$ Hz), 108.3, 45.5 (t, $J_{CF} = 27.8$ Hz), 45.1 (dd, $J_{CF} = 3.0, 1.5$ Hz), 26.6, 26.1.

¹⁹**F** NMR (CDCl₃, 376 MHz) δ -65.7 (s, 3F), -90.3 (d, *J* = 250.5 Hz, 1F), -95.2 (d, *J* = 250.5 Hz, 1F).

FT-IR (cm⁻¹, neat, ATR) 2920 (w), 1712 (s), 1600 (m), 1123 (s), 701 (m). **HRMS** (ESI) calcd for $C_{19}H_{17}F_5NO [M + H]$:⁺ 370.1230, found: 370.1228.

3-(2,2-Difluoro-2-(4-fluorophenyl)ethyl)-1,3-dimethylindolin-2-one, 34 (0.070 g, 44%) was prepared according to the General Procedure. The desired compound was obtained as a dense, colorless oil.

¹H NMR (600 MHz, CDCl₃) δ 7.21 – 7.17 (m, 1H), 7.12 (d, J = 7.4 Hz, 1H), 6.98 – 6.94 (m, 3H), 6.84 (t, J = 8.7 Hz, 2H), 6.66 (d, J = 7.8 Hz, 1H), 2.95 – 2.86 (m, 1H), 2.89 (s, 3H), 2.65 (ddd, J = 18.4, 15.2, 9.4 Hz, 1H), 1.27 (s, 3H).

¹³**C** NMR (CDCl₃, 151 MHz) δ 179.3, 163.6 (d, J_{CF} = 249.0 Hz), 143.2, 132.3 (td, J_{CF} = 26.7, 3.2 Hz), 131.9, 128.4, 127.7 (dt, J_{CF} = 8.6, 6.2 Hz), 124.4, 124.3, 122.6, 121.5 (dd, J_{CF} = 245.6, 243.3 Hz), 115.2, 115.1, 108.3, 46.2 – 45.7 (m), 45.4 (d, J_{CF} = 4.3 Hz), 26.7, 26.4.

¹⁹**F** NMR (CDCl₃, 376 MHz) δ -88.9 (dd, *J* = 248.3, 2.9 Hz, 1F), -95.0 (dd, *J* = 248.5, 2.4 Hz, 1F), -114.54 (s, 1F).

FT-IR (cm⁻¹, neat, ATR) 2970 (w), 1709 (s), 1611 (m), 1162 (s), 741 (s). **HRMS** (ESI) calcd for $C_{18}H_{16}F_3NNaO [M + Na^+]$: 342.1082, found: 342.1079.

6. Procedure for the Photoinduced Large Scale Preparation of Difluorinated-Oxindole Derivatives via C-F Activation

To a 200 mL round bottom flask equipped with a magnetic stir bar was added HCO₂Na (2.0 g, 30 mmol, 3.0 equiv), KHCO₃ (1.0 g, 10 mmol, 1.0 equiv) and acrylamide (10 mmol, 1.0 equiv). The vial was capped and then the flask was charged with dry DMSO (100.0 mL, c = 0.1 M) and closed with a septum. Ethyl trifluoroacetate (6.0 mL, 50.0 mmol, 10.0 equiv), 4-methoxythiophenol (0.280 g, 240 µL, 0.002 mmol, 0.20 equiv) were added by syringe, and the flask was sealed with Parafilm. The reaction was then irradiated with four Kessil[®] PR160-390 nm lamp at 4 cm distance. The reaction was stirred for 36 h of irradiation without the use of cooling fan. After 36 h of irradiation, the reaction was quenched slowly with ice-cold H₂O (100 mL) and extracted with EtOAc (3 X 60 mL). The combined organic extracts were washed with brine (50 mL), dried (Na₂SO₄) then decanted, and the solvent was removed via rotary evaporation. The crude material was then redissolved in CH₂Cl₂ and evaporated onto silica to be purified via automated flash silica

column chromatography. Eluting with 15-30% EtOAc/hexane provided the desired product in 64% yield (1.9 g, 6.4 mmol).

7. Unsuccessful Substrates

8. Mechanistic Studies

Quantum Yield Experiment

Determination of light intensity for 370 nm PR160 Lamp

The photon flux of the light source was determined by standard potassium ferrioxalate actinometry as previously reported.³ The following solutions were prepared in the dark (flasks were wrapped in aluminum foil) and stored in the dark at rt. Ferrioxalate solution (0.15 M): Potassium ferrioxalate hydrate (1.312 g) was added to a flask wrapped in aluminum foil containing H_2SO_4 (25 mL, 0.05 M). The flask was stirred for complete solvation of the green solid in complete darkness. It is noteworthy that the solution should not be exposed to any incident light. Developer solution: 1,10-Phenanthroline (25 mg) and NaOAc (5.63 g) was added to a flask containing H_2SO_4 (25 mL, 0.5 M) and sonicated until completely solvated.

The absorbance of the non-irradiated sample: The buffered solution of phen (350 μ L) was added to the ferrioxalate solution (2.0 mL) in a vial that had been covered with aluminum foil and with the lights of the laboratory switched off. The vial was capped and allowed to rest for 1 h and then transferred to a cuvette. The absorbance of the non-irradiated was measured at 510 nm to be 0.056 (average of two determinations).

The absorbance of the irradiated sample: In a cuvette equipped with a stir bar was added the ferrioxalate solution (2.0 mL), and the stirred solution was irradiated for 30 s at $\lambda = 390$ nm with an excitation slit width = 10.0 nm. After irradiation, the buffered phen solution (350 µL) was added to the cuvette and allowed to rest for 1 h in the dark to allow the ferrous ions to coordinate completely to phen. The absorbance was measured at 510 nm to be 2.358 (average of two determinations).

Figure S4. Absorbance of the non-irradiated sample (Dark 1 and Dark 2) and the irradiated sample (Light 1 and Light 2).

The quantum yield of the reaction was determined using the equation (1) and the experimental

$$\Phi(reaction at 370 nm) = \frac{1}{mol of photon flux \cdot t \cdot f}$$
(1)

where Φ is the quantum yield of the reaction, t is the time of the reaction (s), f is the incident light absorbed by the reaction mixture at 370 nm and the photon flux is calculated by standard ferrioxalate actinometry. The fraction of light, f, absorbed was determined according to equation 2:

$$F = 1 - 10^{-A}$$
 (2)

where A is the absorbance of the reaction mixture in DMSO at 370 nm. The absorbance (A) at 370 nm was determined to be 1.034, thus indicating the fraction of light absorbed is 0.91 according to equation 2.

The standard ferrioxalate actinometry was used to determine the photon flux of the spectrophotometer using equations 3 and 4. For the ferrioxalate actinometer the production of Iron (II) ions proceeds by the following reactions:

$$[Fe(C_2O_4)n]^{+(3-2n)} \xrightarrow{\text{light}} Fe^{+2} + (n-1)(C_2O_4)^{-2} + C_2O_4^{-1}$$
$$[Fe(C_2O_4)n]^{+(3-2n)} + C_2O_4^{-1} \longrightarrow Fe^{+2} + n(C_2O_4)^{-2} + 2CO_2$$

The moles of Fe⁺² formed are determined spectrophotometrically by development with 1,10phenanthroline (phen) to form the red [Fe(phen)3]⁺² moiety ($\lambda = 510$ nm). The photon flux is defined as shown in equation 3:

Photon flux =
$$\frac{mol Fe^{+2}}{\Phi(Fe^{+2})\cdot t\cdot f}$$
 (3)

Where Φ is the quantum yield for the ferrioxalate actinometer (1.1 at $\lambda = 370$ nm and 0.15 M), t is the time (s), f~1, and the mol of Fe⁺² is calculated according to equation 4.

$$mol(Fe^{+2}) = \frac{V \cdot \Delta A}{l \cdot \epsilon}$$
 (4)

Where V is the total volume of the solution, ΔA is the difference in absorbance between irradiated and nonirradiated solutions, 1 is the path length (1.0 cm), ϵ is the molar absorptivity at 510 nm (11110 L mol⁻¹ cm⁻¹).

$$mol(Fe^{+2}) = \frac{V \cdot \Delta A}{l \cdot \epsilon}$$
 (4)

$$mol(Fe^{+2}) = \frac{0.00235 L \cdot 2.301}{1.0 cm \cdot 11100 L \cdot mol^{-1} cm^{-1}} = 4.87 x 10^{-7} mol$$

Photon flux = $\frac{mol Fe^{+2}}{\Phi(Fe^{+2}) \cdot t \cdot f}$ (3)

Photon flux =
$$\frac{4.87 \times 10^{-7} \text{mol}}{1.1 \cdot 30 \text{ s} \cdot 1} = 1.48 \times 10^{-8} \text{ einstein s}^{-1}$$

Therefore, the quantum yield of the reaction is determined to be:

$$\Phi(reaction at 370 nm) = \frac{mol of formed product}{mol of photon flux \cdot t \cdot f}$$
(1)

The mol of formed product was determined based on the reaction yield after 1h reaction ($1.7x10^{-5} mol_{, 17\%}$ yield).

$$\Phi(reaction \ at \ 370 \ nm) = \frac{1.7x10^{-5} \ mol}{1.48x10^{-8} \ einstein \ s^{-1} \cdot 3600 \ s \cdot 0.91} = 0.35$$

UV-VIS

The UV-Vis spectra of the solutions of the components 2, the thiol catalyst ArSH, and the thiol catalyst in the presence of base were collected (Figure S5). The data was also acquired for the solution containing the mixture of all the reaction components, following the same stoichiometry of the reaction at 0.1M. All solutions were prepared in DMSO and in the presence of air.

Figure S5. Results of UV-Spectral studies. ArSH = 4-methoxybenzenethiol.

Fluorescence Quenching Experiment

For the Stern-Volmer quenching experiment, the fluorescence measurements were acquired at room temperature using a Photon Technologies International (PTI) QuantaMaster40 fluorometer with excitation slits open at 3.0 nm and emission slit open at 3.0 nm. The emission quenching was performed using quartz cuvettes. The sample was prepared in dry DMSO (1 mL) with 4-methoxybenzenethiol (1.0 mM) and KHCO₃ (10 equiv) to ensure the formation of the corresponding thiolate. The excitation wavelength was fixed at 390 nm, the emission light was acquired from 405 nm to 650 nm.

The emission profile of continuously irradiated solution of 4-methoxybenzenethiol and KHCO₃ was recorded initially in absence of quencher, with maximum emission at $\lambda = 435$ nm. Then, aliquots of the quencher ethyl trifluoroacetate were successively added, leading to the concentrations indicated in Figure S6, and the corresponding emissions were recorded. As observed from the ratio of Io/I vs λ (nm) (Figure S7) an obvious radiative deactivation of the excited states occurred as the quencher concentration was increased. When the same experiment was performed using *N*-arylmethacrylamide 1, no quenching was observed.

Figure S6. Emission profile of the 4-methoxybenzenethiolate (1mM in DMSO) recorded in presence of increasing amounts of ethyl trifluoroacetate as quencher.

Figure S7. Stern-Volmer plot analysis.
9. NMR Spectra of Synthesized Compounds

¹³C NMR (151 MHz, CDCl₃) of compound **3**.

 $^{-1}$ $^{-1$

-20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 ¹⁹F NMR (376 MHz, CDCl₃) of compound **8**.

 19 F NMR (376 MHz, CDCl₃) of compound **10**. Spectra referenced to hexafluorobenzene (δ –164.9 ppm).

¹⁹F NMR (376 MHz, CDCl₃) of compound **14**. Spectra referenced to hexafluorobenzene (δ –164.9 ppm).

¹³C NMR (151 MHz, CDCl₃) of compound **15**.

¹H NMR (600 MHz, CDCl₃) of compound **16**.

¹⁹F NMR (376 MHz, CDCl₃) of compound **16**. Spectra referenced to hexafluorobenzene (δ –164.9 ppm).

 $\begin{array}{c} 7.72\\ 7.72\\ 7.71\\ 7.72\\$

¹³C NMR (151 MHz, CDCl₃) of compound **17**.

¹³C NMR (151 MHz, CDCl₃) of compound **19.**

¹⁹F NMR (376 MHz, CDCl₃) of compound **20**.

¹³C NMR (151 MHz, CDCl3) of compound 23.

 ^{19}F NMR (376 MHz, CDCl₃) of compound **24**. Spectra referenced to hexafluorobenzene (δ –164.9 ppm).

¹³C NMR (151 MHz, CDCl3) of compound 25.

¹⁹F NMR (376 MHz, CDCl₃) of compound **25**. Spectra referenced to hexafluorobenzene (δ –164.9 ppm).

 $\begin{array}{c} 7.53\\ 7.53\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.72\\ 7.73\\ 7.72\\$

¹⁹F NMR (376 MHz, CDCl₃) of compound **27**. Spectra referenced to hexafluorobenzene (δ –164.9 ppm).

¹⁹F NMR (376 MHz, CDCl₃) of compound **29**. Spectra referenced to hexafluorobenzene (δ –164.9 ppm).

¹⁹F NMR (376 MHz, CDCl₃) of compound **31**. Spectra referenced to hexafluorobenzene (δ –164.9 ppm).

