Supporting Information

An Unusual Autocatalysis with Air-stable Pd Complex to Promote Enantioselective Synthesis of Si-Stereogenic Enynes

Fang-Ying Ling, Fei Ye, Xiao-Jun Fang, Xiao-Hua Zhou, Wei-Sheng Huang, Zheng Xu, and Li-Wen Xu*

liwenxu@hznu.edu.cn

Table of Contents

1. General Information
2.Evaluation of Reaction Parameters
Table S1. Screening of the Chiral Phosphine Ligands
Table S2. Screening of the Pd Catalysts 10
Table S3 . Screening of the Solvents
Table S4. The Effect of the Temperature on the Pd -catalyzed Hydrosilylation 12
Table S5. The Effect of the Loading of the Ligand/Catalyst on the Pd - catalyzed Hydrosilylation 13
Table S6. The Effect of the Ratio of two Substrates on this Reaction 14
Table S7. The Reaction Result by Different Experimental Operation on the Reaction duringPre-mixing of Catalyst and Substrate
Scheme S1. Pd-catalyzed hydrosilylation of 1a and 2a under an air atmosphere or in water. 15
3. Experimental Section
3.1 Preparation of Substrates
3.2 Synthesis of hydrosilylation of 1,3-Diynes
3.3 Synthetic Applications of Chiral Monohydrosilanes
3.4 Gram-Scale Synthesis of 3a
3.5 Kinetic Study for the Pd-catalyzed Hydrosilylation
3.6 Experiments for Mechanistic Study
3.6.1 Kinetic Study for the KIE70
3.6.2 The NLE study of the Pd-catalyzed Hydrosilylation of 1a71
3.6.3 Competitive Experiment for the Different Reactivity of Aliphatic and Aromatic diynes
3.6.4 Comparison of ³¹ P NMR of Ligand and Pd/L33 Complex in the Reaction of 1a and 2a
3.6.5 Comparison of ¹ H NMR of L33, Pd/L33 Complex in the Reaction of 1a and 2a74
3.6.6 The determination of product-promoted palladium catalysis (autocatalysis) by chirality matching between chiral additive (3a) and chiral ligand in the Pd-catalyzed h ydrosilylation
3.6.7 CD Spectra

3.6.8 UV Spectra	77
3.6.9 Pd-nanoparticles catalyzed hydrosilylation	78
3.7 X-Ray Structure of 3ab	79
3.8 Synthesis of Polyenyne 9 by Pd-catalyzed Hydrosilylation	80
3.8.1 Preparation of Polydiyne 8	80
3.8.2 Pd-catalyzed Hydrosilylation of Polydiyne 8	80
3.8.3 CD Spectra of Polyenyne 9	81
3.8.4 FTIR spectra	82
3.8.5 SEM images	83
3.8.6 TG Analysis of Polydiyne 8 and Polyenyne 9	84
4 NMR Spectra	85
5 References	145

1. General Information

Unless specifically stated, all reagents were commercially obtained and where appropriate, purified prior to use. Dichloromethane (DCM), toluene, were freshly distilled from CaH₂, Ether (Et₂O), tetrahydrofuran (THF), 1,4-dioxane and Cyclohexane were dried and distilled from metal sodium and benzophenone. Alcohol solvents were dried and distilled from metal magnesium. Other commercially available reagents and solvents were used directly without purification. Reactions were monitored by thin layer chromatography (TLC) using silica gel plates. Flash column chromatography was performed over silica (200 - 300 mesh). NMR spectra were recorded on a Bruker 400-, 500- (400 MHz for ¹H; 100 MHz for ¹³C, 500 MHz for ¹⁹F, 400MHz and 500MHz for ²⁹Si). The chemical shifts (δ , ppm) were quoted in parts per million (ppm) referenced to TMS (0.00 ppm for ¹H NMR) and CDCl₃ (77.16 ppm for 13 C NMR) The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, dd = doublets of doublet, t = triplet, q = quartet, m = multiplets. Coupling constants, J, were reported in Hertz unit (Hz). High resolution mass spectra (HRMS) of the products were obtained on a Bruker Daltonics micro TOF-spectrometer. HPLC analyses werecarried out with an Agilent 1260 infinity, Waters AcQuity HPLC or Waters AcQuity UPLC using a chiralcel AD-H column, a chiralcel ND column, a chiralcel OX column, a chiralcel AS-H column and a chiral Phenomenex column.

2.Evaluation of Reaction Parameters

Table S1. Screening of the Chiral Phosphine Ligands^{*a*}

Entry	Ligand	Yield of $3a (\%)^b$	<i>rr</i> of 3a ^{<i>c</i>}	<i>ee</i> of 3a (%) ^d
1	L1	50	97:3	74
2	L2	nr	-	-
3	L3	nr	-	-
4	L4	55	95:5	74
5	L5	16	95:5	56
6	L6	nr	-	-
7	L7	24	82:18	12
8	L8	trace	-	-
9	L9	11	88:12	16
10	L10	16	88:12	32
11	L11	30	98:2	-54
12	L12	nr	-	-
13	L13	59	-	74
14	L14	67	96:4	72
15	L15	nr	-	-
16	L16	10	92:8	5
17	L17	50	-	race
18	L18	trace	-	-
19	L19	46	96:4	80

L20	45	92:8	74
L21	23	95:5	74
L22	nr	-	-
L23	52	94:6	82
L24	53	94:6	76
L25	nr	-	-
L26	56	95:5	78
L27	61	91:9	81
L28	47	95:5	76
L29	trace	-	-
L30	60	97:3	86
L31	60	86:14	76
L32	43	89:11	80
L33	63	96:4	90
L34	36	88:12	87
L35	58	90:10	78
L36	60	95:5	89
L37	60	95:5	89
L12	48	95:5	73
	L20 L21 L22 L23 L24 L25 L26 L27 L28 L29 L30 L31 L32 L33 L34 L35 L36 L37 L12	L20 45 L21 23 L22 nr L23 52 L24 53 L25 nr L26 56 L27 61 L28 47 L29 trace L30 60 L31 60 L32 43 L33 63 L34 36 L35 58 L36 60 L37 60 L37 60 L12 48	L20 45 92:8 L21 23 95:5 L22 nr - L23 52 94:6 L24 53 94:6 L25 nr - L26 56 95:5 L27 61 91:9 L28 47 95:5 L29 trace - L30 60 86:14 L32 43 89:11 L33 63 96:4 L34 36 88:12 L35 58 90:10 L36 60 95:5 L37 60 95:5 L34 36 88:12 L35 58 90:10 L36 60 95:5 L37 60 95:5 L37 60 95:5 L37 60 95:5

^{*a*}Unless otherwise noted, reactions were conducted under N₂ on 0.2 mmol scale: **1a** (0.2 mmol), **2a** (0.2 mmol), Pd₂(dba)₃ (2 mol%), Ligand (8 mol%), DCM (2 mL). ^{*b*}Determined by ¹H NMR using dibromomethane as an internal standard. ^{*c*}Determined by GC-MS. ^{*d*}Determined by HPLC. ^{*e*}**1a** (0.2 mmol), **2a** (0.2 mmol), Pd₂(dba)₃ (2 mol%), L12 (8 mol%), DCM (2 mL), 40 °C.

L3

L7

L6

L12

L8

L9

L13

L14

L11

L15

L16

L27

L25

L26

L37

L35

L36

Figure S1. Frontline Orbital Analysis of L6-L37

Me +	H ₂ Si 2a	[Pd] cat. (4 mol%) L33 (8 mol%) DCM, rt, 12 h	Si H 3a	Me OP-N Ph L33
Entry	[Pd] cat	Yield of 3a ($(\%)^b$ rr of $3a^c$	$ee ext{ of } \mathbf{3a} \ (\%)^d$
1	Pd ₂ (dba) ₃ ·CHCl ₃	59	91:9	91
2	Pd(dba) ₂	62	92:8	91
3	$Pd(C_3H_5)_2Cl_2$	10	86:14	91
4	Pd(OAc) ₂	56	88:12	91
5	Pd(cod) ₂ Cl ₂	nr	-	-
6	Pd(nbd) ₂ Cl ₂	nr	-	-
7	Pd(acac) ₂	trace	-	-
8	Pd(TFA) ₂	trace	-	-
9	Pd(PPh ₃) ₄	56	85:15	81
11	PdCl ₂	trace	-	-
12	PdBr ₂	nr	-	-
13	PdI ₂	nr	-	-
14	Pd(CN)2Cl	nr	-	-
15 [PdCl(2-Me-C ₃ H ₄) ₂]]2 52	87:13	91
16	Pd ₂ (dba) ₃	63	96:4	90

Г

1

^{*a*}Unless otherwise noted, reactions were conducted under N₂ on 0.2 mmol scale: **1a** (0.2 mmol), **2a** (0.2 mmol), [Pd] cat. (4 mol%), Ligand (8 mol%), DCM (2 mL). ^{*b*}Determined by ¹H NMR using dibromomethane as an internal standard. ^{*c*}Determined by GC-MS. ^{*d*}Determined by HPLC.

^{*a*}Unless otherwise noted, reactions were conducted under N₂ on 0.2 mmol scale: **1a** (0.2 mmol), **2a** (0.2 mmol), Pd₂(dba)₃ (2 mol%), Ligand (8 mol%), Solvent (2 mL). ^{*b*}Determined by ¹H NMR using dibromomethane as an internal standard. ^{*c*}Determined by GC-MS. ^{*d*}Determined by HPLC. ^{*e*}5Å MS (50 mg).

Entry	Solvent	T (°C)	Yield of $3a (\%)^b$	<i>rr</i> of 3a ^c	<i>ee</i> of 3a (%) ^{d}
1	Cyclohexane	40	63	97:3	89
2	Cyclohexane	0	70	99:1	93
3 ^e	Cyclohexane	25	77	98:2	91
4	Cyclohexane	25	65	98:2	91
5	DCM	0	48	98:2	90
6	DCM	-20	trace	-	-
7	DCM	-40	nr	-	-
8	Hexane	0	62	98:2	92
9	Hexane	-20	trace	-	-
10	Cyc:Hex (1:1)	0	65	98:2	93
11	Cyc:Hex (1:1)	-20	nr	-	-

^{*a*}Unless otherwise noted, reactions were conducted under N₂ on 0.2 mmol scale: **1a** (0.2 mmol), **2a** (0.2 mmol), Pd₂(dba)₃ (2 mol%), Ligand (8 mol%), Solvent (2 mL). ^{*b*}Determined by ¹H NMR using dibromomethane as an internal standard. ^{*c*}Determined by GC-MS. ^{*d*}Determined by HPLC. ^{*e*}5Å MS (50 mg).

Table S5. The Effect of the Loading of the Ligand/Catalyst on the Pd - catalyzed Hydrosilylation a

/	—Me +	H ₂ Si Cyclohex 2a	a) ₃ (X mol%) (Y mol%) tane, 0 °C, 12 h H 3a		Me O P-N Ph L33
Entry	X (mol%)	Y (mol%)	Yield of $3a (\%)^b$	<i>rr</i> of 3a ^c	<i>ee</i> of 3a (%) ^{<i>d</i>}
1	2	12	69	99:1	94
2	1	4	60	99:1	93
3	2	4	53	99:1	93
4	2	8	70	99:1	93

^{*a*}Unless otherwise noted, reactions were conducted under N₂ on 0.2 mmol scale: **1a** (0.2 mmol), **2a** (0.2 mmol), Pd₂(dba)₃ (2 mol%), Ligand (8 mol%), Solvent (2 mL). ^{*b*}Determined by ¹H NMR using dibromomethane as an internal standard. ^{*c*}Determined by GC-MS. ^{*d*}Determined by HPLC.