 19 F NMR (376 MHz, CDCl₃) of compound **33**. Spectra referenced to hexafluorobenzene (δ –164.9 ppm).

¹³C NMR (151 MHz, CDCl₃) of compound **34**.

¹⁹F NMR (376 MHz, CDCl₃) of compound **34**. Spectra referenced to hexafluorobenzene (δ –164.9 ppm).

10. Density Functional Theory (DFT) Calculations

General Remarks

All optimizations of intermediates and transition states were calculated using unrestricted UB3LYP-D3/def2-SVP^{4,5} level of theory, with the "guess=mix," "nosymm," and "empiricaldispersion=gd3"⁶ keywords as implemented in Gaussian16 Revision C.01. These optimizations were performed using the CPCM implicit solvation model⁷ with dimethyl sulfoxide (DMSO) as the solvent by using the "SCRF=(CPCM,solvent=DMSO) keyword. Frequency calculations (at the same level of theory) were used to obtain thermal corrections (at 298K) and to characterize all optimized structures as either transition states (containing only one imaginary frequency) or intermediates (containing no imaginary frequencies). In order to determine the excitation energy for the thiolate anion, Time-Dependent DFT (TD-DFT)⁸ computations were employed. To this end, single point energies of the singlet state structure were calculated using the "td=(nstates=6)" keyword. To refine energetics and for method comparison, single point energy calculations were performed in implicit solvent (CPCM(DMSO), as above) using U $_{0}B97XD$ /def2-SVP⁹ and UB3LYP-D3/def2-TZVPP^{4,5} levels of theory. All 3-D structures were

generated using CYLview¹⁰. Exhaustive conformational searches were performed for all structures to elucidate the lowest energy profiles for each potential reaction pathway.

Minimum energy crossing point (MECP)¹¹ calculations were performed using the ORCA software¹². Optimizations were performed in the gas phase with a triplet spin state at the UB3LYP-D3/def2-SVP level of theory using the "SurfCrossOpt," "SlowConv," "UNO," "UCO," and "D3" keywords to obtain the geometries of the MECPs. In the "%mecp" block, the keyword "Mult 1" was used to identify the crossing point between the triplet and singlet states. Frequency calculations were then performed using these optimized geometries at the UB3LYP-D3/def2-SVP level of theory with implicit solvent (CPCM(DMSO)) in order to obtain thermal corrections (at 298K). Energetics of the MECPs were then confirmed using single-point calculations using U ω B97XD/def2-SVP⁵ and UB3LYP-D3/def2-TZVPP^{1,2} levels of theory with implicit solvent (CPCM(DMSO)) in Gaussian16.

Full Reference of Gaussian16 software:

Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

Computational Analysis

We proposed that the mechanism for the benzenethiol promoted C-F activation discussed in the manuscript would initiate from defluorination of ethyl 2,2,2-trifluoroacetate (2). In order to accomplish this defluorination, we proposed the catalytic cycle shown in *Figure S8* below. In this reaction, the thiophenol (I) is deprotonated by the base (KHCO₃) to form a thiophenolate anion (II). This anion can then be excited (by purple-light irradiation) to an excited singlet state (II*) before relaxation to the triplet anion III. The triplet state anion III can then undergo single-electron

transfer (SET) with ethyl 2,2,2-trifluoroacetate (2) to concurrently form A• and the thiolate radical (IV). This SET process is exergonic ($\Delta G = -5.6$ kcal/mol at U ω B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO) level of theory) and will result in the formation of the radical anion species A• which can undergo a spin-center shift to allow for defluorination (see *Figure S9* below). The thiolate radical IV is then able to undergo hydrogen atom transfer (HAT) with the sodium formate to reform I, which can then proceed through the catalytic cycle again, while a CO₂• radical anion is also formed. The thiolate radical is also prone to undergo dimerization to form V, as this process is highly exergonic. From this dimer, SET with the CO₂• radical anion species formed during the HAT process is highly exergonic and creates both II, which can continue the catalytic cycle, and IV, which can undergo HAT again and form I.

Figure S8. Energetics of thiolate catalytic cycle. Optimizations performed at UB3LYP-D3/def2-SVP-CPCM(DMSO) level of theory, $\Delta E < \Delta H$ in angle brackets> [ΔG in square brackets] for each relevant step reported in kcal/mol. Single point energies are also shown.

The thiophenol-based catalytic cycle described herein can be exploited to form $A^{\bullet-}$ via SET between 2 and III as described above. Once $A^{\bullet-}$ is formed, it can undergo the mechanistic pathway outlined in Figure S9 below. A. can undergo a spin-center shift (SCS) to form the carbon centered radical B. Scans of the C-F bond suggest that this spin-center shift proceeds via a 1,2-F migration pathway where the fluorine is transferred to the carbonyl carbon to form B⁻⁻ before being released as a fluoride anion. This migration pathway via TS-A-B is energetically feasible and reversible $(\Delta G^{\ddagger} = 13.3 \text{ kcal/mol})$. Even though the process to form the carbon-centered radical C• is endergonic ($\Delta G = 6.1$ kcal/mol), following Giese addition step (**TS-C-D**) is highly exergonic (ΔG = -23.0 kcal/mol) with a relatively low energy barrier ($\Delta G^{\ddagger} = 10.5$ kcal/mol), so the SCS process is reasonable. Following radical addition of C^{\bullet} to the alkene (N-arylmethacrylamide, 1) to form **D**•, ring closure can proceed via **TS-D-E** to form the closed ring radical species **E**•. Subsequently, numerous radical species in solution, including intermediates $A^{\bullet,}$, C^{\bullet} , and the radical anion $CO_{2^{\bullet,-}}$, can be used to perform HAT with E• to yield the oxindole product 3. A comparison of the energetics for these pathways can be seen in Figure S9 below. This HAT will proceed through a MECP (MECP-E-3) to form the product 3 irreversibly. This process is extremely exergonic (ΔG = -67.9 kcal/mol) with a very low energy barrier (ΔG^{\ddagger} = 5.6 kcal/mol).

Figure S9. Potential energy surface for C-F activation to form difluorinated-oxindole derivatives. Optimizations performed at UB3LYP-D3/def2-SVP-CPCM(DMSO) level of theory, E_{rel} { H_{rel} in braces} (G_{rel} in parenthesis) for each relevant step reported in kcal/mol. Single point energies are also shown.

Each of these potential HAT pathways can proceed either in the triplet state (via **TS-E-3***) before relaxation to the singlet, or via a MECP to cross between the triplet and singlet states during the

HAT process. These MECPs are significantly lower in energy than the corresponding triplet state transition states, suggesting that the pathways through the MECPs are more feasible. We propose that HAT with intermediate C^{\bullet} is the most likely pathway. The products of this MECP (3 + Est) are significantly lower in energy than the alternatives for intermediate A^{\bullet} and CO_2^{\bullet} . Experimental evidence also suggests that ethyl 2,2-difluoroacetate, which is formed concurrently with product 3, is observed over the course of the reaction, further supporting HAT with intermediate C^{\bullet} as a major pathway for HAT.

Figure S10. Comparison of energetics for potential radical HAT pathways. Optimizations performed at UB3LYP-D3/def2-SVP-CPCM(DMSO) level of theory, E_{rel} { H_{rel} in braces} (G_{rel} in parenthesis) for each relevant step reported in kcal/mol. Single point energies are also shown.

It is also possible that the HAT could proceed via a carbocation pathway. In this case, the thiol radical **IV** could undergo SET to form the thiolate anion **II** and the carbocation **F**. From here, deprotonation with base can rapidly yield the desired product. The energetics of such pathways are shown in *Figure S11* below. While this pathway is slightly less energetically favorable than the radical HAT pathways described above, the reaction is still energetically feasible and the rearomatization process is irreversible.

Figure S11. Energetics for polar HAT pathway. Optimizations performed at UB3LYP-D3/def2-SVP-CPCM(DMSO) level of theory, E_{rel} { H_{rel} in braces} (G_{rel} in parenthesis) for each relevant step reported in kcal/mol. Single point energies are also shown.

11. Coordinates and Energies

Zero-point correction=	0.09501	2 (Hartree/Particle	e)		
Thermal correction to Energy=	0.1	04217			
Thermal correction to Enthalpy=	0.1	05161			
Thermal correction to Gibbs Free Er	nergy=	0.058725			
Sum of electronic and zero-point En	ergies=	-604.882779			
Sum of electronic and thermal Energ	gies=	-604.873574			
Sum of electronic and thermal Entha	alpies=	-604.872629			
Sum of electronic and thermal Free I	Energies=	-604.919065			
C -1.06225900 0.49809000 0.00	0181400	С	-1.95999800	-3.01666100	0.00236700
O 0.13254300 0.63209200 0.00	0762100	Ĥ	-1.40954300	-3.96953300	0.00393800
O -1.74224200 -0.63147200 -0.0	0179800	Н	-2.60057800	-2.98339200	0.89662100
C -2.04483300 1.69556700 -0.00	0374100	Н	-2.60004600	-2.98605100	-0.89236100
C -0.97738200 -1.86902400 0.00	0100700	F	-1.37478400	2.84597300	0.00601200
Н -0.33009800 -1.86847100 0.89	9162100	F	-2.81980700	1.66349900	-1.09637900
Н -0.32904200 -1.87155400 -0.8	8887100	F	-2.84112300	1.65741800	1.07312300
UD2I VD D2/daf2 T7VDD CDCM/D	MCO) // I	D2I VD D2/dof2	SVD CDCM(DMS)	\sim	

UB3LYP-D3/def2-TZVPP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -605.7000313

U@B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -604.7964875

A•⁻

0.091431 (Hartree/Particle)			
0.100856			
0.101800			
gy= 0.054908			
gies= -604.944204			
s= -604.934779			
ies= -604.933835			
ergies= -604.980727			
1800 C	-1.00775000	-1.84717100	0.09913700
1900 H	-0.41770700	-1.89846500	1.04214500
60800 H	-0.26869100	-1.85777300	-0.72408800
5400 C	-1.94412200	-3.03947000	-0.00191900
	0.091431 (Hartree/Particle) 0.100856 0.101800 gy= 0.054908 gies= -604.944204 s= -604.934779 ies= -604.933835 ergies= -604.980727 800 C 1900 H 0800 H 5400 C	$\begin{array}{cccccccc} 0.091431 \ (\text{Hartree/Particle}) & & \\ 0.100856 & & \\ 0.101800 & & \\ \text{gy=} & 0.054908 & \\ \text{gies=} & -604.944204 & \\ \text{s=} & -604.934779 & \\ \text{ies=} & -604.933835 & \\ \text{ergies=} & -604.980727 & \\ 800 & & \text{C} & & -1.00775000 & \\ 1900 & & \text{H} & & -0.41770700 & \\ 0800 & & & \text{H} & & -0.26869100 & \\ 5400 & & & \text{C} & & -1.94412200 & \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Η	-1.38014600	-3.98569800	0.02787300	F	-1.32892800	2.85700400	0.27989900
Η	-2.66729000	-3.04011000	0.82994500	F	-2.65313400	1.87684900	-1.12890600
Н	-2.51348800	-3.00323800	-0.94499300	F	-2.92991800	1.56350000	0.99972000
UB3LYP-D3/def2-TZVPP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)							

HF = -605.7739675

U
0B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -604.8526834

TS-A-B

Zero-point correction= 0.0	90957 (Hartree/Particle)
Thermal correction to Energy=	0.100424
Thermal correction to Enthalpy=	0.101368
Thermal correction to Gibbs Free Energy=	= 0.055444
Sum of electronic and zero-point Energies	-604.929217
Sum of electronic and thermal Energies=	-604.919750
Sum of electronic and thermal Enthalpies-	-604.918806
Sum of electronic and thermal Free Energ	ies= -604.964730
C -0.97637300 0.49528700 0.09732300	C -1.96377000 -2.51224200 -0.30838200
O -0.07927500 0.64238700 -0.7219270	0 H -1.67571900 -3.41053700 -0.87928600
O -1.11933700 -0.59917200 0.8980170	0 H -2.68976700 -2.81239400 0.46546500
C -1.92833200 1.50305600 0.4399820	Н -2.44752500 -1.76299800 -0.95687100
C -0.74274200 -1.86184200 0.3283800	0 F -1.97599400 2.65440300 -0.20461700
Н -0.33038800 -2.46331300 1.1540230	0 F -2.95983700 0.28334300 -1.19162000
Н 0.05822900 -1.70115600 -0.4096050	0 F -2.92567600 1.34165900 1.29009100
UB3LYP-D3/def2-TZVPP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -605.7694438

U0B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -604.8320015

B•-

Zero-point correction=	0.091330 (Hartree/Particle)
Thermal correction to Energy=	0.100878
Thermal correction to Enthalpy=	0.101822
Thermal correction to Gibbs Free Ener	rgy= 0.054967
Sum of electronic and zero-point Ener	gies= -604.933886

Sum of electronic and thermal Energies=				-604.924338			
Sum of electronic and thermal Enthalpies=				-604.923394			
Sum o	of electronic an	d thermal F	ree Energies=	-604.970249			
С	-1.35342400	0.45587800	-0.14363300	С	-1.87596500	-2.64419300	-0.39722700
0	-0.44887200	0.55205600	-0.99094800	Н	-1.46536000	-3.61914000	-0.70923100
0	-1.32433500	-0.58854300	0.81677200	Н	-2.75119400	-2.82456000	0.24835400
С	-1.72091500	1.70888600	0.65015500	Н	-2.22134100	-2.09062500	-1.28086400
С	-0.82211400	-1.82842700	0.34606900	F	-1.80383100	2.82555600	-0.08302100
Н	-0.47194100	-2.37471200	1.23847300	F	-2.76853400	0.21229800	-0.84692100
Η	0.04962400	-1.64893200	-0.30681200	F	-2.77200600	1.64833800	1.47870700

```
HF = -605.7645067
```

U
0B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

```
HF = -604.8407847
```

C•

Zero-point correction=	0.089757 (1	Hartree/Particle)			
Thermal correction to Energy=	0.0985	66			
Thermal correction to Enthalpy=	0.0995	510			
Thermal correction to Gibbs Free Ener	-gy= 0.	054431			
Sum of electronic and zero-point Ener	gies=	-505.056123			
Sum of electronic and thermal Energie	s= -	505.047314			
Sum of electronic and thermal Enthalp	ies=	-505.046370			
Sum of electronic and thermal Free En	ergies=	-505.091448			
C -1.12302600 0.51266400 0.0150 O 0.08811500 0.63907600 0.0055 O -1.79332300 -0.64590000 0.008 C -2.03070700 1.64470200 0.0886 C -0.99767200 -1.85215800 -0.003 H -0.33834500 -1.84792100 0.879 H -0.35342500 -1.84151700 -0.897	5800 1400 16200 55600 57900 59200 58000	C H H F F	-1.94731600 -1.37308100 -2.58199500 -2.59708100 -1.57994200 -3.32769400	-3.02961900 -3.96843900 -3.01839800 -3.01076300 2.86701800 1.54289100	-0.00041200 -0.00934700 0.89888500 -0.88875000 -0.03115900 -0.06346600

UB3LYP-D3/def2-TZVPP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -505.7471489

U
0B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -504.9872887

TS-C-D

Zero-point correction=	0.307244 (Hartree/Particle)			
Thermal correction to Energy=	0.329110			
Thermal correction to Enthalpy=	0.330055			
Thermal correction to Gibbs Free Ener	rgy= 0.254285			
Sum of electronic and zero-point Ener	gies= -1061.443596			
Sum of electronic and thermal Energie	es= -1061.421730			
Sum of electronic and thermal Enthalp	bies= -1061.420785			
Sum of electronic and thermal Free Er	nergies= -1061.496555			
C 0.85305500 0.51257900 0.5536	7800 Н	0.55508600	-0.39858000	-2.24084700
C 1.84639700 0.50824100 -0.434	15600 H	-0.57529000	-1.83197700	-2.55196100
C 1.95801400 1.58783500 -1.3220	02900 C	0.76820000	-3.73500300	-1.18469000
C 1.06732300 2.66011700 -1.227	31800 Н	1.52891800	-4.35602800	-1.68545900
C 0.06290400 2.65829400 -0.2510	66500 Н	0.77230600	-4.03599400	-0.12473600
C -0.04278600 1.58253000 0.636	79800 Н	-0.21532100	-3.96100000	-1.61914700
Н 0.78232500 -0.32965900 1.245	32800 C	2.53807000	-1.09357400	-4.17696600
Н 2.71620100 1.55683500 -2.107	03900 O	2.70143100	0.10345500	-4.30932500
Н 1.15002100 3.49507900 -1.927	39400 O	3.45192300	-1.96932300	-3.75985600
Н -0.63644900 3.49512100 -0.184	10600 C	1.22708600	-1.74259500	-4.33490900
Н -0.82211900 1.57767800 1.402	81200 C	4.76287500	-1.44725500	-3.43716100
N 2.77511900 -0.57908100 -0.520	57300 Н	4.64003300	-0.62957500	-2.71163700
C 4.10786400 -0.30718300 0.025	51000 Н	5.20211500	-1.01914600	-4.35225000
Н 4.42135200 0.70005300 -0.278	03500 C	5.58326700	-2.58841300	-2.87914300
Н 4.10269800 -0.35833200 1.128	51200 Н	6.58507600	-2.22302200	-2.60631200
Н 4.82469400 -1.04518700 -0.350	64900 Н	5.09798900	-2.99927900	-1.98193000
C 2.42377600 -1.90103200 -0.704	63400 Н	5.69709900	-3.39014100	-3.62486100
O 3.20895100 -2.79990000 -0.397	40100 F	0.30535000	-1.09433200	-5.02007400

F

1.15080700 -3.04924800 -4.50319000

 1.11084200
 -2.27872300
 -1.33746200

 0.36873800
 -1.46546800
 -2.14003300
 С UB3LYP-D3/def2-TZVPP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -1062.9623091

U
0B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -1061.3881983

D•

С

Zero-point correction=	0.310329 (Hartree/Particle)
Thermal correction to Energy=	0.331637
Thermal correction to Enthalpy=	0.332581
Thermal correction to Gibbs Free Ene	rgy= 0.258477
Sum of electronic and zero-point Ener	gies= -1061.490013

Sum	of electronic and thermal Energies=	-1061.468705			
Sum	of electronic and thermal Enthalpies=	-1061.467761			
Sum	of electronic and thermal Free Energies=	-1061.541865			
С	0.76321300 0.40463500 0.41071700	Н	0.51173400	-0.35873100	-2.23818600
С	1.81916700 0.53335500 -0.50399200	Н	-0.50958800	-1.76488900	-2.58048800
С	1.92461500 1.69242400 -1.28885400	С	0.77758700	-3.66571300	-1.23771900
С	0.97180300 2.70565000 -1.16615600	Н	1.03150900	-4.24418400	-2.14674200
С	-0.09498100 2.56825400 -0.26875100	Н	1.26028400	-4.15034100	-0.38031600
С	-0.19758800 1.41511600 0.51591700	Н	-0.31933600	-3.72448700	-1.13348000
Η	0.69654300 -0.49085300 1.03221400	С	2.60777200	-1.02770000	-3.90304900
Н	2.73254800 1.77077000 -2.01840100	О	2.86307800	0.13152700	-4.11638000
Η	1.05383500 3.60155600 -1.78641200	О	3.47402600	-1.98368200	-3.61483000
Η	-0.84360900 3.35928400 -0.18192000	С	1.15961500	-1.56177400	-3.84926000
Η	-1.02328200 1.30343800 1.22289200	С	4.87333100	-1.61602600	-3.49509200
Ν	2.79765400 -0.50025200 -0.62954400	Н	4.93772300	-0.70253200	-2.88568300
С	4.13453900 -0.18556900 -0.12104700	Н	5.25064100	-1.37672900	-4.50162100
Η	4.40480800 0.83411200 -0.42304000	С	5.59443200	-2.78528000	-2.86353100
Η	4.16899300 -0.25153700 0.98048500	Н	6.65735500	-2.53418600	-2.72806800
Η	4.86571800 -0.89306200 -0.52815700	Н	5.15249900	-3.01716400	-1.88310700
С	2.45983500 -1.84610800 -0.71045300	Н	5.52688800	-3.67872300	-3.50282500
0	3.23680000 -2.70707400 -0.28189200	F	0.41573300	-0.83907500	-4.72964100
С	1.21576000 -2.24860300 -1.39566100	F	1.12547900	-2.85975800	-4.26876200
С	0.53330700 -1.43232500 -2.45737600				

HF = -1063.007626

 $U \omega B97 XD/def 2-SVP\text{-}CPCM(DMSO) \ // \ UB3LYP\text{-}D3/def 2-SVP\text{-}CPCM(DMSO)$

HF = -1061.4457544

TS-D-E

Zero-point correction=	.309343 (Hartree/Particle)			
Thermal correction to Energy=	0.329795			
Thermal correction to Enthalpy=	0.330739			
Thermal correction to Gibbs Free Energ	y= 0.258981			
Sum of electronic and zero-point Energi	es= -1061.467282			
Sum of electronic and thermal Energies	-1061.446829			
Sum of electronic and thermal Enthalpie	-1061.445885			
Sum of electronic and thermal Free Ene	rgies= -1061.517644			
C 0.93782000 -1.14096400 1.189798	00 N	2.92200300	-0.55095800	0.04993400
C 1.76489200 -0.07519100 0.68682	100 C	4.11110100	0.25595900	-0.15796300
C 1.31525900 1.23639000 0.63504	900 Н	4.93657000	-0.41103800	-0.43527300
C 0.00308600 1.53053900 1.05815	300 Н	3.95761300	0.98517600	-0.97138000
C -0.85223300 0.49936400 1.48474	500 H	4.36519700	0.79400900	0.76565500
C -0.39455200 -0.81354100 1.57691	100 C	2.74832500	-1.76065800	-0.59562800
Н 1.42563800 -1.97856700 1.69848	700 O	3.65784900	-2.37904400	-1.13412300
Н 1.95264400 2.02116300 0.22304	900 C	1.30867400	-2.22709800	-0.58761100
Н -0.35689000 2.56107900 1.02176	600 C	0.38724900	-1.53194200	-1.56961200
H -1.87356700 0.73896900 1.79184	500 H	0.52456000	-0.44133800	-1.53523600
H -1.03/42100 -1.59425000 1.99041	300 H	-0.66314/00	-1./4809800	-1.31641900

С	1.11579700	-3.70256900	-0.38533700	Н	4.39585400	-3.56461900	-4.34934500
Н	1.48427400	-4.26688000	-1.25930300	Н	4.49718700	-1.94804000	-3.59420500
Н	1.66889100	-4.06160900	0.49687700	С	4.17021800	-1.91683900	-5.75512800
Н	0.04950200	-3.94433700	-0.25692700	Н	5.23827600	-1.89557300	-6.02224500
С	1.98992300	-1.61864700	-3.54353600	Н	3.63452400	-2.50356600	-6.51706900
0	2.44024700	-0.50018300	-3.45323900	Н	3.78941500	-0.88546200	-5.76532400
0	2.60669100	-2.68162700	-4.02099400	F	-0.30468400	-1.20223200	-3.79637400
С	0.56723000	-1.92917600	-3.02936500	F	0.25069800	-3.23967700	-3.21996900
С	4.00739600	-2.53826300	-4.38127600				

HF = -1062.9825259

U
0B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -1061.4209749

E∙

Zero-point correction=	0.311631 (Hartree/Particle))					
Thermal correction to Energy=	Thermal correction to Energy= 0.331880						
Thermal correction to Enthalpy= 0.332824							
Thermal correction to Gibbs Free Ene	Thermal correction to Gibbs Free Energy= 0.261991						
Sum of electronic and zero-point Ener	gies= -1061.495942						
Sum of electronic and thermal Energie	es= -1061.475692						
Sum of electronic and thermal Enthalp	bies= -1061.474748						
Sum of electronic and thermal Free En	nergies= -1061.545582						
C 0.79232500 -1.15342800 0.8394	7800 Н	0.37373900	-0.72065700	-1.69313000			
C 1.79459900 -0.06185500 0.575	51800 H	-0.68945100	-2.11719400	-1.45644600			
C 1.56083700 1.26442100 0.8298	80300 C	0.88774300	-3.64846400	0.14251900			
C 0.25472200 1.65672000 1.2330	54200 Н	1.27646300	-4.33668600	-0.61821500			
C -0.80700900 0.70722600 1.260	31000 Н	1.39156700	-3.86694400	1.09643800			
C -0.59969800 -0.62728900 1.012	89100 Н	-0.18920100	-3.83871300	0.26902100			
Н 1.09524100 -1.64502400 1.794	11100 C	2.17113900	-1.79828500	-3.39522100			
Н 2.33955500 2.01310200 0.669	76700 O	2.46220500	-0.64218800	-3.19225300			
Н 0.04946600 2.70727100 1.448	36700 O	2.87428700	-2.67461300	-4.08619800			
Н -1.81975700 1.06106900 1.474	25600 C	0.83375200	-2.38740800	-2.88726100			
Н -1.42798800 -1.33987800 1.039	68100 C	4.16177000	-2.24382400	-4.60155800			
N 2.90995200 -0.65137300 -0.004	77200 Н	4.71791700	-3.17856200	-4.75098900			
C 4.15053900 0.04273700 -0.285	81300 Н	4.66200600	-1.64886600	-3.82350000			
Н 4.87107500 -0.68710400 -0.674	15300 C	4.00913200	-1.46583800	-5.89482200			
Н 3.98512300 0.82542000 -1.043	21300 Н	5.00505400	-1.22037500	-6.29514700			
Н 4.54618800 0.50388800 0.630	Э2000 Н	3.46959100	-2.06105100	-6.64727800			
C 2.63428200 -1.91846100 -0.473	43600 Н	3.46311500	-0.52697200	-5.72301100			
O 3.43334400 -2.66023700 -1.020	40500 F	-0.09470400	-2.05112800	-3.84625100			
C 1.13005900 -2.19789200 -0.270	73600 F	0.88040500	-3.74697500	-2.86633600			
C 0.36192900 -1.81230900 -1.564	35400						