Table S6. The Effect of the Ratio of two Substrates on this Reaction^{*a*}

/ 1a	-Me + + Si +	Pd ₂ (dba) ₃ (2 mol%) L33 (8 mol%) Cyclohexane, 0 °C, 12 h	Me Si H 3a	Me OP-N_Ph L33
Entry	1a : 2a	Yield of $3a (\%)^b$	<i>rr</i> of 3a ^c	<i>ee</i> of 3a (%) ^d
1	1:2	67	99:1	93
2	2:1	65	99:1	93
3	1:1	70	99:1	93

^{*a*}Unless otherwise noted, reactions were conducted under N₂ on 0.2 mmol scale: **1a** (x mmol), **2a** (y mmol), Pd₂(dba)₃ (2 mol%), Ligand (8 mol%), Cyclohexane (2 mL). ^{*b*}Determined by ¹H NMR using dibromomethane as an internal standard. ^{*c*}Determined by GC-MS. ^{*d*}Determined by HPLC.

Table S7.^{*a*} The Reaction Result by Different Experimental Operation on the Reaction during Pre-mixing of Catalyst and Substrate^{*a*}

Scheme S1. Pd-catalyzed hydrosilylation of 1a and 2a under an air atmosphere or in water

3. Experimental Section

3.1 Preparation of Substrates

General procedure A for the synthesis of 1,3-diynes^[1-3]:

To a solution of MeMgBr (1.2 eq., 1 M in THF) was added phenylacetylene **S1** (1.0 eq.) dropwise within 2 minutes at 50 °C under nitrogen, leading to evolution of methene. After stirred at 50 °C for 1 h, the reaction mixture was allowed to cool to room temperature. CuBr (0.02 equiv.) was added quickly to the above suspension and the reaction mixture was stirred for another 15 minutes and heated to 50 °C. Then adding propargyl bromide (1.15 eq.) into the reaction mixture and kepping stirring for 90 minutes. The reaction mixture was cooled to 0 °C using an external ice-water bath and quenched by addition of asaturated solution of ammonium chloride. The phases were separated, and the aqueous phase was extracted with ethyl acetate. The collected organic phases were dried over Na₂SO₄; the solvent was evaporated, affording the crude 1,4-pentadiyn-1-benzenes, which were used without further purification.

A solution of the corresponding 1,4-pentadiyn-1-benzenes in a mixture (0.3 M, 9:1 of THF and DMSO) was cooled to -40 °C. After the addition of *t*BuOK (0.02 eq.) in small portions, the reaction mixture immediately turned dark purple. Stirring was continued for 60 minutes at -40 °C. The reaction was quenched with water at -40 °C, and the resulting dark brown suspension was vigorously stirred for an additional 10 minutes. The phases were separated and the organic phase extracted three times with ether. The collected organic phases were dried over Na₂SO₄, and the solvents were evaporated under reduced pressure. After purification by column chromatography using PE as the eluent the product **1** was isolated.

penta-1, 3-diyn-1-ylbenzene

1a was synthesized following the general procedure A. Colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 8.0 Hz, 2H), 7.37 – 7.30 (m, 3H), 2.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 132.5, 128.9, 128.4, 122.1, 80.4, 74.5, 74.2, 64.4, 4.6.; HRMS (APCI) m/z Calcd for C₁₁H₈ [2M+H]⁺ : 281.1325, found: 281.1328

1-isopropyl-4-(penta-1,3-diyn-1-yl)benzene

1c was synthesized following the general procedure A. White solid, mp 45.1 - 46.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 8.0 Hz, 2H), 2.81 (m, 1H), 1.93 (s, 3H), 1.15 (d, J = 4.0 Hz, 6H).; ¹³C NMR (100 MHz, CDCl₃) δ 150.1, 132.7, 126.7, 119.4, 80.0, 74.6, 73.8, 64.6, 34.3, 23.9, 4.8.; HRMS (APCI) m/z Calcd for C₁₄H₁₄ [M+H]⁺ : 183.1169, found: 183.1159

1-ethyl-4-(penta-1,3-diyn-1-yl)benzene

1d was synthesized following the general procedure A. Clorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.0 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 2.68 (q, *J* = 8.0, 4.0 Hz, 2H), 2.05 (s, 3H), 1.27 (t, *J* = 8.0 Hz, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 145.5, 132.6, 128.0, 119.2, 80.0, 74.5, 73.9, 64.6, 28.9, 15.3, 4.6.; HRMS (ESI) m/z Calcd for C₁₃H₁₂ [2M+H]⁺ : 337.1951, found: 337.1729

1-butyl-4-(penta-1,3-diyn-1-yl)benzene

1e was synthesized following the general procedure A. Yellow solid, mp 41.6 – 43.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 2.59 (t, *J* = 8.0 Hz, 2H), 2.02 (s, 3H), 1.60 (d, *J* = 8.0 Hz, 1H), 1.54 (d, *J* = 8.0 Hz, 1H), 1.38 – 1.28 (m, 2H), 0.91 (t, *J* = 8.0 Hz, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 132.6, 128.6, 119.2, 80.0, 77.45, 73.84, 64.57, 35.8, 33.5, 22.4, 14.1, 4.8; HRMS (APCI) m/z Calcd for C₁₅H₁₆[M+H]⁺ : 197.1325, found: 197.1306

1-(penta-1,3-diyn-1-yl)-4-pentylbenzene

nAm-

1g was synthesized following the general procedure A. White solid, mp 41.6 – 43.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, *J* = 8.0 Hz, 2H), 6.98 (d, *J* = 8.0 Hz, 2H), 2.46 (t, *J* = 8.0Hz, 2H), 1.86 (s, 3H), 1.51 – 1.42 (m, 2H), 1.24 – 1.14 (m, 4H), 0.77 (t, *J* = 6.7 Hz, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 132.6, 128.6, 128.6, 119.2, 80.0, 77.5, 77.2, 76.8, 74.6, 73.8, 64.58, 36.1, 31.6, 31.0, 22.7, 14.2, 4.8.; HRMS (APCI) m/z Calcd for C₁₅H₁₆[M+H]⁺ : 233.1481, found: 233.1202

4-(penta-1,3-diyn-1-yl)-1,1'-biphenyl

Ph-

1h was synthesized following the general procedure A. White solid, mp 90.4 – 90.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.56 (m, 2H), 7.54 (s, 4H), 7.44 (m, 2H), 7.38 – 7.34 (m, 1H), 2.04 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 141.7, 140.3, 133.1, 129.0, 127.9, 127.2, 121.0, 80.8, 75.2, 74.2, 64.5, 4.8.; HRMS (ESI) m/z Calcd for C₁₇H₁₂[M+H]⁺ : 217.1012, found: 217.1169

1-methyl-3 -(penta-1,3-diyn-1-yl)benzene

1i was synthesized following the general procedure A. Colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.22 – 7.16 (m, 2H), 7.13 – 7.02 (m, 2H), 2.22 (s, 3H), 1.92 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 138.2, 133.1, 129.9 129.7, 128.3, 121.9, 80.2, 74.5, 74.2, 64.5, 21.3, 4.7.; HRMS (APCI) m/z Calcd for C₁₂H₁₀[2M+H]⁺ : 309.1638, found: 309.1638

1-methyl-2-(penta-1,3-diyn-1-yl)benzene

1j was synthesized following the general procedure A. Colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.0 Hz, 1H), 7.22 – 7.14 (m, 2H), 7.12 – 7.07 (m, 1H), 2.42 (s, 3H), 1.99 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 141.7, 133.0, 129.6, 128.9, 125.7, 121.9, 81.0, 78.09, 77.5, 77.2, 76.8, 73.3, 64.5, 20.8, 4.8.; HRMS (ESI) m/z Calcd for C₁₂H₁₀[2M+H]⁺ : 309.1638, found: 309.1638

1-chloro-4-(penta-1,3-diyn-1-yl)benzene

1k was synthesized following the general procedure A. White solid. mp 73.1 – 76.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 2.02 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 135.1 133.9, 128.9, 120.7, 81.1, 75.5, 73.1, 64.3, 4.8.; HRMS (ESI) m/z Calcd for C₁₂H₁₀[2M+H]⁺ : 349.0545, found: 349.0592

1-bromo-4-(penta-1,3-diyn-1-yl)benzene

Br-

11 was synthesized following the general procedure A. White solid. mp 60.0 – 68.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 2.02 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 134.0, 131.8, 123.4, 121.2, 81.2, 75.7, 73.1, 64.3, 4.8.; HRMS (ESI) m/z Calcd for C₁₂H₁₀[2M+H]⁺ : 436.9535, found: 436.9546

1-(penta-1,3-diyn-1-yl)cyclohex-1-ene

1n was synthesized following the general procedure A. Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 6.27 – 6.06 (m, 1H), 2.11 – 2.02 (m, 4H), 1.93 (s, 3H), 1.62 – 1.50 (m, 4H).; ¹³C NMR (100 MHz, CDCl₃) δ 138.0, 119.8, 79.0, 76.2, 71.8, 64.5, 28.8, 25.9, 22.2, 21.4, 4.5.; HRMS (ESI) m/z Calcd for C₁₂H₁₀[M+Na]⁺ : 167.0831, found: 167.0790

3-(penta-1,3-diyn-1-yl)thiophene

10 was synthesized following the general procedure A. Colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 4.0 Hz, 1H), 7.16 (t, J = 4.0 Hz, 1H), 7.05 (d, J = 4.0 Hz, 1H), 1.93 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 130.9, 130.3, 125.5, 121.1, 80.3, 77.5, 77.2, 76.8, 74.1, 69.4, 64.4, 4.7.; HRMS (APCI) m/z Calcd for C₁₂H₁₀[M+H]⁺ : 147.0263, found: 147.0256

A reaction flask was charged with CuI (9.6 mg, 0.10 mmol), Pd(PPh₃)₂Cl₂ (30.4 mg, 0.10 mmol), ethisterone (138 mg, 2 mmol) and degassed Et₃N (5.0 mL) under nitrogen. The bromoethynyl benzene (4 mmol) was then added to the reaction mixture

and stirred 12 h at 50 $^{\circ}$ C.

After completion of the reaction, the mixture was passed through a short celite pad using DCM as a solvent. The mixture was then concentrated in vacuo and purified by column chromatography using Petroleum ether-EtOAc (8:1) to give the desired product **4** in good yields^[4].

General procedure B for the synthesis of dihydrosilanes and chiral phosphoramidite ligand.

A flame dried 200 mL, round botton flask equipped with a water-cooled condenser were added magnesium turnings (1.1 eq.), three pieces of iodine partials, THF under nitrogen. 2-bromo-1,3-diethyl-5-methylbenzene (1.0 eq.) was added slowly over 15 minutes to the refluxing mixture of THF and magnesium turnings. Following that, the mixture was refluxed for an additional 2 hour. The resulting Grignard reagent was cooled to 25 °C for the following procedure. To a suspension of LiCl (2.0 eq., 0.5 M in THF) was added the Grignard reagent (0.97 M in THF), followed by the addition of phenylsilane (1 eq.), at room temperature under argon. After the reaction mixture was stirred in an oil bath maintained at 50 °C for 6 h, the reaction was quenched by the addition of an aqueous solution of NH4Cl (10 mL) at room temperature. The resulting mixture was filtered through Celite and washed with ethyl acetate (20 mL * 3). The organic phase was dried over Na₂SO₄ and concentrated in vacuum to give the crude product, which was purified by chromatography on silica gel eluting with PE to afford the title compound (2.6g, 51% yield) as colorless oil^[5].