UB3LYP-D3/def2-TZVPP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -1063.0112537

U 0B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -1061.4594913

MECP-E-3

Thermal correction to Energy= 0.431867	
Thermal correction to Enthalpy= 0.432812	
Thermal correction to Gibbs Free Energy= 0.338146	
Sum of electronic and zero-point Energies= -1566.572703	
Sum of electronic and thermal Energies= -1566.542564	
Sum of electronic and thermal Enthalpies= -1566.541620	
Sum of electronic and thermal Free Energies= -1566.636286	
C 4.803973000 -0.844278000 -0.371083000 O 5.463672000 2.049424000 -2.	.009894000
C 3.881033000 0.998278000 1.035403000 O 3.747461000 3.228763000 -1.	.137499000
C 5.175434000 1.308325000 1.370678000 C 4.647505000 4.178917000 -0.	.513679000
C 6.277810000 0.537887000 0.905121000 H 5.063300000 4.817631000 -1.	.308167000
C 6.089167000 -0.519570000 -0.016394000 H 5.473881000 3.619027000 -0.	.055848000
H 3.043274000 1.597824000 1.396810000 C 3.857703000 4.968889000 0.	502119000
H 5.375034000 2.182677000 1.995569000 H 4.513534000 5.715855000 0.	.974510000
H 7.290420000 0.815395000 1.202943000 H 3.016918000 5.496584000 0.	.026855000
Н 6.945498000 -1.017051000 -0.473331000 Н 3.459844000 4.309699000 1.	288489000
N 4.359376000 -1.724441000 -1.338349000 F 3.789268000 0.418461000 -3.	223185000
C 5.235469000 -2.568840000 -2.125205000 F 2.539750000 2.211340000 -3.	356481000
Н 5.742734000 -3.291326000 -1.470585000 С 3.605519000 -0.276373000 0.	.319469000
Н 4.623041000 -3.101494000 -2.861956000 Н 3.375355000 -1.033069000 1.	.124665000
Н 5.982406000 -1.951866000 -2.648041000 С 3.840375000 -3.741212000 1.	216081000
C 3.004078000 -1.593371000 -1.586700000 O 4.945833000 -4.066889000 0.	.816400000
O 2.372832000 -2.253910000 -2.390752000 O 2.672129000 -4.110044000 O.	.677212000
C 2.447422000 -0.461429000 -0.696899000 C 3.638148000 -2.799581000 2.	.303380000
C 1.145815000 -0.914439000 -0.024744000 C 2.719285000 -5.022128000 -0.	.445041000
Н 0.769571000 -0.125793000 0.644165000 Н 3.127832000 -5.981488000 -0	.090309000
Н 0.378533000 -1.127628000 -0.782342000 Н 3.407136000 -4.617270000 -1	199664000
H 1.310235000 -1.826940000 0.564617000 C 1.315504000 -5.161286000 -0.	.985307000
С 2.115932000 0.772171000 -1.569389000 Н 1.316209000 -5.881534000 -1	.817812000
Н 1.729544000 1.577980000 -0.930110000 Н 0.627943000 -5.528029000 -0	.207832000
H 1.304642000 0.482741000 -2.254261000 H 0.953718000 -4.194465000 -1	.363273000
C 3.179649000 1.376580000 -2.470801000 F 4.662622000 -2.444088000 3.0	046894000
C 4.288212000 2.238013000 -1.828072000 F 2.485168000 -2.706144000 2.9	937733000

UB3LYP-D3/def2-TZVPP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -1568.7728033

U@B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -1566.4595704

3 + Est

Zero-point correction=	0.407353 (Hartree/Particle)	
Thermal correction to Energy=	0.437476	
Thermal correction to Enthalpy=	0.438420	
Thermal correction to Gibbs Free Ener	gy= 0.344607	
Sum of electronic and zero-point Ener	gies= -1566.681024	
Sum of electronic and thermal Energie	s= -1566.650901	
Sum of electronic and thermal Enthalp	ies= -1566.649957	
Sum of electronic and thermal Free Er	ergies= -1566.743770	
C 4.72371400 -0.83164400 -0.4973 C 3.78148500 0.86832200 0.9478 C 5.02275400 0.95620700 1.603 C 6.09466300 0.15361800 1.1959	5600 O 5.36209700 2.06908600 -2 6900 O 3.63000500 3.18152400 -1 4900 C 4.52399500 4.01877900 -0 2900 H 5.10672100 4.63958000 -1	.13477900 .20921700 .43092000 .12947600
C 5.96124400 -0.75864000 0.137 H 2.94405900 1.49553900 1.2610	2300 H 5.22350700 3.36246500 0 1400 C 3.67690400 4.84745200 0	.10800100
H 5.14796200 1.65155800 2.4350 H 7.05165300 0.22558300 1.7170 H 6.79099400 -1.40025000 -0.160	9300 H 4.32526100 5.50796600 1 3800 H 2.96456400 5.47174300 -0 9100 H 3.11215100 4.20226300 1	.10214000).05362600 .19705600
N4.33194700-1.68670400-1.536C5.22296500-2.59032400-2.235	7900 F 3.70661400 0.56292900 -3. 3900 F 2.47402800 2.37602400 -3.	.53576400 .58690200
H 5.64025400 -3.33573700 -1.542 H 4.64321400 -3.09959300 -3.015	3200 C 3.64128600 -0.02153400 -0 6900 H 3.87146900 -1.61132800 2	10943900 108997100
H 6.04558400 -2.02671600 -2.703 C 3.00457600 -1.50211000 -1.859	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.19478300
C 2.45149600 -0.34665600 -0.987	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
H 0.85350200 -0.03436100 0.459	$\begin{array}{cccccccccccccccccccccccccccccccccccc$).00042400
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11 5.5540/000 -4.5836500 -1 9000 C 1.24833900 -4.69721600 -0 2600 H 1.0574100 5.4578600 1	
H 1.54362900 0.44857200 2.607	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19895500
II 1.25026100 0.44857300 -2.007 C 3.08309100 1.48118000 -2.7460 C 4.18301200 2.26484700 -1.990	F 5.42804300 -3.72113900 -1 6500 F 5.42804300 -2.58005100 2. 1800 F 3.33188700 -3.08396400 3.	.90464000 .34632800

HF = -1568.8889485

U@B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -1566.5832335

I

Zero-point correction=

0.131695 (Hartree/Particle)

Thermal correction to Energy=	0.140573					
Thermal correction to Enthalpy=	0.141517					
Thermal correction to Gibbs Free Energy= 0.097239						
Sum of electronic and zero-point Energies= -744.487926						
Sum of electronic and thermal Energies=	-744.479049					
Sum of electronic and thermal Enthalpies= -744.478104						
Sum of electronic and thermal Free Energi	es= -744.522382					
C -2.56670100 -0.03507900 0.28963600	Н -4.12366000 1.26799600 -0.42784300					
C -1.18960600 -0.16892700 0.52709900	S 0.37266200 3.39273700 -0.65574600					
C -0.32182200 0.88882700 0.23177800	Н -0.51582400 4.30889300 -1.10014000					
C -0.80247300 2.09222000 -0.30291900	O -3.49231200 -0.99648500 0.53981700					
C -2.18370900 2.22021900 -0.53923900	C -3.07024000 -2.23682700 1.07762400					
C -3.05104300 1.17145800 -0.24598100) H -2.58996200 -2.11268300 2.06448400					
Н -0.77527900 -1.08778300 0.94171900	0 H -3.97297500 -2.85063900 1.19498100					
Н 0.74665500 0.76233900 0.42619900	Н -2.36756300 -2.75740200 0.40288900					
Н -2.58883200 3.14567000 -0.95584400	0					
UB3LYP-D3/def2-TZVPP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)						

HF = -745.1455532

U
0B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -744.4747876

П

Zero-point correction=	0.122424 (Hartree/Particle))		
Thermal correction to Energy=	0.130459			
Thermal correction to Enthalpy=	0.131403			
Thermal correction to Gibbs Free Ener	gy= 0.089120			
Sum of electronic and zero-point Energy	gies= -744.015707			
Sum of electronic and thermal Energie	es= -744.007672			
Sum of electronic and thermal Enthalp	nies= -744.006728			
Sum of electronic and thermal Free En	ergies= -744.049012			
C -1.95155400 -0.41564300 0.3195	5500 H	-2.84781400	2.87753300	0.36340200
C -0.64410600 -0.25818500 -0.1714	44800 Н	-3.75720700	0.65806600	0.88573600
C -0.13910400 1.00664900 -0.4651	11700 S	-0.25665800	3.78904300	-0.66274100
C -0.90192700 2.19594800 -0.2887	76100 O	-2.35908700	-1.69974000	0.57939700
C -2.21507800 1.99851700 0.2079	97100 C	-3.66382300	-1.90710400	1.07240600
C -2.73627800 0.73185000 0.5069	94900 Н	-4.43662400	-1.55158900	0.36530200
Н -0.03281900 -1.15359400 -0.317	15300 Н	-3.78393800	-2.99066100	1.21126800
Н 0.88214400 1.09812500 -0.8467	73900 Н	-3.82583400	-1.40430700	2.04427100
11D21 VD D2/4-62 T7VDD CDCM/DM	(0,0) // IID 2I VD D 2/4-D C	VD CDCM(DMC		

UB3LYP-D3/def2-TZVPP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -744.6745878

U@B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

UB3LYP-D3/def2-SVP-CPCM(DMSO) Excitation energies and oscillator strengths: Excited State 1: 3.000-?Sym 2.8303 eV 438.06 nm f=0.0000 <S**2>=2.000 37A -> 38A 0.69116 37B -> 38B -0.69116 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-DFT) = -744.034119982

UB3LYP-D3/def2-TZVPP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

Excited State 1: 3.000-?Sym 2.9628 eV 418.47 nm f=0.0000 <S**2>=2.000

 35A -> 38A
 0.11311

 37A -> 38A
 0.66766

 37A -> 39A
 -0.18869

 35B -> 38B
 -0.11311

 37B -> 38B
 -0.66766

 37B -> 39B
 0.18869

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-DFT) = -744.565707516

U
0B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

Excited State	1: 3.000-?Sym	3.1032 eV	399.54 nm	f=0.0000	<s**2>=2.000</s**2>
34A -> 38A	0.15400				
35A -> 38A	0.16864				
35A -> 39A	-0.11936				
37A -> 38A	-0.45560				
37A -> 39A	0.46933				
34B -> 38B	-0.15400				
35B -> 38B	-0.16864				
35B -> 39B	0.11936				
37B -> 38B	0.45560				
37B -> 39B	-0.46933				

This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-DFT) = -743.880518206

Ш

Zero-point correction=	0.117055 (Hartree/Particle)						
Thermal correction to Energy=	0.126131						
Thermal correction to Enthalpy=	0.127075						
Thermal correction to Gibbs Free Energy	gy= 0.081874						
Sum of electronic and zero-point Energ	ies= -743.921281						
Sum of electronic and thermal Energies= -743.912205							
Sum of electronic and thermal Enthalpi	es= -743.911261						
Sum of electronic and thermal Free End	ergies= -743.956462						
C -1.97948400 -0.38539600 0.32329 C -0.61439800 -0.28825200 -0.1863 C -0.09962000 1.00154500 -0.4778 C -0.85555700 2.16763500 -0.2846 C -2.23574300 2.04106600 0.24323 C -2.76481600 0.73345800 0.53103 H -0.03947800 -1.20386600 -0.3291 H 0.91835300 1.10425700 -0.8675	100 H 7400 H 9800 S 9500 O 5600 C 5700 H 4000 H 9300 H	-2.83236800 -3.78332200 -0.25796700 -2.37634400 -3.67851000 -4.45267100 -3.77941900 -3.83836300	2.94041400 0.64063600 3.74632800 -1.66447300 -1.90514900 -1.54194100 -2.99282400 -1.41853000	0.39894800 0.91152000 -0.63568400 0.56084800 1.05511000 0.35521900 1.17208000 2.03426300			
UB3LYP-D3/def2-TZVPP-CPCM(DM	SO) // UB3LYP-D3/def2-SVF	P-CPCM(DMS	0)				

HF = -744.5718713

U@B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -743.8903174

IV

Zero-point correction=	0.123354 (Hartree/Particle)			
Thermal correction to Energy=	0.131388			
Thermal correction to Enthalpy=	0.132332			
Thermal correction to Gibbs Free Ene	orgy= 0.089507			
Sum of electronic and zero-point Ener	rgies= -743.872507			
Sum of electronic and thermal Energie	es= -743.864473			
Sum of electronic and thermal Enthal	pies= -743.863529			
Sum of electronic and thermal Free En	nergies= -743.906355			
C -2.59188700 -0.03291000 0.3074	40100 C	-0.88928000	2.16689100	-0.25622200
C -1.20011600 -0.14165100 0.529	26800 C	-2.30075600	2.24751800	-0.47014700
C -0.37511900 0.93811500 0.251	16500 C	-3.12837900	1.17833200	-0.19619500

Н	-0.76504100	-1.06267100	0.91628000	0	-3.47528900	-1.01105700	0.54078500
Н	0.70021700	0.85410600	0.42250700	С	-3.03648900	-2.26899000	1.04540600
Н	-2.71915300	3.17855600	-0.85832500	Н	-2.55495300	-2.15757700	2.03078800
Н	-4.20653900	1.23584000	-0.35844000	Н	-3.93612900	-2.88778900	1.14866100
S	0.14525900	3.49480200	-0.59617400	Н	-2.33605200	-2.75660600	0.34754000
LID2I VD	D2/daf2 T'	ZVDD CDCI	M(DMSO) // LID2LX	D D2/daf SVD (DCM(DMS	()	

HF = -744.520087

U@B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -743.84685

V

Zero-point correction=	=	0.24880	5 (Hartree/Particle)			
Thermal correction to	• Energy=	0.2	66251			
Thermal correction to	• Enthalpy=	0.2	67196			
Thermal correction to	Gibbs Free Energ	gy=	0.200236			
Sum of electronic and	l zero-point Energ	ies=	-1487.802139			
Sum of electronic and	l thermal Energies	<u>s</u> =	-1487.784693			
Sum of electronic and	l thermal Enthalpi	es=	-1487.783749			
Sum of electronic and	l thermal Free Ene	ergies=	-1487.850708			
C -1.66568100	1.34433200 -0.37426	5000	S	3,18542200	2.58230900	-2.50084100
C -0.92024100	0.32767300 -1.0076	9700	Č	2.56126200	4.22083600	-2.18577800
C 0.46456900	0.40615200 -1.06942	2800	č	1.22238000	4.52325000	-2.47289400
C 1.14277500	1.50212600 -0.50012	2500	Ċ	3.38302200	5.22020100	-1.62788500
C 0.39809500	2.51145800 0.12709	9000	С	0.70066300	5.79551900	-2.21946500
С -0.99649100	2.43981300 0.1975.	3400	Н	0.57528000	3.75196700	-2.89536400
Н -1.45936700	-0.51601900 -1.4435	8900	С	2.87316900	6.48520500	-1.36843800
Н 1.03413300	-0.38220200 -1.5666	6000	Н	4.42551600	4.99341700	-1.39353900
Н 0.91424400	3.36970500 0.5619	1100	С	1.52608700	6.78615700	-1.66078000
Н -1.54507500	3.24130000 0.6912	7000	Н	-0.34409500	5.99728900	-2.45387200
O -3.00594600	1.17765400 -0.3673	9000	Н	3.49818600	7.26978000	-0.93684200
C -3.82928600	2.15897500 0.2435	9600	О	1.12497400	8.04288100	-1.37124800
Н -3.71874700	3.14255900 -0.2449	4000	С	-0.21734000	8.42490300	-1.62886100
Н -4.86423900	1.81343900 0.1249	6800	Н	-0.30781600	9.47250800	-1.31433800
Н -3.60500300	2.26447000 1.3191	6400	Н	-0.46210000	8.34790000	-2.70235800
S 2.91670700	1.63791800 -0.59118	3500	Н	-0.93139700	7.81178600	-1.05221500
TIDALTID DA/1 M TO		a a \ // T	DALLED DALL O CLE	ODOL (D) (O	\sim	

UB3LYP-D3/def2-TZVPP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -1489.1004792

U@B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -1487.759139

HCOONa

Zero-poii	nt correction=		0.0219	82 (Hartre	ee/Particle)			
Thermal	correction to En	nergy=	0.	026698				
Thermal	correction to En	nthalpy=	0.	027642				
Thermal	correction to G	ibbs Free Er	nergy=	-0.00574	42			
Sum of e	electronic and ze	ero-point En	ergies=	-351.	352880			
Sum of e	electronic and th	nermal Energ	gies=	-351.3	48164			
Sum of e	electronic and th	nermal Entha	alpies=	-351.	347220			
Sum of e	electronic and th	nermal Free	Energies=	-351	.380604			
0	-0.84574300 0.9	7696500 1.56	679500		0	1.27667900	0.24658500	1.48578100
С	0.39777800 1.1	4315500 1.50	0722400		Na	-0.46116800	-1.33521400	1.57766300
Н	0.76362200 2.2	21135800 1.46	5834900					

HF = -351.6648884

U@B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -351.2948563

CO2+- Radical Anion

Zero-point correction=	0.008776 (Hartree/Particle)			
Thermal correction to Energy=	0.011715			
Thermal correction to Enthalpy=	0.012659			
Thermal correction to Gibbs Free Ener	rgy= -0.015228			
Sum of electronic and zero-point Ener	gies= -188.492593			
Sum of electronic and thermal Energie	es= -188.489655			
Sum of electronic and thermal Enthalp	oies= -188.488711			
Sum of electronic and thermal Free Er	nergies= -188.516598			
O -0.85384600 1.30246100 1.4991 C 0.37252100 1.11745100 1.5056 UB3LYP-D3/def2-TZVPP-CPCM(DM	6800 O 52800 ISO) // UB3LYP-D3/def2-SVP	1.09492900 P-CPCM(DMS	0.11004500 O)	1.54080800
HF = -188.7465999				
U\u03c0B97XD/def2-SVP-CPCM(DMSO)	// UB3LYP-D3/def2-SVP-CPC	CM(DMSO)		
HF = -188.4380354				

 CO_2

Zero-point correction=	0.011678 (Hartree/Par	ticle)		
Thermal correction to Energy=	0.014316			
Thermal correction to Enthalpy=	0.015260			
Thermal correction to Gibbs Free Energy	gy= -0.009027			
Sum of electronic and zero-point Energ	ies= -188.43413	30		
Sum of electronic and thermal Energies	-188.43149	1		
Sum of electronic and thermal Enthalpi	es= -188.43054	17		
Sum of electronic and thermal Free End	ergies= -188.4548	335		
C 0.38648600 1.25634400 1.50077 O 1.54975800 1.25634400 1.50077 UB3LYP-D3/def2-TZVPP-CPCM(DM	800 7800 SO) // UB3LYP-D3/d	o -0.77678600 ef2-SVP-CPCM(DM)) 1.25634400 SO)	1.50077800
HF = -188.6725/31				

HF = -188.6725431

U@B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -188.3832588

AlkSM

Zero-point correction=	0.215412 (Hartree/Particle)			
Thermal correction to Energy=	0.228232			
Thermal correction to Enthalpy=	0.229176			
Thermal correction to Gibbs Free Ener	gy= 0.175093			
Sum of electronic and zero-point Energy	gies= -556.377104			
Sum of electronic and thermal Energie	s= -556.364284			
Sum of electronic and thermal Enthalp	ies= -556.363340			
Sum of electronic and thermal Free En	ergies= -556.417423			
C 0.59432200 0.28276100 0.6116	9600 C	3.71938800	-1.25601700	0.86251400
C 1.85768300 0.13621500 0.0213	6300 Н	3.45721000	-1.43427200	1.91993100
C 2.48671900 1.24881600 -0.5552	8400 H	4.32537600	-2.09911100	0.50910100
C 1.85079800 2.49275700 -0.5513	0800 H	4.30542000	-0.33052900	0.79787100
C 0.58071500 2.63406700 0.0204	7800 C	1.92799300	-2.29461800	-0.40556900
C -0.04558900 1.52525900 0.5997	8900 O	2.34479500	-3.39820400	-0.06141000
Н 0.11558000 -0.58259500 1.0752	29900 C	0.78312300	-2.20626400	-1.38684000
Н 3.46848200 1.13028200 -1.0193	C C	0.86682000	-1.43087600	-2.47706700
Н 2.34588700 3.35365900 -1.0073	4300 H	1.71637200	-0.76470400	-2.64473700
Н 0.08232800 3.60641500 0.0166	8000 H	0.08213000	-1.44329700	-3.23954200
Н -1.03396800 1.62800800 1.0545	56800 C	-0.35202300	-3.15515600	-1.11516000
N 2.51840100 -1.13276500 0.0341	4500 H	0.03299400	-4.18063500	-1.00163700

H -0.85638300 -2.89811800 -0.16733200 H -1.09747700 -3.13560800 -1.92276200 UB3LYP-D3/def2-TZVPP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -557.211362

U
0B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -556.3928833

NaF

Zero-point correction=	0.001090) (Hartree/Par	ticle)			
Thermal correction to Energy=	0.00	3691				
Thermal correction to Enthalpy=	0.00)4635				
Thermal correction to Gibbs Free En	ergy= -	-0.020146				
Sum of electronic and zero-point En	ergies=	-262.09314	49			
Sum of electronic and thermal Energ	ies=	-262.09054	8			
Sum of electronic and thermal Entha	lpies=	-262.08960)4			
Sum of electronic and thermal Free I	Energies=	-262.1143	384			
F -1.05199600 -0.09864300 -0.92 UB3LYP-D3/def2-TZVPP-CPCM(D	500600 MSO) // UI	B3LYP-D3/d	Na ef2-SVP-C	-3.01608400 PCM(DMSC	-0.09864300 - D)	0.92600600
HF = -262.2970078						
UωB97XD/def2-SVP-CPCM(DMSC) // UB3LY	P-D3/def2-S	VP-CPCM	(DMSO)		
HF = -262.0494951						

HCO₃-

Zero-point correction= 0.0	026496 (Hartree/Particle)
Thermal correction to Energy=	0.029997
Thermal correction to Enthalpy=	0.030941
Thermal correction to Gibbs Free Energy	= 0.000748
Sum of electronic and zero-point Energie	s= -264.314546
Sum of electronic and thermal Energies=	-264.311045
Sum of electronic and thermal Enthalpies	-264.310101
Sum of electronic and thermal Free Energy	gies= -264.340294
O -0.74100800 1.07561400 1.7388810	0 C 0.46452000 1.34907700 1.56081300

O 1.00852800 2.39337800 1.16683600 H 0.81315100 -0.43591800 2.14436000 O 1.37093600 0.30029300 1.85433200 UB3LYP-D3/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -264.6796935

U@B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -264.2593954

H₂CO₃

Zero-point correction=	0.039606 ((Hartree/Particle)				
Thermal correction to Energy=	0.0433	314				
Thermal correction to Enthalpy=	0.044	258				
Thermal correction to Gibbs Free Ene	rgy= 0	.013718				
Sum of electronic and zero-point Energies= -264.779367						
Sum of electronic and thermal Energi	es=	-264.775658				
Sum of electronic and thermal Enthalpies= -264.774714						
Sum of electronic and thermal Free Energies= -264.805254						
O -0.86203900 1.35089400 1.110	22600	Н	-0.02811300	-0.60184900	2.08604800	
C 0.27719000 1.13620900 1.449	46700	0	1.29777300	1.98783700	1.33005400	
O 0.72330700 0.00808600 2.005	57800	Н	0.95966400	2.80294800	0.92462200	
UB3LYP-D3/def2-TZVPP-CPCM(DM	(ISO) // UB3	3LYP-D3/def2-SVP-0	CPCM(DMS	0)		

HF = -265.1409055

U
0B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -264.7377114

MECP-E-3-IntA

Zero-point correction=	0.402426 (Hartree/Particle)
Thermal correction to Energy=	0.432861
Thermal correction to Enthalpy=	0.433805
Thermal correction to Gibbs Free Ener	rgy= 0.338480

Su	n of electron	ic and zero-po	oint Energies=	-1666.464082			
Su	n of electron	ic and thermal	Energies=	-1666.433647			
Su	n of electron	ic and thermal	Enthalpies=	-1666.432703			
Su	n of electron	ic and thermal	Free Energies=	-1666.528029			
С	5.093120000	-1.672665000	-1.427395000	С	0.841165000	-1.169680000	-4.695903000
С	3.798790000	0.436379000	-1.706848000	0	-0.050507000	-1.699709000	-5.311245000
С	4.952522000	1.009252000	-2.183697000	0	1.821310000	-0.445445000	-5.206876000
С	6.186620000	0.302667000	-2.236571000	С	1.844838000	-0.259777000	-6.645133000
С	6.233668000	-1.078180000	-1.896926000	Н	1.845960000	-1.252257000	-7.119921000
Н	2.867566000	1.001277000	-1.672857000	Н	0.919004000	0.257953000	-6.938836000
Н	4.925135000	2.040793000	-2.546697000	С	3.081095000	0.539685000	-6.983560000
Н	7.083796000	0.798032000	-2.612907000	Н	3.991300000	0.004546000	-6.672270000
Н	7.144472000	-1.657954000	-2.061471000	Н	3.126300000	0.702102000	-8.070919000
Ν	4.852424000	-3.020667000	-1.201167000	Н	3.062507000	1.520501000	-6.485644000
С	5.880637000	-4.037015000	-1.147454000	F	-0.127325000	-1.853673000	-2.671816000
Н	6.596866000	-3.800877000	-0.347232000	F	1.012367000	0.010148000	-2.671427000
Н	5.396798000	-4.998568000	-0.938442000	С	4.458630000	-0.746284000	2.282144000
Н	6.417224000	-4.100395000	-2.107335000	0	5.220182000	0.206541000	2.643157000
С	3.510228000	-3.294612000	-1.077166000	0	3.076789000	-0.749527000	2.646404000
0	3.031427000	-4.402344000	-0.896749000	С	4.956294000	-2.148958000	2.350699000
С	2.714911000	-1.985371000	-1.293030000	С	2.433702000	0.490742000	2.432351000
С	2.235683000	-2.062660000	-2.770123000	Н	2.478605000	0.758094000	1.356481000
Н	1.986950000	-3.104780000	-3.023822000	Н	2.967411000	1.289862000	2.976419000
Н	3.057613000	-1.753730000	-3.431338000	С	0.993996000	0.387207000	2.897563000
С	1.585008000	-1.895509000	-0.265779000	Н	0.477325000	1.352302000	2.771685000
Н	1.021672000	-0.960236000	-0.381255000	Н	0.445997000	-0.375234000	2.321663000
Н	2.007300000	-1.916936000	0.747626000	Н	0.951732000	0.109000000	3.963045000
С	3.837874000	-0.923845000	-1.085619000	F	6.140315000	-2.279773000	1.699881000
Н	3.889124000	-0.783710000	0.025268000	F	5.216313000	-2.626147000	3.627118000
Н	0.887848000	-2.737237000	-0.382998000	F	4.108450000	-3.063612000	1.816045000
С	1.001265000	-1.270635000	-3.162479000				