(11bS)-N-benzyl-2,6-bis(4-(tert-butyl)phenyl)-N-methyldinaphtho[2,1-d:1',2'f][1,3,2]-dioxaphosphepin-4-amine

To a solution of N-methyl-1-phenylmethanamine (484.7 mg, 4.0 mmol) in dry THF (3 mL) was added *n*BuLi (2.5 M in hexanes, 1.6 mL, 4 mmol) dropwise at 0 °C over 3 min under argon atmosphere and the mixture was stirring at 0 °C for 30 minutes. PCl₃ (1.05 mL, 12.0 mmol) was added to the reaction mixture in one portion. The resulting mixture was warmed to room temperature, stirred for 1 h, and then concentrated at room temperature. The remaining PCl₃ was removed under vacuum. Dry THF (6 mL) was then added to the resulting residue. After stirring for 10 min, the mixture was cooled to °C, followed by addition of a solution of N-((11bS)-2,6-bis(4-(tert-0 butyl)phenyl)dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-yl)-N-hydroxyhydroxylamine (1255.4 mg, 2.0 mmol) and Et₃N (667.9 mg, 6.6 mmol) in dry THF (15 mL) over 2 min. The mixture was warmed to room temperature and stirred 2 h. Then it was filtered and the solid was washed with DCM. The residue was purified by chromatography on silica gel, eluting with PE: EA = 100:1 to afford the products as white solid. White solid, mp 145.1 - 146.2 °C, $[\alpha]_D^{25} = +175.7$ (c = 0.32, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 12.0 Hz, 2H), 7.95 (d, J = 8.0 Hz, 2H), 7.78 (d, *J* = 8.0 Hz, 4H), 7.70 (d, *J* = 8.0 Hz, 4H), 7.52 (dd, *J* = 12.0, 8.0 Hz, 4H), 7.49 – 7.37 (m, 4H), 7.32 - 7.21 (m, 2H), 7.17 - 7.13 (m, 2H), 6.89 (d, J = 8.0 Hz, 2H), 3.56 - 3.45(m, 1H), 3.33 - 3.19 (m, 1H), 1.77 (d, J = 8.0 Hz, 3H), 1.40 (d, J = 4.0 Hz, 18H).; 13 C NMR (100 MHz, CDCl₃) *δ* 150.5, 150.4, 147.5, 147.3, 138.4, 138.3, 135.4, 135.1, 135.0, 134.2, 132.5, 132.3, 131.4, 131.1, 130.4, 130.0, 130.0, 129.9, 129.8, 128.5, 128.5, 128.2, 127.5, 127.2, 127.0, 126.9, 126.1, 126.0, 125.2, 125.1, 125.0, 124.4, 50.7, 34.8, 31.6, 31.6, 31.3, 31.1.; ³¹P NMR (162 MHz, CDCl₃) δ 143.78. HRMS (ESI) m/z Calcd for C₄₈H₄₆NO₂P [M+H]⁺ : 700.3339, found: 700.3346

General Procedure C for the Synthesis of 3a by Hydrosilylation of 1,3-Diynes:

In a flame dried Schlenk tube, $Pd_2(dba)_3$ (3.7 mg, 0.004 mmol, 2 mol%), L33 (11.2 mg, 0.016 mmol, 8 mol%) in cyclohexane (1 mL, 0.2M) was stirred at room temperature for 30 min under nitrogen atomosphere. Then diyne (0.2 mmol, 1 equiv.), dihydrosilanes were added sequentially to the reaction mixture, and the reaction tube was cooled at 0 °C and then stirred for 6 h. After completion of the reaction, the mixture was passed through a short celite pad using DCM as a solvent. The mixture was then concentrated in vacuo and purified by column chromatography using Petroleum ether-EtOAc (300:1) to give the desired product **3a** in good yields.

3.2 Synthesis of hydrosilylation of 1,3-Diynes (*S,E*)-mesityl(phenyl)(1-phenylpent-1-en-3-yn-2-yl)silane:

3a was synthesized following the general procedure C. Yellow liquid (51.2 mg, 70% yield). purified by column chromatography (Al₂O₃, PE/EA= 300:1). $[\alpha]_{25}^{D} = 7.54$ (c = 0.14, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.0 Hz, 2H), 7.56 (d, *J* = 8.0Hz, 2H), 7.32 – 7.16 (m, 6H), 7.32 – 7.17 (m, 3H), 2.30 (s, 6H), 2.22 (s, 3H), 1.95 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 147.3, 145.8, 140.1, 137.7, 135.7, 134.0, 129.5, 128.9, 128.8, 128.7, 128.3, 128.1, 126.6, 118.8, 99.0, 80.6, 24.5, 21.4, 5.4.; ²⁹Si

NMR(500MHz, CDCl₃) δ 21.9.; IR (KBr, cm⁻¹): 2928.3, 2852.9, 2147.3, 1450.6, 1258.7, 1029.1, 847.9, 795.5, 739.3. HRMS (APCI) m/z Calcd for C₂₆H₂₆Si [M+H]⁺: 367.1877, found: 367.1864.

HPLC: Chiralpak AD-H column (hexanes: isopropanol = 99.7:0.3, 0.8 mL/min, 230 nm, 93% *ee*). tR = 9.317 min (major), tR = 6.497 min (minor).

(S,E)-mesityl(phenyl)(1-(p-tolyl)pent-1-en-3-yn-2-yl)silane

3b was synthesized following the general procedure C. Yellow liquid (66.2 mg, 87% yield). purified by column chromatography (Al₂O₃, PE/EA= 300:1). $[\alpha]_{25}^{D} = 3.52$ (c = 0.38, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.0 Hz, 2H), 7.68 (d, *J* = 8.0 Hz, 2H), 7.45 - 7.35 (m, 3H), 7.19 (d, *J* = 8.0 Hz, 2H), 6.91 (s, 2H), 6.88 (s, 1H), 5.55 (s, 1H), 2.42 (s, 6H), 2.38 (s, 3H), 2.34 (s, 3H), 2.07 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 147.4, 145.8, 140.1, 138.8, 135.7, 135.2, 134.1, 129.5, 129.0, 128.9, 128.8, 128.0, 126.7, 117.3, 98.5, 80.8, 24.5, 21.6, 21.4, 5.4; IR (KBr, cm⁻¹): 2927.3, 2859.5, 2147.3, 1612.4, 1432.2, 1258.7, 1025.2, 855.6, 787.8, 735.5, 622.1. HRMS (ESI) *m/z* Calcd for C₂₇H₂₈Si [M+H]⁺: 381.2034, found: 381.2255.

HPLC: Chiralpak AD-H column (hexanes: isopropanol = 99.7:0.3, 0.8 mL/min, 230 nm, 93% *ee*). tR = 10.682 min (major), tR = 6.53 min (minor).

mAU 10000 8000 4000 2000	~~~	Л,		
	2 4 6	8 10	12 14	18 18 min
	Time/min	Area	Height	Area%
1	6.53	1444.3	144.8	3.490
2	10.682	39941.6	1112.6	96.510

(S,E)-(1-(4-isopropylphenyl)pent-1-en-3-yn-2-yl)(mesityl)(phenyl)silane

3c was synthesized following the general procedure C. White liquid (67.0 mg, 82% yield). purified by column chromatography (Al₂O₃, PE/EA= 300:1). $[\alpha]_{25}^{D} = 0.8(c = 0.531, CHCl_3)$. ¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.80 (m, 2H), 7.73 – 7.54 (m, 21H), 7.44 – 7.28 (m, 3H), 7.23 – 7.18 (m, 2H), 6.86 (s, 1H), 6.84 (s, 2H), 5.49 (s, 1H), 2.98 – 2.77 (m, 1H), 2.37 (s, 6H), 2.30 (s, 3H), 2.03 (s, 3H), 1.24 (d, J = 8.0 Hz, 6H).; ¹³C NMR (100 MHz, CDCl₃) δ 149.7, 147.4, 145.9, 140.1, 135.7, 135.6, 134.2, 129.5, 128.9, 128.0, 126.7, 126.4, 117.3, 98.5, 80.8, 34.2, 29.9, 24.5, 24.0, 21.4, 5.4.; ²⁹Si NMR(500MHz, CDCl₃) δ 26.3.; IR (KBr, cm⁻¹): 2968.0, 1416.7, 1266.5, 1076.6, 1013.6, 791.7, 705.4, 659.8. HRMS (ESI) m/z Calcd for C₂₉H₃₂Si [M+Na]⁺: 431.2165, found: 431.2172

HPLC: Chiralpak AD-H column (hexanes: isopropanol = 99.7:0.3, 0.8 mL/min, 230 nm, 93% *ee*). tR = 10.656 min (major), tR = 6.58 min (minor).

(S,E)-(1-(4-ethylphenyl)pent-1-en-3-yn-2-yl)(mesityl)(phenyl)silane

3d was synthesized following the general procedure C. White liquid (53.7 mg, 68% yield). purified by column chromatography (Al₂O₃, PE/EA= 300:1). $[\alpha]_{25}^{D} = 2.49$ (c = 0.42, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.0 Hz, 2H), 7.64 (d, *J* = 4.0 Hz, 2H), 7.43 – 7.33 (m, 3H), 7.19 (d, *J* = 8.0 Hz, 2H), 6.88 (s, 2H), 6.85 (s, 1H), 5.51 (s, 1H), 2.66 (q, *J* = 8.0 Hz, *J* = 16.0 Hz, 2H), 2.38 (s, 6H), 2.31 (s, 3H), 2.05 (s, 3H), 1.24 (t, *J* = 8.0 Hz, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 147.4, 145.8, 145.2, 140.1,

135.7, 135.4, 134.2, 129.5, 128.9, 128.0, 127.8, 126.7, 117.3, 98.5, 80.8, 29.9, 28.9, 24.5, 21.4, 15.6, 5.4.; ²⁹Si NMR(500MHz, CDCl₃) δ 26.9.; IR (KBr, cm⁻¹):2961.2, 2923.4, 2859.5, 2147.3, 1458.3, 1021.3, 851.7, 791.7, 729.7, 620.2. HRMS (APCI) m/z Calcd for C₂₈H₃₀Si [M+H]⁺ : 395.2190 , found: 395.2163 HPLC: Chiralpak AD-H column (hexanes: isopropanol = 99.7:0.3, 0.8 mL/min, 230 nm, 94% *ee*). tR = 11.334 min (major), tR = 6.876 min (minor).

(S,E)-(1-(4-butylphenyl)pent-1-en-3-yn-2-yl)(mesityl)(phenyl)silane

3e was synthesized following the general procedure C. White liquid (46.4 mg, 55% yield). purified by column chromatography (Al₂O₃, PE/EA= 300:1). $[\alpha]_{25}^{D} = 1.52$ (c = 0.21, CHCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.0 Hz, 2H), 7.71 (d, J = 4.0 Hz, 2H), 7.48 – 7.38 (m, 3H), 7.22 (d, J = 8.0 Hz, 2H), 6.93 (s, 2H), 6.91 (s, 1H), 5.58 (s, 1H), 2.67 (t, J = 8.0 Hz, 2H), 2.45 (s, 6H), 2.36 (s, 3H), 2.10 (s, 3H), 1.71 – 1.61 (m, 2H), 1.41 (dd, J = 12.0, 8.0 Hz, 2H), 0.99 (t, J = 8.0 Hz, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 147.4, 145.8, 143.8, 140.0, 135.6, 135.4, 134.2, 129.5, 128.9, 128.8, 128.4, 128.0, 126.7, 117.2, 98.5, 80.8, 35.7, 33.6, 24.5, 22.5, 21.3, 14.1, 5.4.; IR (KBr, cm⁻¹):.2955.4, 2930.2, 2859.5, 2143.4, 1462.2, 1104.7, 1025.2, 795.5, 739.3, 610.5. HRMS (ESI) m/z Calcd for C₃₀H₃₄Si [M+Na]⁺ : 445.2322 , found: 445.2256 HPLC: Chiralpak AD-H column (hexanes: isopropanol = 99.7:0.3, 0.8 mL/min, 230 nm,

1	7.282	953.9	40.4	4.781
2	11.95	18996.4	404.8	95.219

(S,E)-(1-(4-(tert-butyl)phenyl)pent-1-en-3-yn-2-yl)(mesityl)(phenyl)silane

3f was synthesized following the general procedure C. White liquid (35.5 mg, 42% yield). purified by column chromatography (Al₂O₃, PE/EA= 300:1). $[\alpha]_{25}^{D} = 1.06$ (c = 0.29, CHCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.0 Hz, 2H), 7.65 (d, *J* = 8.0 Hz, 2H), 7.46 - 7.32 (m, 5H), 6.89 (s, 2H), 6.87 (s, 1H), 5.52 (s, 1H), 2.39 (s, 6H), 2.32 (s, 3H), 2.06 (s, 3H), 1.34 (s, 9H).; ¹³C NMR (100 MHz, CDCl₃) δ 151.9, 147.2, 145.9, 140.1, 135.7, 135.1, 134.2, 129.5, 128.9, 128.6, 128.0, 126.7, 125.3, 117.5, 98.6, 80.8, 34.9, 31.4, 24.5, 21.4, 5.4.; IR (KBr, cm⁻¹): 3367.2, 2961.2, 2923.4, 2855.6, 2147.3, 1612.4, 1270.3, 1107.6, 1021.3, 794.6, 607.6. HRMS (APCI) m/z Calcd for C₃₀H₃₄Si [M+H]⁺ : 423.2530 , found: 423.2462

HPLC: Chiralpak AD-H column (hexanes: isopropanol = 99.7:0.3, 0.8 mL/min, 230 nm, 93% ee). tR = 11.07 min (major), tR = 6.597 min (minor).