HF = -1668.7973434

U@B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -1666.3285172

МЕСР-Е-3-СО₂

Zero-point correction=	0.319728 (Hartree/Particle)							
Thermal correction to Energy=	0.343039							
Thermal correction to Enthalpy=	0.343983							
Thermal correction to Gibbs Free Ener	gy= 0.265705							
Sum of electronic and zero-point Energy	gies= -1250.003058							
Sum of electronic and thermal Energie	s= -1249.979747							
Sum of electronic and thermal Enthalp	ies= -1249.978803							
Sum of electronic and thermal Free En	ergies= -1250.057082							
C 4.957717000 -1.447284000 -1.13109 C 3.904271000 0.797056000 -1.22685	6000 C 5.1 2000 C 6.3	174688000 338920000	1.324998000 0.514527000	-1.278731000 -1.197110000				
С	6.214113000	-0.902922000	-1.179759000	С		3.709620000	-0.647372000	-0.914068000
-----	--	--------------	--------------	---	---	-------------	--------------	--------------
Η	3.031335000	1.446470000	-1.294348000	Н	[3.505325000	-0.752475000	0.202319000
Η	5.297318000	2.405788000	-1.403944000	С		3.572494000	-1.879008000	2.046231000
Н	7.329507000	0.972415000	-1.233725000	0)	3.178022000	-2.973716000	1.645369000
Η	7.099169000	-1.538574000	-1.257285000	0)	4.104268000	-1.429449000	3.057994000
Ν	4.588891000	-2.780178000	-1.256689000	Н	[0.557043000	-2.205994000	-1.297983000
С	5.510941000	-3.891742000	-1.196103000	С		1.426644000	-0.301130000	-3.590463000
Η	6.018096000	-3.913061000	-0.219220000	С		1.636088000	0.075290000	-5.072821000
Η	4.938165000	-4.816795000	-1.332522000	0)	1.924329000	1.185437000	-5.445228000
Η	6.270564000	-3.811850000	-1.990207000	0)	1.479516000	-0.989277000	-5.841520000
С	3.237949000	-2.928593000	-1.456600000	С		1.672574000	-0.816184000	-7.269792000
0	2.658742000	-3.992840000	-1.607292000	Н	[0.958054000	-0.057162000	-7.622018000
С	2.600544000	-1.523734000	-1.571909000	Н	[2.689889000	-0.429384000	-7.432414000
С	2.477357000	-1.283610000	-3.103775000	С		1.456289000	-2.156608000	-7.931029000
Η	2.228153000	-2.228448000	-3.608148000	Н	[0.436563000	-2.526943000	-7.743671000
Η	3.453480000	-0.956556000	-3.494927000	Н	[1.594249000	-2.052928000	-9.018153000
С	1.262499000	-1.504382000	-0.831564000	Н	[2.177241000	-2.900147000	-7.558404000
Η	0.813934000	-0.501864000	-0.845986000	F		0.168388000	-0.837108000	-3.474078000
Η	1.424471000	-1.810091000	0.210358000	F		1.413558000	0.857326000	-2.877495000
UB3	UB3LVP-D3/def2-TZVPP-CPCM(DMSO) // UB3LVP-D3/def2-SVP-CPCM(DMSO)							
			((-	,	

HF = -1251.7626414

U 0B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -1249.9054008

TS-E-3*-IntC

Zero-point correction=	0.398021 (Hartree/Particle)			
Thermal correction to Energy=	0.427977			
Thermal correction to Enthalpy=	0.428921			
Thermal correction to Gibbs Free End	ergy= 0.336031			
Sum of electronic and zero-point Ene	rgies= -1566.544569			
Sum of electronic and thermal Energi	es= -1566.514612			
Sum of electronic and thermal Enthal	pies= -1566.513668			
Sum of electronic and thermal Free E	nergies= -1566.606559			
C 4.79057000 -0.88511600 -0.452	21900 Н	5.86763500	-2.02707600	-2.79844500
C 3.88593400 0.91184200 1.065	520300 C	2.94592500	-1.57477500	-1.64739100
C 5.17651900 1.14333200 1.436	537000 O	2.29566900	-2.21599000	-2.44902300
C 6.28563500 0.34729100 0.946	524900 C	2,42248400	-0.43472900	-0.74323700
C 6.07900000 -0.64263300 -0.04	183400 C	1.11563400	-0.86221000	-0.05026900
Н 3.06424500 1.52696600 1.435	571100 Н	0.76873200	-0.06924700	0.62919500
Н 5.39858200 1.97100500 2.114	559100 H	0.33356600	-1.04890900	-0.80035300
Н 7.29501300 0.56491800 1.297	768600 Н	1.25920100	-1.78303000	0.52916100
Н 6.92157400 -1.17573500 -0.48	527600 C	2.09019200	0.81153600	-1.61687400
N 4.30988700 -1.73575100 -1.42	146800 Н	1.70998200	1.61581700	-0.97184700
C 5.14549400 -2.61750300 -2.21	337400 Н	1.28203100	0.53167500	-2.30991700
Н 5.68858900 -3.30860400 -1.55	241500 C	3.17037300	1.41658300	-2.50133700
Н 4.49765900 -3.18254800 -2.89	412900 C	4.28177700	2.24608800	-1.81635900

0	5.45794600	2.04819600	-1.97820800	С	3.88472800	-3.54087200	1.19046400
0	3.73656600	3.21334400	-1.09336300	О	4.97361700	-4.04020000	1.01884500
С	4.63129800	4.12539400	-0.40891300	О	2.75031000	-3.91083000	0.59856100
Н	5.10929500	4.76557600	-1.16741600	С	3.64294400	-2.29546100	2.00563400
Н	5.41774800	3.53386200	0.08150200	С	2.80459700	-5.03292800	-0.31915500
С	3.80977800	4.91989300	0.58002500	Н	3.09459500	-5.92914000	0.25147600
Н	4.45714400	5.63915500	1.10405100	Н	3.59279700	-4.83650600	-1.06126500
Н	3.01027100	5.47835400	0.06989700	С	1.44199500	-5.16750700	-0.95944200
Н	3.35225300	4.25449300	1.32804900	Н	1.44395400	-6.02699500	-1.64703100
F	3.77576900	0.45969000	-3.25876200	Н	0.66584200	-5.33463300	-0.19709200
F	2.55283100	2.27449100	-3.37764300	Н	1.19924200	-4.26069300	-1.53180500
С	3.59511000	-0.26206700	0.21686100	F	4.67732600	-1.97019500	2.78638400
Н	3.46820200	-1.29597600	1.14428200	F	2.50868400	-2.31515600	2.73077600
TIDATTO	D2/1 0 T	TIND CDC		UTIDAL VD DAVL O CLUD	CDCL (D) (C	\sim	

HF = -1568.7381923

U0B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -1566.4312041

TS-E-3*-CO₂

Zero-point correction=	0.315925 (Hartree/Particle)			
Thermal correction to Energy=	0.340316			
Thermal correction to Enthalpy=	0.341260			
Thermal correction to Gibbs Free Ene	gy= 0.258340			
Sum of electronic and zero-point Ener	gies= -1249.975290			
Sum of electronic and thermal Energie	es= -1249.950900			
Sum of electronic and thermal Enthalp	nies= -1249.949955			
Sum of electronic and thermal Free En	ergies= -1250.032875			
C 5.01383500 -1.47033800 -1.0747	б100 Н	0.87854300	-0.55959800	-0.98283600
C 3.89554500 0.76172100 -1.034	23000 H	1.45616800	-1.90045400	0.05280500
C 5.13065600 1.31543600 -0.833	88900 C	3.74670000	-0.69675300	-1.04756600
C 6.32611000 0.50720700 -0.706	79300 Н	3.63107600	-1.01366400	0.53724200
C 6.24889900 -0.90570900 -0.855	98500 C	3.70232900	-1.53125500	1.68474600
Н 3.01060100 1.39219100 -1.128	76400 O	3.30327700	-2.70414200	1.66085300
Н 5.22857600 2.40350300 -0.767	95100 O	4.13310600	-0.77162600	2.55645200
Н 7.29115500 0.98679700 -0.532	35000 Н	0.62246800	-2.24756600	-1.48893000
Н 7.14970400 -1.52247000 -0.815	45900 C	1.54940700	-0.27281600	-3.72033800
N 4.68586300 -2.79323300 -1.300	21100 C	1.72605900	0.04741500	-5.22106600
C 5.60170500 -3.90299300 -1.152	70900 O	2.17823300	1.08447700	-5.63738600
Н 5.95032400 -3.97370100 -0.109	78400 O	1.35490400	-0.99270700	-5.95710200
Н 5.07095700 -4.82417900 -1.423	27800 C	1.50301000	-0.87711100	-7.39428200
Н 6.47454000 -3.77492200 -1.811	47100 Н	0.90103200	-0.02088800	-7.73730900
C 3.34149400 -2.95403700 -1.585	О3300 Н	2.55848000	-0.65503100	-7.61758500
O 2.79214200 -4.02651700 -1.786	24600 C	1.04779800	-2.18096000	-8.00948900
C 2.68200100 -1.55768700 -1.699	58000 H	-0.00579300	-2.38312600	-7.76334700
C 2.52876800 -1.33322200 -3.250	99700 Н	1.14495100	-2.12693800	-9.10439400
Н 2.19253600 -2.26836400 -3.723	Н Н	1.66090100	-3.02014000	-7.64689600
Н 3.51786100 -1.09034900 -3.670	18200 F	0.25507200	-0.68469300	-3.52721600
C 1.32143600 -1.56528100 -0.984	24700 F	1.68854800	0.89562100	-3.03388300

UB3LYP-D3/def2-TZVPP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

```
\label{eq:HF} \begin{split} HF &= -1251.73021\\ U & 0 B97 XD/def2 - SVP - CPCM(DMSO) \ // \ UB3LYP - D3/def2 - SVP - CPCM(DMSO)\\ HF &= -1249.8711735 \end{split}
```


Zero-point correction=	0.398821 (Hartree/Particle)			
Thermal correction to Energy=	0.429924			
Thermal correction to Enthalpy=	0.430869			
Thermal correction to Gibbs Free Ener	gy= 0.333801			
Sum of electronic and zero-point Energy	gies= -1666.434562			
Sum of electronic and thermal Energie	s= -1666.403458			
Sum of electronic and thermal Enthalp	ies= -1666.402514			
Sum of electronic and thermal Free En	ergies= -1666.499582			
C 5.11461000 -1.76977200 -1.3307	1900 C	0.77263200	-1.14265100	-4.64648100
C 3.82221800 0.34880900 -1.4516	6800 O	-0.14041800	-1.63796200	-5.26017300
C 5.01123400 1.00024300 -1.6638	9800 O	1.76092400	-0.42253200	-5.16663100
C 6.27052600 0.30921700 -1.6611	3200 C	1.74835400	-0.20692200	-6.59842800
C 6.30150100 -1.11556500 -1.5421	8100 H	1.73980300	-1.18834300	-7.09850800
Н 2.87674900 0.89107900 -1.4690	1500 Н	0.81359800	0.31189100	-6.86400900
Н 5.00744900 2.07938900 -1.8491	9300 C	2.97407400	0.60573800	-6.94993700
Н 7.19814200 0.86289100 -1.8211	2200 Н	3.89321800	0.06829600	-6.67062900
Н 7.24176700 -1.66478000 -1.6274	6600 Н	2.99623600	0.79322200	-8.03416100
N 4.87879400 -3.13430800 -1.2449	3800 H	2.96272900	1.57530900	-6.42900700
C 5.91281900 -4.14366800 -1.1804	9700 F	-0.16083400	-1.84688100	-2.61240500
Н 6.53563600 -3.99019900 -0.2858	8100 F	1.05930400	-0.02863300	-2.59178500
Н 5.42841600 -5.12671100 -1.1274	0600 C	4.41503000	-0.68935400	1.70656700
Н 6.55415900 -4.10001600 -2.0749	5100 O	5.23346200	0.28058800	1.85306200
C 3.53023000 -3.41947500 -1.1625	6900 O	3.10667600	-0.59564800	2.29751300
O 3.05518600 -4.54176600 -1.0623	3700 C	4.93285300	-2.06849900	2.16266000
C 2.73100400 -2.10194500 -1.3049	5100 C	2.45661300	0.63855300	2.05805300
C 2.18876000 -2.14153200 -2.7863	7500 Н	2.43657600	0.85042900	0.97095100
Н 1.89448600 -3.17291500 -3.0366	8000 Н	3.02223300	1.46401900	2.52798000
Н 3.00350400 -1.85195600 -3.4651	0900 C	1.04713700	0.55782300	2.61412600
C 1.59008700 -2.06718800 -0.2762	2100 Н	0.52191400	1.51663500	2.47925700
Н 1.03356200 -1.12310200 -0.3501	7000 Н	0.47165600	-0.22940400	2.10210700
Н 1.99973200 -2.13857600 0.7383	7700 Н	1.06952900	0.32249600	3.69035100
C 3.83313200 -1.07672200 -1.0963	8400 F	6.12750000	-2.33936600	1.60034100
Н 4.13947200 -0.89508200 0.4673	4900 F	5.10879800	-2.14275700	3.50041500
Н 0.88895000 -2.89658100 -0.4496	53400 F	4.10343200	-3.08208300	1.82392700
C 0.97513600 -1.29464900 -3.1237	4200			