(S,E)-mesityl(1-(4-pentylphenyl)pent-1-en-3-yn-2-yl)(phenyl)silane

3g was synthesized following the general procedure C. Yellow liquid (34.9 mg, 40% yield). purified by column chromatography (Al₂O₃, PE/EA= 300:1). $[\alpha]_{25}^{D} = 2.68$ (c = 0.40, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.0 Hz, 2H), 7.55 (d, *J* = 8.0 Hz, 2H), 7.32 - 7.23 (m,3H), 7.07 (d, *J* = 8.0 Hz, 2H), 6.78 (s, 2H), 6.76 (s, 1H), 5.42 (s, 1H), 2.56 - 2.43 (m, 2H), 2.29 (s, 6H), 2.21 (s, 3H), 1.95 (s, 3H), 1.57 - 1.49 (m, 2H), 1.26 - 1.20 (m, 4H), 0.80 (t, *J* = 6.0 Hz, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 147.4, 145.8, 143.9, 140.1, 135.7, 135.4, 134.2, 129.5, 128.9, 128.8, 128.4, 128.0, 126.7, 117.2, 98.6, 80.8, 77.5, 77.2, 76.8, 36.0, 31.6, 31.2, 24.5, 22.7, 21.4, 14.2, 5.4.; ²⁹Si NMR(500MHz, CDCl₃) δ 26.4.; IR (KBr, cm⁻¹): 2930.2, 2851.7, 2151.2, 1466.1, 1021.3, 791.7, 742.2, 622.1. HRMS (ESI) m/z Calcd for C₃₁H₃₆Si [M+H]⁺ : 437.2659, found: 437.2335

HPLC: Chiralpak AD-H column (hexanes: isopropanol = 99.7:0.3, 0.8 ml/min, 230 nm, 93% *ee*). tR = 12.355 min (major), tR = 7.273 min (minor).

mAU 120- 100- 80- 40- 20- 0- 0-	8	10	12	 14 min
	Time/min	Area	Height	Area%
1	6.727	1738.2	125.3	49.005
2	11.78	1808.7	46.8	50.995

(S,E)-(1-([1,1'-biphenyl]-4-yl)pent-1-en-3-yn-2-yl)(mesityl)(phenyl)silane

3h was synthesized following the general procedure C. Yellow liquid (77.8 mg, 88% yield). purified by column chromatography (Al₂O₃, PE/EA= 300:1). $[\alpha]_{25}^{D} = 39.9$ (c = 4.47, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.0 Hz, 2H), 7.67 (d, *J* = 8.0 Hz, 2H), 7.62 (t, *J* = 8.0 Hz, 4H), 7.49 – 7.42 (m, 3H), 7.41 – 7.35 (m, 3H), 6.92 (s,

1H), 6.91 (s, 2H), 5.55 (s, 1H), 2.42 (s, 6H), 2.33 (s, 3H), 2.08 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 146.8, 145.9, 141.3, 140.8, 140.2, 136.8, 135.7, 134.0, 129.6, 129.2, 128.9, 128.9, 128.1, 127.6, 127.2, 127.0, 126.6, 118.9, 99.4, 80.8, 24.6, 21.4, 5.5.; IR (KBr, cm⁻¹): 2964.1, 2927.3, 2855.6, 2142.4, 1462.2, 1266.5, 1009.7, 791.7; HRMS (ESI) m/z Calcd for C₃₂H₃₀Si [M+H]⁺: 443.219, found: 443.2007

HPLC: Chiralpak AD-H column (hexanes: isopropanol = 99.7:0.3, 0.8 mL/min, 230 nm, 98% *ee*). tR = 20.097min (major), tR = 10.2546 min (minor).

(S,E)-mesityl(phenyl)(1-(m-tolyl)pent-1-en-3-yn-2-yl)silane

3i was synthesized following the general procedure C. Yellow liquid (36.5 mg, 48% yield). purified by column chromatography (Al₂O₃, PE/EA= 300:1). $[\alpha]_{25}^{D} = 4.01$ (c = 0.48, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 8.0 Hz, 1H), 7.69 (s, 1H), 7.64 (d, *J* = 8.0 Hz, 2H), 7.42 – 7.32 (m, 3H), 7.23 (d, *J* = 4.0 Hz, 1H), 7.10 (d, *J* = 8.0 Hz, 1H), 6.88 (s, 2H), 6.85 (s, 1H), 5.52 (s, 1H), 2.38 (s, 6H), 2.34 (s, 3H), 2.30 (s, 3H), 2.04 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 145.8, 140.1, 137.7, 137.7, 135.7, 134.0, 129.6, 129.5, 128.9, 128.2, 128.0, 126.6, 125.8, 118.4, 98.8, 80.8, 29.9, 24.5, 21.6, 21.4, 5.4.; ²⁹Si NMR(500MHz, CDCl₃) δ 26.4.; IR (KBr, cm⁻¹):2927.3, 2850.8, 2151.2, 1612.4, 1266.5, 1025.2, 915.7, 791.7, 723.8, 689.9. HRMS (ESI) m/z Calcd for C₃₀H₃₄Si [M+H]⁺ : 423.2503, found: 423.2692

HPLC: Chiralpak AD-H column (hexanes: isopropanol = 99.7:0.3, 0.8 mL/min, 230 nm, 91% *ee*). tR = 6.063 min (major), tR = 5.299 min (minor).

m4U -			2.4					
400-								
300 -								
200-								
100								
•	2				 12	14	16	min
•								[+]
		Time/m	in	Area	Height		Area%	
1		5.299		319.5	34.2		4.300	
2		6.063		7110.4	510.7		95.700	

(S,E)-mesityl(phenyl)(1-(o-tolyl)pent-1-en-3-yn-2-yl)silane

3j was synthesized following the general procedure C. Yellow liquid (23.6 mg, 31% yield). purified by column chromatography (Al₂O₃, PE/EA= 300:1). $[\alpha]_{25}^{D} = 39.9$ (c = 4.47, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.60 (m, 2H), 7.43 – 7.31 (m,3H), 7.31 – 7.23 (m, 1H), 7.19 – 7.12 (m, 2H), 7.12 – 7.05 (m, 1H), 6.86 (s, 2H), 6.41 (m, 1H), 5.49 (s, 1H), 2.38 (s, 6H), 2.29 (s, 3H), 2.23 (s, 3H), 2.10 (d, J = 8.0 Hz, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 147.4, 145.8, 143.9, 140.1, 135.7, 135.4, 134.2, 129.5, 128.9, 128.8, 128.4, 128.0, 126.7, 117.2, 98.6, 80.8, 77.5, 77.2, 76.8, 36.0, 31.6, 31.2, 24.5, 22.7, 21.4, 14.2, 5.4.; IR (KBr, cm⁻¹): 2964.1, 2859.5, 1253.9, 1077.5, 1006.8, 791.7, 699.6. HRMS (ESI) m/z Calcd for C₂₇H₂₈Si [M+H]⁺ : 423.2503, found: 423.2201 HPLC: Chiralpak Phenomenex column (hexanes: isopropanol = 99.7:0.3, 0.8 mL/min, 230 nm, 76% *ee*). tR = 21.053 min (major), tR = 18.638 min (minor).

m4U 200 175 160 125 100 75 50 25 0				
	Time/min	Area	Height	Area%
1	17.265	9454	215.7	49.135
2	19.656	9786.8	177.3	50.865

(S,E)-(1-(4-chlorophenyl)pent-1-en-3-yn-2-yl)(mesityl)(phenyl)silane

3k was synthesized following the general procedure C. Yellow liquid (56.0 mg, 70% yield). purified by column chromatography (Al₂O₃, PE/EA= 300:1). $[\alpha]_{25}^{D} = 1.01$ (c = 0.27, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.0 Hz, 2H), 7.65 (d, *J* = 8.0 Hz, 2H), 7.46 – 7.36 (m, 3H), 7.32 (d, *J* = 8.0 Hz, 2H), 6.90 (s, 2H), 6.83 (s, 1H), 5.53 (s, 1H), 2.40 (s, 6H), 2.33 (s, 3H), 2.06 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 145.8, 145.8, 140.2, 136.2, 135.6, 134.1, 133.7, 130.0, 129.6, 128.9, 128.5, 128.1, 126.4, 119.8,
99.8, 80.4, 24.5, 21.4, 5.4.; IR (KBr, cm⁻¹): 2927.3, 2147.3, 1604.7, 1492.2, 1428.3, 1093.0, 919.6, 791.7, 736.2. HRMS (ESI) m/z Calcd for $C_{30}H_{34}Si [M+Na]^+$: 423.1414, found: 423.1448

HPLC: Chiralpak AD-H column (hexanes: isopropanol = 99.7:0.3, 0.8 mL/min, 230 nm, 94% *ee*). tR = 8.822 min (major), tR = 6.241 min (minor).

(S,E)-(1-(4-bromophenyl)pent-1-en-3-yn-2-yl)(mesityl)(phenyl)silane

31 was synthesized following the general procedure C. Yellow liquid (30.3 mg, 34% yield). purified by column chromatography (Al₂O₃, PE/EA= 300:1). $[\alpha]_{25}^{D} = 0.88$ (c = 0.37, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.0 Hz, 2H), 7.65 (d, *J* = 8.0 Hz, 2H), 7.48 (d, *J* = 8.0 Hz, 2H), 7.43 - 7.35 (m, 3H), 6.90 (s, 2H), 6.81 (s, 1H), 5.52 (s, 1H), 2.40 (s, 6H), 2.32 (s, 3H), 2.05 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 145.8, 140.2, 136.5, 135.6, 133.7, 131.4, 130.2, 129.6, 128.9, 128.1, 126.3, 122.4, 120.1, 100.0, 80.4, 29.9, 24.5, 21.4, 5.4..; IR (KBr, cm⁻¹): 2927.3, 2855.1, 2147.3 1462.2, 1077.5, 1013.6, 791.7, 739.3. HRMS (APCI) m/z Calcd for C₂₆H₂₅BrSi [M+H]⁺ : 445.0982, found: 445.2832

HPLC: Chiralpak AD-H column (hexanes: isopropanol = 99.7:0.3, 0.8 mL/min, 230 nm, 95% ee). tR = 9.006 min (major), tR = 6.324 min (minor).

mAU 200 175 150 125 100 75 50 25 0		Λ.								
۹ <u>ــــــــــــــــــــــــــــــــــــ</u>	2.5	5	7.5	10	12.5	15	17.5	20	22.5	min
<u>.</u>		Time	e/min		Area]	Height		Area%	
1		6.3	324		184.1		14.8		2.753	
2		9.0)06	6	503.3		223.9		97.247	

(S,E)-(1,4-di(thiophen-3-yl)but-1-en-3-yn-2-yl)(mesityl)(phenyl)silane

3m was synthesized following the general procedure C. Yellow liquid (58.2 mg, 66% yield). purified by column chromatography (Al₂O₃, PE/EA= 300:1). $[\alpha]_{25}^{D} = -4.72$ (c = 2.03, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.87 (m, 1H), 7.78 – 7.73 (m, 1H), 7.72 – 7.65 (m, 2H), 7.45 – 7.33 (m, 3H), 7.31 – 7.26 (m, 2H), 7.26 – 7.21 (m, 1H), 7.01 (s, 1H), 7.00 – 6.95 (m, 1H), 6.89 (s, 2H), 5.59 (s, 1H), 2.41 (s, 6H), 2.30 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 145.8, 141.6, 140.4, 140.2, 135.7, 133.6, 129.6, 129.6, 128.9, 128.2, 128.2, 128.1, 126.45, 126.4, 125.4, 125.2, 123.1, 115.5, 96.3, 90.8, 24.7, 21.4.; ²⁹Si NMR(500MHz, CDCl₃) δ 26.8.; IR (KBr, cm⁻¹): 3102.7, 2921.6, 2851.7, 2147.3, 1428.3, 1104.7, 843.9, 773.3, 735.5. HRMS (ESI m/z Calcd for C₂₇H₂₄S₂Si [M+Na]⁺ : 463.0981 found: 463.0949

HPLC: Chiralpa AD-H column (hexanes: isopropanol = 99.7:0.3, 0.8 mL/min, 230 nm, 95% ee). tR =22.864 min (major), tR = 17.53 min (minor).

mAU 60 60 40 30 20 10 0	5 10	15	20	25 mm
	Time/min	Area	Height	Area%
1	16.136	3659.3	53.9	50.443
2	22 185	2505 1	67.5	40 557

(S,E)-(1-(cyclohex-1-en-1-yl)pent-1-en-3-yn-2-yl)(mesityl)(phenyl)silane

3n was synthesized following the general procedure C. Brown liquid (47.4 mg, 64% yield). purified by column chromatography (Al₂O₃, PE/EA= 300:1). $[\alpha]_{25}^{D} = 1.20$ (c = 0.48, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 8.0 Hz, 2H), 7.42 - 7.31 (m,

3H), 6.85 (s, 2H), 6.36 (s, 1H), 5.98 – 5.89 (m, 1H), 5.41 (s, 1H), 2.70 - 2.61 (m, 2H), 2.35 (s, 6H), 2.29 (s, 3H), 1.95 – 1.91 (m, 2H), 1.94 (s, 3H), 1.70 - 1.63 (m, 2H), 1.61 – 1.55 (m, 2H).; ¹³C NMR (100 MHz, CDCl₃) δ 151.6, 145.7, 139.9, 138.7, 135.6, 134.6, 133.6, 129.3, 128.8, 127.9, 127.1, 113.5, 96.4, 81.0, 27.3, 26.3, 24.5, 22.9, 22.1, 21.3, 5.2.; ²⁹Si NMR(500MHz, CDCl₃) δ 26.1.; IR (KBr, cm⁻¹): 2964.1, 2863.4, 1262.6, 1080.4, 1009.7, 783.9. HRMS (APCI) m/z Calcd for C₂₆H₃₀Si [M+H]⁺ : 371.2190 found: 371.2174

HPLC: Chiralpak AD-H column (hexanes: isopropanol = 99.7:0.3, 0.8 mL/min, 230 nm, 91% ee). tR = 5.602 min (major), tR = 4.965 min (minor).

	Time/min	Area	Height	Area%
1	4.951	3162.4	356.3	50.633
2	5.599	3083.4	229.2	49.367

(S,E)-mesityl(phenyl)(1-(thiophen-3-yl)pent-1-en-3-yn-2-yl)silane

30 was synthesized following the general procedure C. White solid (48.4 mg, 65% yield). purified by column chromatography (Al₂O₃, PE/EA= 300:1). $[\alpha]_{25}^{D} = 5.52$ (c = 0.56, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 4.0 Hz, 1H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.63 (dd, *J* = 8.0, 4.0Hz, 2H), 7.41 – 7.31 (m, 3H), 7.27 – 7.22 (m, 1H), 6.88 (s, 1H), 6.87 (s, 2H), 5.49 (s, 1H), 2.36 (s, 6H), 2.29 (s, 3H), 2.05 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 151.6, 145.7, 139.9, 138.7, 135.6, 134.6, 133.6, 129.3, 128.8, 127.9, 127.1, 113.5, 96.4, 81.0, 27.3, 26.3, 24.5, 22.9, 22.1, 21.3, 5.2.; IR (KBr, cm⁻¹): 2927.3, 2859.5, 2147.3, 1428.3, 1021.3, 847.9, 791.7, 739.3. HRMS (APCI) m/z Calcd for C₂₄H₂₄SSi [M+H]⁺ : 373.1441 found: 373.1439

HPLC: Chiralpak AD-H column (hexanes: isopropanol = 99.7:0.3, 0.8 mL/min, 230 nm, 95% *ee*). tR =5.602 min (major), tR = 4.965 min (minor).

	Time/min	Area	Height	Area%
1	8.26	4185.3	142.5	50.769
2	14.926	4085.5	46.6	49.231

mAU - - 100				\wedge		
80						
60 -						
40 -						
20 -	\wedge	-				
-		10	12	14	18	 ,,

	Time/min	Area	Height	Area%
1	7.767	119.6	9.8	2.589
2	14.148	4500.4	111.1	97.411

(S,E)-(1,4-dicyclopropylbut-1-en-3-yn-2-yl)(mesityl)(phenyl)silane

3p was synthesized following the general procedure C. Yellow liquid (37.1 mg, 52% yield). purified by column chromatography (Al₂O₃, PE/EA= 300:1). $[\alpha]_{25}^{D} = 6.47$ (c = 1.65, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 4.0 Hz, 2H), 7.40 – 7.29 (m, 3H), 6.85 (s, 2H), 5.51 (d, *J* = 8.0 Hz, 1H), 5.38 (s, 1H), 2.35 (s, 6H), 2.30 (s, 3H), 2.25 – 2.14 (m, 1H), 1.40 – 1.33 (m, 1H), 0.95 – 0.86 (m, 2H), 0.79 – 0.71 (m, 2H), 0.61 – 0.55 (m, 2H), 0.52 – 0.46 (m, 2H).; ¹³C NMR (100 MHz, CDCl₃) δ 158.9, 145.7, 139.9, 135.5, 134.4, 129.3, 128.7, 127.9, 127.0, 115.0, 101.3, 75.5, 24.5, 21.3, 15.6, 8.9, 8.25, 0.8.; IR (KBr, cm⁻¹): 3013.6, 2919.6, 2151.2, 1604.7, 1428.3, 1104.7, 905.0, 855.6, 735.5, 705.4. HRMS (ESI m/z Calcd for C₂₅H₂₈Si [M+H]⁺: 357.2034 found: 357.2100 HPLC: Chiralpa AD-H column (hexanes: isopropanol = 99.7:0.3, 0.8 mL/min, 230 nm, 96% *ee*). tR =4.98 min (major), tR = 4.747 min (minor)

(S,E)-(1,4-diphenylbut-1-en-3-yn-2-yl)(mesityl)(phenyl)silane

3q was synthesized following the general procedure C. White liquid (51.4 mg, 60% yield). purified by column chromatography (Al₂O₃, PE/EA= 300:1). $[\alpha]_{25}^{D} = -4.69$ (c = 0.90, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.0 Hz, 2H), 7.75 (d, *J* = 8.0 Hz, 2H), 7.47 – 7.39 (m, 1H), 7.39 – 7.34 (m, 5H), 7.34 – 7.30 (m, 5H), 7.08 (s, 1H),

6.94 (s, 2H), 5.68 (s, 1H), 2.49 (s, 6H), 2.35 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 148.2, 145.9, 140.3, 137.7, 135.7, 133.6, 131.5, 129.7, 129.2, 129.0, 128.9, 128.4, 128.4, 128.2, 128.1, 126.5, 124.1, 117.7, 101.5, 90.8, 24.7, 21.4.; IR (KBr, cm⁻¹): 3055.2, 2923.4, 2851.7, 2147.3, 1608.5, 1438.9, 843.0, 735.5, 693.8. HRMS (APCI) m/z Calcd for C₃₁H₂₈Si [M+H]⁺ : 429.2034 found: 429.2008

HPLC: Chiralpak AD-H column (hexanes: isopropanol = 99.7:0.3, 0.8 mL/min, 210 nm, 93% *ee*). tR =10.557 min (major), tR = 8.332 min (minor).

	Time/min	Area	Height	Area%
1	8.564	19698.9	787.3	49.852
2	10.484	19815.9	523.3	50.148

(S,E)-(1,4-di-p-tolylbut-1-en-3-yn-2-yl)(mesityl)(phenyl)silane

3r was synthesized following the general procedure C. Yellow liquid (70.3 mg, 77% yield). purified by column chromatography (Al₂O₃, PE/EA= 300:1). $[\alpha]_{25}^{D} = -7.63$ (c = 0.80, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.0 Hz, 2H), 7.70 (d, *J* = 8.0 Hz, 2H), 7.39 – 7.31 (m, 3H), 7.20 – 7.13 (m, 4H), 7.05 (d, *J* = 8.0 Hz, 2H), 6.97 (s, 1H), 6.87 (s, 2H), 5.62 (s, 1H), 2.42 (s, 6H), 2.34 (s, 3H), 2.29 (d, *J* = 8.0 Hz, 6H).; ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 145.8, 140.1, 139.1, 138.2, 135.7, 135.2, 133.8, 131.3, 129.6, 129.1, 129.1, 128.9, 128.1, 126.7, 121.2, 116.3, 101.5, 90.5, 77.5, 21.6, 21.6, 21.4.; ²⁹Si NMR(500MHz, CDCl₃) δ 26.5.; IR (KBr, cm⁻¹): 3029.1, 2930.2, 2855.6, 2143.4, 1608.5, 1111.4, 841.1, 817.6, 733.1, 700.4. HRMS (APCI) m/z Calcd for C₃₃H₃₂Si [M+H]⁺: 457.2347 found: 457.2337

HPLC: Chiralpak AD-H column (hexanes: isopropanol = 99.7:0.3, 0.8 mL/min, 230 nm, 93% *ee*). tR =16.459min (major), tR = 11.802 min (minor).

775 150 128 100 28 28				
0	2.5 5 7.5	10 12.5	15 17.5 :	20 22.5 min
	Time/min	Area	Height	Area%
1	11.802	333.7	12	3.083
2	16.459	10491.5	205.6	95.917

(S,E)-(1,4-di-m-tolylbut-1-en-3-yn-2-yl)(mesityl)(phenyl)silane

3s was synthesized following the general procedure C. White liquid (83.1mg, 91% yield). purified by column chromatography (Al₂O₃, PE/EA= 300:1). $[\alpha]_{25}^{p} = -1.54$ (c = 0.78, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.74 – 7.66 (m, 2H), 7.45 – 7.32 (m, 3H), 7.27 (t, J = 8.0 Hz, 1H), 7.15 (m, 5H), 6.98 (s, 1H), 6.89 (s, 2H), 5.62 (s, 1H), 2.43 (s, 6H), 2.37 (s, 3H), 2.30 (s, 3H), 2.28 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 148.2, 145.8, 140.2, 138.0, 137.8, 137.7, 135.8, 133.7, 132.1, 129.8, 129.6, 129.1, 128.9, 128.5, 128.3, 128.3, 128.1, 126.6, 126.4, 124.0, 117.4, 101.8, 90.7, 29.9, 24.7, 21.6, 21.4.; IR (KBr, cm⁻¹): 2928.3, 2859.5, 2249.0, 2151.2, 1599.8, 1454.4, 905.0, 787.8, 731.6, 697.7. HRMS (APCI) m/z Calcd for C₃₃H₃₂Si [M+H]⁺ : 457.2346 found: 457.2391

HPLC: Chiralpak AD-H column (hexanes: isopropanol = 99.7:0.3, 0.8 mL/min, 230 nm, 91% *ee*). tR =7.711 min (major), tR = 6.966 min (minor).