HF = -1668.7613853

U 0B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -1666.2940773

3*-Est

Zero-point correction=	0.401927 (Hartree/Particle)	
Thermal correction to Energy=	0.432775	
Thermal correction to Enthalpy=	0.433719	
Thermal correction to Gibbs Free Ene	rgy= 0.337892	
Sum of electronic and zero-point Ener	gies= -1566.564481	
Sum of electronic and thermal Energie	es= -1566.533633	
Sum of electronic and thermal Enthalp	pies= -1566.532689	
Sum of electronic and thermal Free En	nergies= -1566.628516	
C 4.66784300 -0.67468300 -0.3899	98600 O	5.
C 3.45972900 0.94142400 1.0844	41900 O	3.
C 4.64442200 1.10137000 1.7690	54600 C	4.
C 5 80072200 0 20248700 1 2620	01700 Н	5

С	4.66784300	-0.67468300	-0.38998600	О	5.15985200	1.59312800	-2.30905700
С	3.45972900	0.94142400	1.08441900	О	3.76025300	3.04833200	-1.29111600
С	4.64442200	1.10137000	1.76964600	С	4.86519800	3.68803400	-0.60323700
С	5.89073200	0.39248700	1.36291700	Н	5.49232800	4.18955700	-1.35765200
С	5.86656500	-0.50180200	0.29164700	Н	5.47355700	2.90716200	-0.12249200
Н	2.56301700	1.48176000	1.39630500	С	4.28461000	4.65997600	0.39761400
Н	4.68697600	1.76766600	2.63397900	Н	5.10041100	5.17867100	0.92358100
Н	6.79999400	0.54604100	1.94360800	Н	3.65818200	5.41409200	-0.10275600
Н	6.75608600	-1.06612700	0.00700100	Н	3.67293400	4.12947400	1.14276500
Ν	4.35007300	-1.49204100	-1.43310400	F	3.17345800	0.59995700	-3.72408000
С	5.30142600	-2.33525200	-2.13489800	F	2.16395400	2.51962100	-3.41212800
Н	5.74475300	-3.06351200	-1.44099700	С	3.42482000	0.08680800	-0.04003600
Н	4.76747300	-2.86015700	-2.93563300	Н	3.71141300	-1.62116000	2.09931600
Н	6.09478300	-1.70655800	-2.56606600	С	4.21443900	-3.54871200	1.15930200
С	2.99471300	-1.41513600	-1.79407800	О	5.24064500	-4.04195500	0.76293800
0	2.47153900	-2.13528800	-2.62401100	О	3.00783600	-3.73085300	0.63943100
С	2.30182300	-0.32701100	-0.94700000	С	4.12031300	-2.60693800	2.37328300
С	1.09735900	-0.94071300	-0.19181700	С	2.87897700	-4.69042200	-0.44729100
Н	0.62377200	-0.17769700	0.44379600	Н	3.28786800	-5.65098700	-0.09856800
Н	0.34889900	-1.31428100	-0.90672800	Н	3.49102500	-4.34321900	-1.29109600
Н	1.42406300	-1.77648100	0.44126800	С	1.41773700	-4.78141400	-0.81941600
С	1.76275800	0.82616200	-1.83976000	Н	1.29139800	-5.54492300	-1.60201000
Н	1.35389300	1.61450500	-1.19100200	Н	0.80751400	-5.06952000	0.04990300
Н	0.94945000	0.46046200	-2.48586700	Н	1.05862000	-3.82147300	-1.21550400
С	2.77574000	1.48135900	-2.76229600	F	5.34778900	-2.45253900	2.91191100
С	4.05554000	2.03048000	-2.09004500	F	3.30789200	-3.17558800	3.30610400

UB3LYP-D3/def2-TZVPP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -1568.7665357

U@B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -1566.4553869

3*-CO₂

Zero-poir	nt correction	=	0.31	8405 (Hartree/Particle)			
Thermal	correction t	o Energy=		0.343952			
Thermal	correction t	o Enthalpy=	=	0.344896			
Thermal	correction to	o Gibbs Fre	e Energy=	0.258477			
Sum of e	electronic an	d zero-poin	t Energies=	-1249.978089			
Sum of e	electronic an	d thermal E	nergies=	-1249.952543			
Sum of e	electronic an	d thermal E	nthalpies=	-1249.951599			
Sum of e	electronic an	d thermal F	ree Energie	es= -1250.038017			
С	5 05740400	-1 29722600	-0 99927100	Н	1 09719100	-0 25376700	-1 23895500
C	4.00733900	0.94211400	-1.28203300	H	1.75823900	-1.51959800	-0.14657600
Č	5.12966800	1.47619700	-0.67449100	C	3.91961500	-0.44654200	-1.49203600
Ċ	6.25705200	0.61592400	-0.20478000	Ĥ	3.79648800	-1.62437700	2.89966300
С	6.18176500	-0.76435300	-0.37145300	С	4.05670800	-2.43264200	2.13429800
Н	3.19529000	1.59637700	-1.60165100	О	3.17075500	-2.68688600	1.28940500
Н	5.20018900	2.55570700	-0.51933300	0	5.19416400	-2.94152200	2.26345900
Н	7.11381700	1.07961200	0.28545000	Н	0.77969200	-1.97421500	-1.57961700
Н	6.96952000	-1.42302800	-0.00172000	С	1.60507800	-0.12404600	-4.02043800
Ν	4.73259200	-2.59136700	-1.25049800	С	1.63684700	0.06415500	-5.55485800
С	5.52012400	-3.73224300	-0.82282800	О	2.01389500	1.06891300	-6.10246100
Н	5.53189700	-3.74389200	0.28159200	О	1.21656800	-1.04177700	-6.15446300
Н	5.04582500	-4.63913400	-1.21614000	С	1.20462700	-1.05113200	-7.60439800
Н	6.54390300	-3.64566200	-1.21728300	Н	0.53271800	-0.24964800	-7.94979100
С	3.46640100	-2.72967700	-1.81723600	Н	2.21949500	-0.81484400	-7.96070200
0	2.95918000	-3.80073100	-2.11408400	С	0.74253200	-2.41931000	-8.05142700
С	2.82901400	-1.33715900	-2.02388000	Н	-0.26861300	-2.63403200	-7.67335800
С	2.55050200	-1.21627400	-3.55653400	Н	0.71861900	-2.45990200	-9.15094100
Н	2.11293500	-2.16074000	-3.91149000	Н	1.42711300	-3.20144500	-7.68925700
Н	3.50682600	-1.08130100	-4.08450600	F	0.31042400	-0.41187000	-3.66964600
С	1.52521500	-1.26471500	-1.18962900	F	1.89886600	1.07975700	-3.45426300

HF = -1251.7353466

U 0B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -1249.8767345

3*-Alkoxide

0.401351 (Hartree/Particle)
0.433094
0.434038

Thermal correction to Gibbs Free Ener	gy= 0.334639			
Sum of electronic and zero-point Energy	gies= -1666.432915			
Sum of electronic and thermal Energie	s= -1666.401172			
Sum of electronic and thermal Enthalp	ies= -1666.400228			
Sum of electronic and thermal Free En	ergies= -1666.499627			
C 5.13022700 -1.67973200 -1.2918	9500 C	0.67954400	-1.05861700	-4.73975500
C 3.83998600 0.44652100 -1.3273	1900 O	-0.31135500	-1.51496900	-5.25830500
C 5.03811400 1.11354600 -1.2593	0700 O	1.68876900	-0.47001400	-5.37715400
C 6.30484000 0.41041800 -1.1931	9700 C	1.59503600	-0.37091500	-6.81787400
C 6.33081200 -1.00874900 -1.2419	0700 H	1.46989400	-1.38483700	-7.23013200
Н 2.89913100 0.99382300 -1.3893	8800 H	0.69041800	0.20503900	-7.07007800
Н 5.04681100 2.20773800 -1.2649	7000 C	2.85617900	0.29830100	-7.31618000
Н 7.23695100 0.97428400 -1.1250	3800 H	3.74508300	-0.29403700	-7.05021400
Н 7.27620900 -1.55453600 -1.2082	4600 H	2.81706100	0.39384700	-8.41190600
N 4.88556500 -3.04035300 -1.2996	3200 Н	2.96250100	1.30455200	-6.88283200
C 5.90616500 -4.05911000 -1.1799	2400 F	-0.17621100	-1.52854500	-2.61054800
Н 6.43204400 -3.96027400 -0.2182	2500 F	1.21369300	0.15778400	-2.78863700
Н 5.41714200 -5.03978600 -1.2321	2900 C	4.49602600	-0.77075400	1.76034400
Н 6.63800400 -3.96947800 -1.9978	8300 O	5.33268900	0.19543300	1.95221300
C 3.53025900 -3.32409700 -1.3157	7000 O	3.19959400	-0.67834900	2.38634700
O 3.05094500 -4.45256200 -1.2859	2200 C	5.00802400	-2.16074200	2.21120700
C 2.73169500 -2.00653500 -1.4430	3300 C	2.52542600	0.54036700	2.12987100
C 2.12259800 -2.05456300 -2.9034	7400 H	2.45833100	0.71344900	1.03887900
Н 1.74665900 -3.07258300 -3.0910	9000 H	3.09827100	1.38723100	2.55038800
Н 2.92729900 -1.85597400 -3.6248	7400 C	1.14009500	0.46252000	2.74378200
C 1.61835900 -1.96459500 -0.3761	6400 H	0.59770100	1.41007500	2.59767700
Н 1.07054900 -1.01353300 -0.4294	-1700 H	0.55478300	-0.34795300	2.28107800
Н 2.05856200 -2.04732000 0.6261	5300 Н	1.20717300	0.26358700	3.82550600
C 3.82739500 -0.99423100 -1.2569	7700 F	6.22467200	-2.41533100	1.69241900
Н 4.27025300 -0.91745400 0.6282	3800 F	5.12506000	-2.25854300	3.54929600
Н 0.90130800 -2.78479400 -0.5308	6100 F	4.19518400	-3.16390000	1.80919800
C 0.97036700 -1.12486800 -3.2276	9400			

HF = -1668.7631322

U
0B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -1666.2907636

 $3 + CO_2H$

Koto H

Zero-point correction=	0.324080 (Hartree/Particle)
Thermal correction to Energy=	0.348794
Thermal correction to Enthalpy=	0.349739
Thermal correction to Gibbs Free Ener	rgy= 0.266390
Sum of electronic and zero-point Ener	gies= -1250.094714
Sum of electronic and thermal Energie	es= -1250.069999
Sum of electronic and thermal Enthalp	nies= -1250.069055
Sum of electronic and thermal Free En	nergies= -1250.152403