- UAm - 008 - 009				
400 - - 200 - 0 -				
	2 4	6 8	10	12 14 min
	Time/min	Area	Height	Area%
1	7.049	7189.4	434.7	48.433

(S,E)-(1,4-bis(4-ethylphenyl)but-1-en-3-yn-2-yl)(mesityl)(phenyl)silane

3t was synthesized following the general procedure C. White liquid (77.6mg, 80% yield). purified by column chromatography (Al₂O₃, PE/EA= 300:1). $[\alpha]_{25}^{D} = -0.95$ (c = 2.46, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.0 Hz, 2H), 7.70 (d, *J* = 8.0 Hz, 2H), 7.35 (m, 3H), 7.19 (d, *J* = 8.0Hz, 4H), 7.11 – 7.06 (m, 2H), 6.99 (s, 1H), 6.87

(s, 2H), 5.63 (s, 1H), 2.61 (dq, J = 12.0, 8.0 Hz, 4H), 2.43 (s, 6H), 2.28 (s, 3H), 1.24 – 1.14 (m, 6H).; ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 145.8, 145.4, 144.5, 140.1, 135.7, 135.5, 133.8, 131.4, 129.6, 129.2, 128.9, 128.1, 128.0, 127.9, 126.7, 121.5, 116.3, 101.6, 90.5, 29.0, 24.7, 21.4, 15.6, 15.5.; IR (KBr, cm⁻¹): 3065.9, 2964.1, 2155.0, 1604.7, 1424.4, 1115.3, 907.9, 829.5, 7316, 697.7. HRMS (ESI) m/z Calcd for C₃₅H₃₀Si [M+Na]⁺ : 501.2009 found: 501.2088

HPLC: Chiralpak AD-H column (hexanes: isopropanol = 99.7:0.3, 0.8 mL/min, 230 nm, 93% *ee*). tR =19.242 min (major), tR = 13.674 min (minor).

(S,E)-(1,4-bis(4-isopropylphenyl)but-1-en-3-yn-2-yl)(mesityl)(phenyl)silane

3u was synthesized following the general procedure C. White liquid (71.8 mg, 80% yield). purified by column chromatography (Al₂O₃, PE/EA= 300:1). $[\alpha]_{25}^{D} = -5.99$ (c = 2.99, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.0 Hz, 2H), 7.70 (d, J = 8.0 Hz, 2H), 7.41 – 7.32 (m, 3H), 7.25 – 7.18 (m, 4H), 7.16 – 7.11 (m, 2H), 6.98 (s, 1H), 6.88 (s, 2H), 5.61 (s, 1H), 2.98 – 2.78 (m, 2H), 2.42 (s,6H), 2.29 (s, 3H), 1.23 (dd, J = 12.0, 8.0 Hz, 12H).; ¹³C NMR (100 MHz, CDCl₃) δ 150.0, 149.1, 147.8, 145.8, 140.1, 135.7, 135.6, 133.9, 131.5, 129.6, 129.3, 128.9, 128.1, 126.7, 126.5, 126.5, 121.7, 116.4, 101.6, 90.4, 34.2, 24.7, 24.0, 23.9, 21.4.; IR (KBr, cm⁻¹): 2961.2, 2923.4, 2151.2, 1604.6, 1462.2, 911.8, 829.5, 731.6. HRMS (ESI) m/z Calcd for C₃₇H₄₀Si [M+H]⁺ : 513.2972 found: 513.2903

HPLC: Chiralpak AD-H column (hexanes: isopropanol = 99.7:0.3, 0.8 mL/min, 254 nm, 91% *ee*). tR =12.987 min (major), tR = 9.717 min (minor).

m4U 80 70 60 50 40 30 20 0						
•	2.5 5 7.5	10	12.5 15	17.5 20 min		
	Time/min	Area	Height	Area%		
1	9.717	154.9	7.5	4.405		
2	12.987	3361.4	89.3	95.595		

(S,E)-(1,4-bis(4-pentylphenyl)but-1-en-3-yn-2-yl)(mesityl)(phenyl)silane

3v was synthesized following the general procedure C. White liquid (77.4 mg, 68% yield). purified by column chromatography (Al₂O₃, PE/EA= 300:1). $[\alpha]_{25}^{D}$ = -6.35 (c = 2.43, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.0 Hz, 2H), 7.70 (d, *J* = 8.0, 1.5 Hz, 2H), 7.40 – 7.32 (m, 3H), 7.18 (d, *J* = 8.0 Hz, 4H), 7.08 (d, *J* = 8.0 Hz, 2H), 6.97 (s, 1H), 6.88 (s, 2H), 5.61 (s, 1H), 2.66 – 2.50 (m, 4H), 2.42 (s, 6H), 2.29 (s, 3H), 1.67 – 1.53 (m, 4H), 1.35 – 1.24 (m, 8H), 0.88 (d, *J* = 8.0 Hz, 6H).; ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 145.9, 144.2, 143.3, 140.1, 135.7, 135.5, 133.89, 131.4, 129.6, 129.2, 128.9, 128.5, 128.5, 128.1, 126.7, 121.5, 116.3, 101.6, 36.0, 31.6, 31.6, 31.2, 31.1, 24.7, 22.7 21.4, 14.2.; ²⁹Si NMR(500MHz, CDCl₃) δ 26.4.; IR (KBr, cm⁻¹): 3025.2, 2930.2, 2143.4, 1424.4, 1102.7, 847.9, 795.5, 729.7, 693.8. HRMS (APCI) m/z Calcd for C₄₁H₄₈Si [M+H]⁺ : 569.3599 found: 569.3589

HPLC: Chiralpak AD-H column (hexanes: isopropanol = 99.7:0.3, 0.8 mL/min, 254 nm, 94% ee). tR = 14.875 min (major), tR = 9.52 min (minor).

1	9.379	2407.6	70.1	50.027
2	14.853	2405	29.7	49.973

(S,E)-(1,4-bis(4-(trifluoromethyl)phenyl)but-1-en-3-yn-2-yl)(mesityl)(phenyl)silane

3w was synthesized following the general procedure C. Yellow liquid (50.8 mg, 45% yield). purified by column chromatography (Al₂O₃, PE/EA= 300:1). $[\alpha]_{25}^{D} = 7.42$ (c = 2.57, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 8.0 Hz, 2H), 7.72 (d, *J* = 8.0 Hz, 2H), 7.67 (d, *J* = 8.0 Hz, 2H), 7.56 (d, *J* = 8.0 Hz, 2H), 7.50 – 7.40 (m, 3H), 7.33

(d, J = 8.0 Hz, 2H), 7.12 (s, 1H), 6.95 (s, 2H), 5.68 (s, 1H), 2.47 (s, 6H), 2.35 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 147.3, 145.82, 140.7, 140.5, 135.8, 132.8, 131.7, 130.8, 130.0, 129.9(q, J = 28.0 Hz), 129.9, 129.2, 129.1, 128.3, 127.4, 125.8, 125.4(q, J = 3.0 Hz), 122.8, 122.7, 121.1, 101.1, 92.3, 24.7, 21.4. ¹⁹F NMR (500 MHz, CDCl₃) δ -62.64, -62.83 (d).; ²⁹Si NMR(500MHz, CDCl₃) δ 26.3.; IR (KBr, cm⁻¹): 2923.4, 2855.6, 2147.3, 1608.5, 1428.3, 1107.6, 787.8, 731.6, 697.7. HRMS (ESI m/z Calcd for C₃₃H₂₆F₆Si [M+H]⁺ : 565.1781 found: 565.1167 HPLC: Chiralpak AD-H column (hexanes: isopropanol = 99.7:0.3, 0.8 mL/min, 254 nm,

94% ee). tR =15.213 min (major), tR = 9.587 min (minor).

(S,E)-(1,4-bis(2-fluorophenyl)but-1-en-3-yn-2-yl)(mesityl)(phenyl)silane

3x was synthesized following the general procedure C. White liquid (53.9 mg, 58% yield). purified by column chromatography (Al₂O₃, PE/EA= 300:1). $[\alpha]_{25}^{D} = -4.29$ (c = 1.26, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.83 (t, *J* = 8.0 Hz, 1H), 7.74 – 7.68 (m, 2H), 7.41 – 7.35 (m, 3H), 7.29 – 7.15 (m, 3H), 7.13 – 7.06 (m, 1H), 7.05 – 6.97 (m, 3H), 6.89 (s, 2H), 5.66 (s, 1H), 2.44 (s, 6H), 2.29 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 162.7(d, *J* = 241.0 Hz), 160.2(d, *J* = 241.0 Hz), 145.8, 140.4, 140.0, 139.9, 135.7, 133.5, 133.2, 130.7(d, *J* = 80.0 Hz), 130.1(d, *J* = 80.0 Hz), 129.8, 129.2, 129.0, 128.2, 126.1, 125.5, 125.4, 124.0(d, *J* = 40.0 Hz), 123.9(d, *J* = 40.0 Hz), 115.5(d, *J* = 40.0 Hz), 115.3(d, *J* = 22.0 Hz), 112.6, 112.4, 95.4, 77.5, 77.2, 76.8, 24.7, 21.4. ¹⁹F NMR (500 MHz, CDCl₃) δ -109.10 - -116.90 (m).; ²⁹Si NMR(500MHz, CDCl₃) δ 26.3.; IR (KBr, cm⁻¹): 2923.4, 2146.3, 1604.7, 1500.1, 1458.3, 1096.9, 757.8, 731.6, 697.7. HRMS (ESI m/z Calcd for C₃₁H₂₆F₂Si [M+Na]⁺ : 487.1664 found: 487.1662 HPLC: Chiralpa Phenomenex column (hexanes: isopropanol = 99.9:0.1, 0.8 mL/min, 230 nm, 90% *ee*). tR =10.636 min (major), tR = 8.765 min (minor).

(S,E)-(1,4-bis(4-fluorophenyl)but-1-en-3-yn-2-yl)(mesityl)(phenyl)silane

3y was synthesized following the general procedure C. White liquid (53.9 mg, 58% yield). purified by column chromatography (Al₂O₃, PE/EA= 300:1). $[\alpha]_{25}^{D} = -4.70$ (c = 3.32, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.84 (m, 2H), 7.59 (d, *J* = 8.0 Hz, 2H), 7.32 – 7.24 (m, 3H), 7.12 – 7.07 (m, 2H), 7.00 – 6.93 (m, 2H), 6.89 – 6.83 (m, 3H), 6.80 (s, 2H), 5.52 (s, 1H), 2.33 (s, 6H), 2.21 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 163.9 (d, *J* = 28.0 Hz), 161.48(d, *J* = 28.0 Hz), 146.7, 145.8, 140.4, 135.7, 134.0(d, *J* = 3.0 Hz), 133.41, 133.3(d, *J* = 8.0 Hz), 130.9(d, *J* = 8.0 Hz), 129.8, 129.0, 128.2, 126.3, 120.0(d, *J* = 3.0 Hz), 117.1(d, *J* = 3.0 Hz), 115.7(d, *J* = 22.0 Hz), 115.4(d, *J* = 22.0 Hz), 100.4, 90.2, 77.5, 77.2, 76.84, 2.64, 21.4. ¹⁹F NMR (500 MHz, CDCl₃) δ -110.76 - 111.04 (m); IR (KBr, cm⁻¹): 3065.9, 2915.7, 2155.0, 1601.7, 1506.8, 1227.7, 837.2, 735.5. HRMS (ESI m/z Calcd for C₃₁H₂₆F₂Si [M+H]⁺ : 465.1845 found: 465.1857 HPLC: Chiralpak AD-H column (hexanes: isopropanol = 99.7:0.3, 0.8 mL/min, 230 nm, 95% *ee*). tR =14.325min (major), tR = 9.347 min (minor).

(R, E) - (2, 6-diethyl-4-methylphenyl) (phenyl) (1-phenylpent-1-en-3-yn-2-yl) silane

3aa was synthesized following the general procedure C. White liquid (37.9 mg, 48% yield). purified by column chromatography (Al₂O₃, PE/EA= 300:1). $[\alpha]_{25}^{D} = 1.56$ (c = 1.47, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.0 Hz, 2H), 7.69 (d, *J* = 8.0

Hz, 2H), 7.43 – 7.35 (m, 5H), 7.34 – 7.29 (m, 1H), 6.98 (s, 2H), 6.91 (s, 1H), 5.55 (s, 1H), 2.86 – 2.77 (m, 4H), 2.39 (s, 3H), 2.09 (s, 3H), 1.10 (t, J = 8.0 Hz, 6H).; ¹³C NMR (100 MHz, CDCl₃) δ 152.4, 147.5, 140.4, 137.8, 135.8, 134.3, 129.4, 128.8, 128.6, 128.3, 127.9, 127.6, 125.2, 119.2, 99.1, 80.8, 30.7, 21.6, 16.9, 5.4.29.8, 5.4.; IR (KBr, cm⁻¹): 3059.1, 2961.2, 2866.3, 2151.2, 1595.9, 1428.3, 1104.7, 915.7, 807.2, 727.7, 693.8. HRMS (APCI m/z Calcd for C₂₈H₃₀Si [M+H]⁺ : 395.2190 found: 395.2064

HPLC: Chiralpa Phenomenex column (hexanes: isopropanol = 99.9:0.1, 0.8 mL/min, 230 nm, >99% *ee*). tR =10.673 min (major), tR = 9.558 min (minor)

	Time/min	Area	Height	Area%
1	9.558	36.3	1.8	0.081
2	10.673	44696.1	1531.2	99.919

(S,E)-mesityl(phenyl)(1-(thiophen-2-yl)pent-1-en-3-yn-2-yl)silane

3ab was synthesized following the general procedure C. White liquid (48.4 mg, 65% yield). purified by column chromatography (Al₂O₃, PE/EA= 300:1). $[\alpha]_{25}^{D} = 12.35$ (c = 0.17, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 7.8 Hz, 2H), 7.42 – 7.29 (m, 4H), 7.19 (d, J = 3.5 Hz, 1H), 7.10 (s, 1H), 7.01 (d, J = 3.8 Hz, 1H), 6.88 (s, 2H), 5.51 (s, 1H), 2.37 (s, 6H), 2.31 (s, 3H), 2.13 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 145.9, 142.5, 141.1, 140.2, 135.6, 133.9, 129.7, 129.6, 128.9, 128.1, 126.9, 126.4, 126.3, 115.2, 101.6, 81.4, 24.6, 21.4, 5.7. HRMS (ESI m/z Calcd for C₂₄H₂₄SSi [M+H]⁺: 373.1441 found: 373.1438

HPLC: Chiralpa AD-H column (hexanes: isopropanol = 99.7:0.3, 0.8 mL/min, 360 nm, 91% *ee*). tR =11.453 min (major), tR = 7.028 min (minor)

mAU 1 160 120 100 80 60 40 20 0		10 1	5 20	
	Time/min	Area	Height	Area%
1	7.028	294.4	20.4	4.655
2	11.453	6030.1	166.6	95.345

(*R*,*E*)-phenyl(1-phenylpent-1-en-3-yn-2-yl)(o-tolyl)silane

3ac was synthesized following the general procedure C. White liquid (36.6 mg, 54% yield). purified by column chromatography (Al₂O₃, PE/EA= 300:1). $[\alpha]_{25}^{D} = -1.55$ (c = 1.61, CHCl₃).1H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.0 Hz, 2H), 7.63 (d, J = 8.0 Hz, 2H), 7.54 (d, J = 8.0 Hz, 1H), 7.43 – 7.30 (m, 6H), 7.29 – 7.23 (m, 1H), 7.22 – 7.14 (m, 2H), 6.86 (s, 1H), 5.35 (s, 1H), 2.41 (s, 3H), 2.01 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 148.0, 144.9, 137.6, 137.0, 135.9, 132.9, 131.6, 130.4, 129.9, 129.8, 128.8, 128.3, 128.1, 125.2, 118.1, 99.3, 80.4, 77.5, 77.2, 76.8, 29.8, 22.8, 5.4.; HRMS (APCI m/z Calcd for C₂₄H₂₂Si [M+H]⁺ :339.1491 found:339.1455 HPLC:Chiralpa AD-H column (hexanes: isopropanol = 99.7:0.3, 0.8 mL/min, 230 nm, 40% ee). tR =11.117 min (major), tR = 9.593 min (minor)

	Time/min	Area	Height	Area%
1	9.649	5704.8	280.3	48.745
2	10.868	5998.6	203.3	51.255

	Time/min	Area	Height	Area%
1	9.593	4969.3	177	29.098
2	11.117	12108.7	258.9	70.902

(R,E)-naphthalen-1-yl(phenyl)(1-phenylpent-1-en-3-yn-2-yl)silane

3ad was synthesized following the general procedure C. Yellow liquid (40.5 mg, 54% yield). purified by column chromatography (Al₂O₃, PE/EA= 300:1). $[\alpha]_{25}^{D} = -2.37$ (c = 1.69, CHCl₃).¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 12.0 Hz, 1H), 7.94 – 7.88 (m, 3H), 7.87 – 7.80 (m, 2H), 7.70 – 7.64 (m, 2H), 7.48 – 7.37 (m, 5H), 7.37 – 7.26 (m, 4H), 6.92 (s, 1H), 5.67 (s, 1H), 1.98 (s, 3H).; 13C NMR (100 MHz, CDCl₃) δ 148.4, 137.5, 137.5, 136.9, 136.0, 133.4, 132.8, 131.0, 130.9, 130.0, 128.9, 128.8, 128.4, 128.3, 128.2, 126.3, 125.8, 125.4, 118.1, 99.5, 80.5, 29.8, 5.4.; HRMS (APCI m/z Calcd for C₂₇H₂₂Si [M+H]⁺:375.1491 found:375.1014

HPLC: Chiralpa AD-H column (hexanes: isopropanol = 99.7:0.3, 0.8 mL/min, 230 nm, 22% ee). tR = 22.864 min (major), tR = 17.53 min (minor)

	Time/min	Area	Height	Area%
1	12.622	17652.3	342.3	49.329
2	14.426	18132.2	2280.5	50.671

mAU _					
250 -				\wedge	
				/ \	
-				1 1	
-				/ \	
-					
200-			1		
-			/	1 1	
-				1 1 1	
-				A 1 A	
-				X 1 1	
150 -					
-					
-					
-			21		
-					
100-			1		
-					
-			1		
			1		
50-					
-					
-					
-					
			- ~~		
0-					and the second se
-L	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · ·	
	2 4 6	8	10 12	14	16 18 min
			1777		

	Time/min	Area	Height	Area%
1	12.475	10762.7	207.1	39.028
2	14.222	16813.9	254.4	60.972

(*R*,*E*)-tert-butyl(phenyl)(1-phenylpent-1-en-3-yn-2-yl)silane

3ae was synthesized following the general procedure C. Yellow liquid (26.2 mg, 43% yield). purified by column chromatography (Al₂O₃, PE/EA= 300:1). $[\alpha]_{25}^{D} = 1.67$ (c = 1.50, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.0 Hz, 2H), 7.68 (d, *J* = 8.0 Hz, 2H), 7.34 – 7.23 (m, 5H), 7.22 – 7.14 (m, 1H), 6.94 (s, 1H), 4.33 (s, 1H), 2.07 (s, 3H), 1.03 (s, 9H).; ¹³C NMR (100 MHz, CDCl₃) δ 148.0, 137.7, 135.7, 133.9, 129.7, 128.8, 128.6, 128.3, 127.8, 118.4, 98.9, 81.1, 27.6, 18.5, 5.4.; HRMS (ESI m/z Calcd for C₂₁H₂₄Si [M+H]⁺ :305.1647 found:305.1678

HPLC:Chiralpa AD-H column (hexanes: isopropanol = 99.7:0.3, 0.8 mL/min, 254 nm, 20% *ee*). tR =7.331 min (major), tR = 5.674 min (minor)

	Time/min	Area	Height	Area%
1	5.674	3037.4	408.8	49.596
2	7.37	3086.9	215.1	50.404

mAU		10						
200								
175		1						
150			A					
125								
100			40					
75			H.					
50								
25		II.	Λ					
0		/ \/		-r - r - r r -				
	2.5	5	7.5	10	12.5	15	17.5	min
4								•

	Time/min	Area	Height	Area%
1	5.614	1490.8	215.1	39.931
2	7.331	2242.6	157.1	60.069

(8*R*,9*S*,10*R*,13*S*,14*S*,17*S*)-17-hydroxy-17-((*E*)-3-(mesityl(phenyl)silyl)-4-phenylbut-3-en-1-yn-1-yl)-13-methyl-1,2,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-3H-cyclopenta[a]phenan-thren-3-one

5 was synthesized following the general procedure C. White liquid (51.1 mg, 40% yield). purified by column chromatography (Al₂O₃, PE/EA= 8:1). $[\alpha]_{25}^{D} = 38.58$ (c = 1.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.0 Hz, 2H), 7.46 – 7.31 (m, 3H), 7.31 – 7.22 (m, 3H), 7.24 – 7.13 (m, 1H), 6.87 (s, 2H), 6.38 (s, 1H), 5.74 (s, 1H), 5.51 (s, 1H), 3.86 (s, 21H), 2.47 – 2.41 (m, 1H), 2.38 (s, 6H), 2.36 – 2.32 (m, 1H), 2.28 (s, 3H), 2.19 – 2.09 (m, 1H), 2.06 – 1.91 (m, 2H), 1.88 – 1.79 (m, 1H), 1.71 (m, 3H), 1.62 – 1.54 (m, 2H), 1.47 – 1.36 (m, 2H), 1.33 – 1.22 (m, 24H), 1.18 (s, 3H), 1.16 – 1.06 (m, 1H), 0.98 (s, 3H), 0.95 – 0.83 (m, 1H), 0.82 – 0.71 (m, 1H).; ¹³C NMR (100 MHz, CDCl₃) δ 199.7, 171.3, 158.6, 145.7, 140.4, 135.5, 133.4, 131.3, 129.8, 128.9, 128.6, 128.4, 128.2, 126.1, 124.0, 123.1, 116.5, 102.2, 87.7, 87.2, 54.1, 50.7, 48.9, 38.7, 37.1, 36.5, 36.0, 34.1, 32.9, 32.3, 31.9, 24.7, 23.7, 21.4, 20.9, 17.6, 14.4. HRMS (ESI m/z Calcd for C₄₄H₅₀O₂Si [M+Na]⁺: 639.3653 found: 639.3714

HPLC: Chiralpa AD-H column (hexanes: isopropanol = 90:10, 1 mL/min, 230 nm, 83% *ee*). tR =19.012 min (major), tR = 14.047 min (minor)

mAU				
5	6 7	8 9	10 11	12 13
	Time/min	Area	Height	Area%
1	10.282	12521.6	311	47.327
2	12 331	13936.2	335	52 673

3.3 Synthetic Applications of Chiral Monohydrosilanes

The procedure was followed the known literature. To a flame dried 25 mL Schlenk tube, a solution of 3a (36.3 mg, 0.1 mmol, 1M) in DCE (4 ml) was cooled to 0 $^{\circ}$ C, and

Et₂Zn (0.8 mL, 0.8 mmol) was added to the solution under N₂ atmosphere. After that, CH₂I₂ (428.5 mg, 1.6 mmol) was added dropwise. The reaction was kept at 0 °C for 20 min and warmed to room temperature for 36 h. After the reaction was completed, the reaction mixture was cooled to 0 °C and the saturated aqueous solution of NH₄Cl was added. The aqueous phase was then extracted by DCM. The organic layer was washed with brine and dried over anhydrous Na₂SO₄. The resulting solution was concentrated and purified by preparative thin-layer chromatography using petroleum ether as the eluent to afford colorless liquid **6** (28.2 mg, 74% yield, 93% *ee*). [α]^D₂₅ = 34.3 (c = 0.14, CHCl₃).¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.0 Hz, 2H), 7.58 (d, *J* = 8.0 Hz, 2H), 7.38 – 7.29 (m, 6H), 6.84 (s, 2H), 6.67 (s, 1H), 2.28 (s, 6H), 2.05 (s, 3H), 1.25 (s, 3H), 0.85 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 145.9, 145.6, 139.4, 138.6, 138.0, 134.8, 129.4, 129.1, 128.7, 128.7, 128.4, 128.3, 128.0, 124.2, 98.7, 80.8, 25.3, 21.2, 5.4, 1.1.; HRMS (ESI m/z Calcd for C₂₁H₂₄Si [M+Na]⁺: 403.1853 found: 403.2353 HPLC: Chiralpa AD-H column (hexanes: isopropanol = 99.7:0.3, 0.8 mL/min, 280 nm, 93% *ee*). tR =6.659 min (major), tR = 4.951 min (minor)

	Time/min	Area	Height	Area%
1	4.972	5822.4	636.8	50.561
2	6.672	5693.1	443.4	49.439