С	4.97948800	-1.29187600	-1.04079700	Н	1.10010200	-0.26807100	-1.20288400
С	4.01139800	0.91032300	-1.28292400	Н	1.79216900	-1.52543100	-0.11804000
С	5.16393600	1.45107900	-0.68434500	С	3.92305700	-0.46465300	-1.46818000
С	6.20520500	0.61394700	-0.26945000	Н	3.80413400	-1.51734100	2.85898900
С	6.12596500	-0.77675100	-0.43910600	С	4.05951400	-2.37073000	2.14054600
Н	3.19717400	1.56323100	-1.59715500	0	3.15929900	-2.68231800	1.32984000
Н	5.24195500	2.53122300	-0.53846900	О	5.20279700	-2.86038200	2.28127700
Н	7.09309200	1.04487000	0.20091700	Н	0.79364000	-1.99521200	-1.52963300
Н	6.92321800	-1.43388200	-0.09132000	С	1.59779300	-0.11791300	-3.98963200
Ν	4.68338300	-2.63238900	-1.30442000	С	1.61874500	0.08314600	-5.52366300
С	5.49347700	-3.74629200	-0.85554400	О	1.93231300	1.11332900	-6.06290200
Н	5.55553200	-3.72386200	0.24539400	О	1.25781600	-1.03903800	-6.13010600
Н	5.00522600	-4.67106100	-1.18845600	С	1.23259000	-1.03664600	-7.58043700
Н	6.50110800	-3.69032400	-1.29828600	Н	0.52040000	-0.26475400	-7.91200400
С	3.42850700	-2.76464400	-1.83288900	Н	2.23200600	-0.74976300	-7.94310100
0	2.88211900	-3.81360700	-2.13443900	С	0.83133900	-2.42131200	-8.03512900
С	2.81601000	-1.34937400	-2.01588800	Н	-0.16525500	-2.68631200	-7.65042600
С	2.55453900	-1.20577500	-3.53607700	Н	0.79967300	-2.45377900	-9.13470300
Н	2.12603300	-2.14795900	-3.90851600	Н	1.55511300	-3.17332000	-7.68564000
Н	3.51189500	-1.05599900	-4.05905000	F	0.30782000	-0.42596300	-3.63839800
С	1.53730600	-1.27495000	-1.15760300	F	1.87584600	1.08423500	-3.41551200
TIDALVD	$D_{1}/10T$	ZUDD CDC		D $T $ $T $ $D $ $D $ $D $ $D $ D		\mathbf{O}	

HF = -1251.8579692

U0B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -1250.0047732

3 + Alkoxide

Zero-point correction=	0.407302 (Hartree/Particle)
Thermal correction to Energy=	0.438687
Thermal correction to Enthalpy=	0.439631
Thermal correction to Gibbs Free Ener	-gy= 0.340993
Sum of electronic and zero-point Energy	gies= -1666.538602
Sum of electronic and thermal Energie	s= -1666.507218
Sum of electronic and thermal Enthalp	ies= -1666.506274
Sum of electronic and thermal Free En	ergies= -1666.604912

С	1.86049500	-0.27368400	-0.24075300
С	0.70474100	1.83338100	-0.47627400
С	1.93556100	2.49193600	-0.30659400
С	3.11060500	1.76046000	-0.10693400
С	3.08990900	0.35813800	-0.06898600
Н	-0.21047300	2.40660300	-0.62119000
Н	1.97105900	3.58379800	-0.32494100
Н	4.06008100	2.28453900	0.02936900
Н	4.00071200	-0.21464300	0.10991400
Ν	1.59614700	-1.64883200	-0.20717000
С	2.58567100	-2.66375400	0.08092500
Н	3.03414900	-2.48465300	1.06952200
Н	2.08194200	-3.63838000	0.07907000

3.37936400	-2.66224000	-0.68285100
0.25533600	-1.89929100	-0.34826100
-0.27189700	-2.99861100	-0.33967500
-0.48188500	-0.54537800	-0.53084400
-1.16583400	-0.63102200	-1.91982800
-1.60217600	-1.63633000	-2.03128400
-0.40960300	-0.51005200	-2.70767900
-1.46974500	-0.38198600	0.64144700
-1.99951800	0.57684200	0.56511200
-0.93145000	-0.39918500	1.59916000
0.66873700	0.44434600	-0.45183200
1.41399900	0.90095200	2.30563000
-2.21187900	-1.19364100	0.62312800

 $\begin{array}{c} H\\ C\\ O\\ C\\ H\\ H\\ C\\ H\\ H\\ H\\ H\\ H\end{array}$

С	-2.29767800	0.33904600	-2.20684600	0	1.99108600	1.37385900	4.23788700
С	-2.71464900	0.35229200	-3.69886700	0	-0.14466900	0.53888100	3.63209500
0	-3.80920800	0.03863500	-4.09074600	С	1.73639000	-0.86147000	3.45759700
0	-1.69858300	0.74989700	-4.45116000	С	-0.77246900	1.78381400	3.48434600
С	-1.91605300	0.82628400	-5.88339400	Н	-0.67693200	2.14953100	2.43627300
Н	-2.24013700	-0.16495600	-6.23705700	Н	-0.27212400	2.53843700	4.12324800
Н	-2.73805700	1.53509000	-6.06996300	С	-2.24157500	1.65836700	3.85388200
С	-0.61921400	1.26930100	-6.52129600	Н	-2.75409800	2.63129000	3.77655100
Н	0.18527500	0.54664600	-6.31603200	Н	-2.75256800	0.94528900	3.18645800
Н	-0.75051500	1.34293100	-7.61144500	Н	-2.34665000	1.29027800	4.88759600
Н	-0.31247600	2.25532400	-6.14040200	F	3.02644600	-1.01745600	3.05743200
F	-3.40401700	0.02774600 .	-1.47979300	F	1.65436200	-1.38835900	4.69549700
F	-1.96388300	1.62823200 .	-1.87124600	F	1.00458500	-1.67070300	2.64553900
С	1.34083400	0.63886900	3.40618400				

HF = -1668.8830096

U uB97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -1666.4138105

Zero-poir	nt correction	=	0.31	3725 (Hartree/Parti	cle)		
Thermal	hermal correction to Energy= 0.3			0.334122			
Thermal	correction t	o Enthalpy=	=	0.335067			
Thermal	correction t	o Gibbs Fre	e Energy=	0.263823			
Sum of e	electronic an	d zero-poin	t Energies=	-1061.33635	2		
Sum of e	electronic an	d thermal E	nergies=	-1061.315955	i		
Sum of e	electronic an	d thermal E	nthalpies=	-1061.31501	1		
Sum of e	electronic an	d thermal F	ree Energie	s= -1061.3862	54		
C C C	0.73733500 1.82334900 1.63310600	-1.09837100 -0.09622200 1.26831600	0.76771200 0.55747100 0.83179700		H 0.3529930 H -0.6512210 C 0.80189200	0 -0.86474400 0 -2.30307800 0 -3.65120000	-1.76273100 -1.50338600 0.29781900
C	0.33650200	1.68362600	1.07435900		H 1.1554390	0 -4.40032400	-0.42038700
C C	-0.63259100	-0.53511800	0.87889700		Н 1.3010580	0 -3.82634000 0 -3.78326500	0.43513700
H	0.93047000	-1.48506000	1.79591600		C 2.2709170	0 -1.88720100	-3.32929100
н Н	2.45280700	2 74861600	0.76495900		O 2.5852860 O 2.9209820	0 -0.77588400 0 -265044200	-2.9668/900
Н	-1.79362400	1.22205600	1.21955700		C 0.9653050) -2.56454100	-2.84010300
Н	-1.47792400	-1.22609900	0.90655200		C 4.1468480	-2.12520900	-4.76649000
Ν	2.90602600	-0.69061900	0.05111400		Н 4.6942500	0 -3.02098800	-5.08606000
С	4.20052900	-0.06955700	-0.20392300		Н 4.7159900	0 -1.61587600	-3.97538000
Н	4.92260100	-0.87312800	-0.38922800		C 3.8418250	0 -1.20023400	-5.92864500
Н	4.12911800	0.56809800	-1.09652900		Н 4.7852090	0 -0.87918400	-6.39654500
Н	4.51227600	0.51932000	0.66767400		Н 3.2342660	0 -1.71487500	-6.68833400
С	2.61210800	-2.02285400	-0.36421000		Н 3.3032990	0 -0.30467200	-5.58593900
0	3.43764700	-2.79133400	-0.77510700		F 0.05421900	-2.38858000	-3.84643400
C	1.09853600	-2.24392600	-0.22331200		F 1.15306600	-3.90476900	-2.71075100
C	0.38610400	-1.94691800	-1.57696700				

 $\label{eq:ub3LYP-D3/def2-TZVPP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO) \\ HF = -1062.8522237 \\ U\omega B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO) \\ HF = -1061.2990665 \\ \end{array}$

Zero-poir	t correction=	=	0.30	02016	(Hartree/Particle)			
Thermal correction to Energy= 0.3					2039			
Thermal	correction to	• Enthalpy=	-	0.32	2983			
Thermal	correction to	o Gibbs Fre	e Energy=		0.253523			
Sum of e	lectronic and	l zero-point	t Energies=	=	-1060.962266			
Sum of e	lectronic and	d thermal E	nergies=		-1060.942244			
Sum of e	lectronic and	d thermal E	nthalpies=		-1060.941299			
Sum of e	lectronic and	d thermal F	ree Energie	es=	-1061.010760			
С	4.73006600 -	0.86752900	-0.50154800		Н	0.47794600	-1.20402900	-0.90355600
С	3.82191800	0.87771400	0.91111800		Н	1.56562600	-1.72068000	0.41625000
С	5.06619100	0.95970900	1.56065100		С	2.01399700	0.84146100	-1.89519800
С	6.12346900	0.13157700	1.16690200		Н	1.54673800	1.61586500	-1.27048800
С	5.97085000 -	-0.80197100	0.12911500)	Н	1.25781700	0.47785800	-2.60841000
Н	2.99769700	1.52943000	1.20972900)	С	3.08213900	1.52516300	-2.73333500
Н	5.20694700	1.67376400	2.37509700)	С	4.17137000	2.31709200	-1.97080500
Н	7.08718600	0.20674900	1.67672000)	0	5.35308400	2.14043800	-2.11844000
Η	6.79537000	-1.45128500	-0.16902600)	0	3.60636200	3.22224500	-1.18455800
Ν	4.32898500	-1.71689900	-1.54130500)	С	4.49016300	4.06813000	-0.40472300
С	5.18120700 .	-2.69806000	-2.17624800)	Н	5.07107300	4.69219100	-1.10194900
Н	5.54783800	-3.43236000	-1.44154000)	Н	5.19271700	3.41855100	0.13847200
Н	4.59040800	-3.21518100	-2.94269400)	С	3.63268700	4.89229400	0.52767800
Н	6.04731300	-2.20998400	-2.65141900)	Н	4.27317900	5.55932500	1.12422900
С	3.02005100 .	-1.48430300	-1.90082100)	Н	2.91780000	5.50965900	-0.03725800
0	2.39534400	-2.08418500	-2.75550300)	Н	3.06993900	4.24437000	1.21701400
С	2.47399400 .	-0.33887600	-1.01199800)	F	3.71889000	0.62382700	-3.53156200
С	1.26812900 .	-0.86989000	-0.21453200)	F	2.46238500	2.42094500	-3.56639900
Н	0.86281000	-0.08076300	0.43643000)	С	3.66426600	-0.02902700	-0.12857400
I IDAL IZD	D0/1 00 TTT	UND ODO		// T TT	$\Delta T T T D D \Delta / 1 O CT$	ID ODOL (D) (O	\sim	

UB3LYP-D3/def2-TZVPP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -1062.4678667

U 0B97XD/def2-SVP-CPCM(DMSO) // UB3LYP-D3/def2-SVP-CPCM(DMSO)

HF = -1060.916768

12. References

¹ (a) Zhang, M.; Ding, X.; Lu, A.; Kang, J.; Gao, Y.; Wang, Z.; Li, H.; Wang, Q. *Org. Chem. Front.* **2021**, *8*, 961. (b) Liu, Z.; Zhong, S.; Ji, X.; Deng, G.-J.; Huang, H. *ACS Catal.* **2021**, *11*, 4422. (c) Oddy, M. J.; Kusza, D. A.; Petersen, W. F. *Org. Lett.* **2021**, *23*, 8963. (d) Zhang, M.-Z.; Li, Y.; Zhang, J.; Bao, X.; Yuan, Y.-W.; Chen, J.; Chen, F.- G. *Tetahedron Lett.* **2021**, *67*, 152874.

² Ye, J. -H.; Bellotti, P.; Heusel, C.; Glorius, F. Angew. Chem. Int. Ed. 2022, 61 (9), e202115456.

³ (a) El Khatib, M.; Serafim, R. A. M.; Molander, G. A. *Angew. Chem. Int. Ed.* **2016**, *55*, 254. (b) Demas, J. N.; Bowman, W. D.; Zalewski, E. F.; Velapoidl, R. J. Phys. Chem. **1981**, *85*, 2766.

⁴ Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem., 1994, 98, 11623.

⁵ a) F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297. b) F. Weigend, *Phys. Chem. Chem. Phys.* **2006**, *8*, 1057.

⁶ S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.

⁷ a) V. Barone, M. Cossi, *J. Phys. Chem. A.* **1998**, *102*, 1995. b) M. Cossi, N. Rega, G. Scalmani, V. Barone, *J. Comp. Chem.* **2003**, *24*, 669.

⁸ For some selected examples of TD-DFT, see a) R. Bauernschmitt, R. Ahlrichs, *Chem. Phys. Lett.* **1996**, 256, 454. b) M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub, *J. Chem. Phys.* **1998**, 108, 4439. c) C. Adamo, D. Jacquemin. D. *Chem. Soc. Rev.* **2013**, 42, 845. d) A. D. Laurent, C. Adamo, D. Jacquemin. *Phys. Chem. Chem. Phys.* **2014**, 16, 14334.

⁹ J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615.

¹⁰ CYLview20; Legault, C. Y., Université de Sherbrooke, 2020 (http://www.cylview.org)

¹¹ J. N. Harvey, M. Aschi, H. Schwarz, W. Koch, Theor. Chem. Acc. 1998, 99, 95.

¹² F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 73.