	Time/min	Area	Height	Area%
1	4.951	253.6	28.8	3.334
2	6.659	7353	558.7	96.666

57% yield, 87% ee

The procedure was followed the known literature. To a flame 25 mL Schlenk tube, a solution of **3a** (36.3 mg, 0.1 mmol, 1M) and ammonium iodide (2.9 mg, 0.02 mmol) in alcohol (1 mL) and 70% aqueous TBHP (36 mg, 0.4 mmol) was dropped wisely over a period of 10 min and stirred at room temperature for 24 h. Progress of the reaction was monitored by TLC, and after completion of the reaction, the mixture was quenched with saturated aq. Na₂S₂O₃. The organic layer was washed with brine and dried over anhydrous Na₂SO₄. The resulting solution was concentrated and purified by preparative thin-layer chromatography using petroleum ether as the eluent to afford colorless liquid 7 (23.4 mg, 57% yield, 87% *ee*). $[\alpha]_{25}^{p} = 1.2$ (c = 0.99, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.0 Hz, 2H), 7.70 (d, *J* = 8.0 Hz, 2H), 7.40 – 7.26 (m, 6H), 6.87 (s, 1H), 6.83 (s, 1H), 3.95 – 3.82 (m, 2H), 2.35 (s, 6H), 2.28 (s, 3H), 2.03 (s, 3H), 1.25

(t, J = 4.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.0, 146.1, 139.8, 137.8, 136.5, 135.1, 129.7, 129.3, 129.0, 128.7, 128.3, 127.9, 127.6, 121.8, 98.8, 80.8, 77.5, 76.8, 59.9, 24.7, 21.3, 18.5, 5.4.; HRMS (ESI m/z Calcd for C₂₈H₃₀OSi [M+H]⁺: 411.2034 found: 411.0838

HPLC: Chiralpa AD-H column (hexanes: isopropanol = 99.7:0.3, 0.8 mL/min, 280 nm, $87\% \ ee$). tR =10.156 min (major), tR = 14.37 min (minor)

	Time/min	Area	Height	Area%
1	10.156	11450.3	364.6	92.779
2	14.37	891.2	15.8	7.221

3.4 Gram-Scale Synthesis of 3a

In a flame 100 mL dried Schlenk tube, $Pd_2(dba)_3$ (109.9 mg, 0.12 mmol, 2 mol%), L33 (335.9 mg, 0.48mmol, 8 mol%) in cyclohexane (30 mL, 0.5M) was stirred at room temperature for 30 min under nitrogen atomosphere. Then diyne (6 mmol, 1 equiv.), dihydrosilanes (6 mmol, 1 equiv.) were added sequentially to the reaction mixture, and the reaction tube was cooled for 4 h at 0 C°. After completion of the reaction, the mixture was passed through a short celite pad using DCM as a solvent. The mixture was then concentrated in vacuo and purified by column chromatography using Petroleum ether-EtOAc (300:1) to give the desired product **3a** (1.54 g, 70% yield, 93% *ee*, rr = 99:1) in good yields.

3.5 Kinetic Study for the Pd-catalyzed Hydrosilylation

Figure S2. Kinetic Study for the Pd-catalyzed hydrosilylation of 1a

Figure S3. Kinetic Study for the Pd-catalyzed hydrosilylation of 1a with 3a (10 mol%) as additive

Time (h)

3.6 Experiments for Mechanistic Study

3.6.1 Kinetic Study for the KIE

Figure S4. KIE analysis of the Pd-catalyzed hydrosilylation of 1a for 2 h

Figure S5. The study of possible NLE in the Pd-catalyzed hydrosilylation of 1a

Figure S6. The study of possible NLE in the Pd-catalyzed hydrosilylation of **1a** with DCM as solvent.

Entry	water content (%)	Yield of $3a (\%)^b$	<i>ee</i> of 3a (%) ^c
1	10	44	90
2	20	48	90
3	30	36	90
4	40	36	90
5	50	42	90

Table S8. The effect of water on Pd-catalyzed hydrosilylation^a

^{*a*}Unless otherwise noted, reactions were conducted under N₂ on 0.1 mmol scale: **1a** (0.1 mmol), **2a** (0.1 mmol), Pd₂(dba)₃ (2 mol%), L33 (8 mol%), THF : H₂O (2 mL). ^{*b*}Determined by ¹H NMR using dibromomethane as an internal standard. Determined by HPLC.
3.6.3 Competitive Experiment for the Different Reactivity of Aliphatic and Aromatic diynes.

3.6.4 Comparison of ³¹P NMR of Ligand and Pd/L33 Complex in the Reaction of 1a and 2a.

Figure S7. Comparison of ³¹P NMR of ligand and Pd/L33 complex in the reaction with 1a and 2a.

3.6.5 Comparison of ¹H NMR of L33, Pd/L33 Complex in the Reaction of 1a and 2a.

Figure S8. ¹H NMR (A) L33; (B) Pd₂(dba)₃+L33+2a, stir 1 h; (C) Pd₂(dba)₃+L33+1a+2a, stir 1 h; (D) Pd₂(dba)₃+L33++1a+2a, stir 18 h.

Figure S9. ¹H NMR (E) L33; (F) Pd₂(dba)₃+L33+2a, stir 1 h.

3.6.6 The determination of product-promoted palladium catalysis (autocatalysis) by chirality matching between chiral additive (3a) and chiral ligand in the Pd-catalyzed hydrosilylation

method of calculated value : 48%*95.5 + 10%*4 : 48%*4.5 + 10%*97

3.6.7 CD Spectra

Figure S10. Circular dichroism spectroscopy analysis CD ($1.00 \times 10^{-2} \text{ mol/L}$) intensity spectra of the Pd-catalyzed hydrosilylation of 1a.

Figure S11. 2D UV-vis absorption spectrum of L33, $Pd_2(dba)_3$, 1a and 2a in CHCl₃ (2.5× 10⁻⁵ mol/L).

Figure S12. 3D UV-vis absorption spectrum of L33, $Pd_2(dba)_3$, 1a and 2a in CHCl₃ (2.5× 10⁻⁵ mol/L).

3.6.9 Pd-nanoparticles catalyzed hydrosilylation^[7]

3.7 X-Ray Structure of 3ab

Single crystals of **3ab** were obtained by recrystallization from PE/EA. The molecular structure and X-ray diffraction data/refinement of **3ab** were shown below

(S,E)-**3ab**

	(CODC 0000000)	
- (((1))	
	CCDC 22075257	

Empirical formula	$C_{48} H_{48} S_2 Si_2$
Formula weight	745.16
Temperature	293(2) K
Crystal system	Monoclinic
space group	P2(1)
a/Å	9.1046(7)
b/ Å	7.8073(6)
c/ Å	15.4040(11)
α/°	90
β/°	101.618
γ°	90
Volume/ Å ³	1072.53(14)
Z	1
Calculated density mg/m ³	1.154
Absorption coefficient mm ⁻¹	1.886
F(000)	396
Crystal size/ mm ³	0.120 x 0.120 x 0.110
Theta range for data collection/°	2.929 to 67.169 deg.
Limiting indices	-10<=h<=6, -9<=k<=8, -18<=l<=17
Reflections collected / unique	3868 / 2808 [R(int) = 0.0257
Completeness to theta	99.6 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2808 / 1 / 243
Goodness-of-fit on F ²	0.995
Final R indices [I>2sigma(I)]	R1 = 0.0412, wR2 = 0.1002
R indices (all data)	R1 = 0.0483, wR2 = 0.1058
Absolute structure parameter	0.04(2)
Extinction coefficient	n/a
Largest diff. peak and hole / e. $Å^{-3}$	0.142 and -0.209

3.8 Synthesis of Polyenyne 9 by Pd-catalyzed Hydrosilylation

3.8.1 Preparation of Polydiyne 8

A flame dried 25 mL Schlenk tube, 1,4-diethynybenzene (252 mg, 2 mmol), $Pd(PPh_3)_2Cl_2$ (41 mg, 3 mol%) and CuI (11 mg, 3 mol%) were dissolved in the mixture of THF (2 mL) and Et₃N (2 mL). The mixture solution was heated to 70 °C and stirred 24 h. After that, the mixture was cooled to temperature and washed 3 times with methanol, chloroform and acetone. Being dried in vacuum for overnight at 70 °C to give 344 mg of product **8**.

3.8.2 Pd-catalyzed Hydrosilylation of Polydiyne 8

In a flame dried Schlenk tube, $Pd_2(dba)_3$ (1.8 mg, 0.003 mmol, 2 mol%), L33 (5.6 mg, 0.008 mmol, 8 mol%) in Cyclohexane (1 mL, 0.2M) was stirred at room temperature for 30 min under nitrogen atomosphere. Then **8** (0.1 mmol, 1 equiv.), dihydrosilanes (0.1 mmol, 1 equiv.) were added sequentially to the reaction mixture, and the reaction tube was cooled for 8 h at 0 °C. After completion of the reaction, the mixture was warmed to temperature and washed with methanol and chloroform. The product 15 mg of product **9** was dried in vacuum.

Figure S13. Circular dichroism spectroscopy analysis intensity spectra of (**A**) a diluted THF solution of the **9** with (*S*)-**L33** (2 g/L in THF); (**B**) a diluted THF solution of the **9** with (*R*)-**L33** (2 g/L in THF); (**C**) a diluted THF solution of the the **9** with (*S*)-**L33** and 0.5 eq. [Si-H] (2 g/L in THF); (**D**) a diluted THF solution of the the **9** with (*S*)-**L14** (2 g/L in THF); (**E**) a diluted THF solution of the (*R*)-**3q** (0.3 g/L in THF); (**F**) a diluted THF solution of the (*S*)-**3q** (0.3 g/L in THF).

3.8.4 FTIR spectra

Figure S14. FTIR spectra of pyrolysis products of **1,4-Diethynylbenzene**, **8** and **9**. **1,4-Diethynylbenzene**(area): 3.07; **8** (area): 57.62. M_w= 4736.

3.8.5 SEM images

Figure S15. SEM images of 8 and 9.

Figure S16. TG (solid line) curves of 8 and 9 with a heating rate of 10 $^{\circ}$ C min⁻¹ under N₂.

4 NMR Spectra

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

140	110	80	50	20	-10	-40	-70	-100	-130	-160	-190	-220	-2
						f1 (pp	m)						

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

f1 (ppm)

													<u> </u>
50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-8
	f1 (ppm)												

70	40	10	-20	-50	-80	-110	-140	-170	-200	-230	-260	-290
f1 (ppm)												

Light All States Web (Lance of the Anter Web exactly and a phile and a phile and by Anter States and Anter Stat

	70	40	10	-20	-50	-80	-110	-140	-170	-200	-230	-260	-290
f1 (ppm)													

70	40	10	-20	-50	-80	-110	-140	-170	-200	-230	-260	-290
f1 (ppm)												

142

	70	40	10	-20	-50	-80	-110	-140	-170	-200	-230	-260	-290
f1 (ppm)													

9000	6000	3000	0	-3000	-6000	-9000	-12000	-15000	-18000	-210

5 References

[1] Tamm, M.; Jones, PG.; Volbeda, MJ.; Lysenko, S.; Sergej Lysenko, DC. *Angew. Chem. Int. - Ed.*, **2012**, *124*, 6861–6865.

[2] Beller, M.; Jackstell, R.; Franke, R.; Schneider, C.; Yang, J.; Liu, JW. Angew. Chem. Int. Ed., 2020, 59, 9032 – 9040.

[3] Ohno, H.; Fujii, N.; Oishi, S.; Naoe, S.; Matsuda, Y. Chem. Eur. J., 2015, 21, 1463 – 1467.

[4] Yin, SF.; Zhou, YB.; Qiu, RH.; Sun, ML.; Liu, L.; Dong, JY.; Su, LB. J. Am. Chem. Soc., **2016**, 138, 12348–1235.

[5] Hirokazu, U.; Takeshi, H.; Ryoichi, T.; Hiroaki, S.; Naoki, H. Angew. Chem. Int. Ed., **2010**, 49, 7762-7764.

[6] CYLview, 1.0b; Legault, C. Y., Université de Sherbrooke, 2009 (http://www.cylview.org)

[7] Q. Z, Yu. Preparation and application prospect of nano-palladium powder by two-step chemical method. *Precious Metals*, **2010**, *31(02)*, 57-59.