Supplementary Information: A data-driven interpretation of the stability of organic molecular crystals 2

Rose K. Cersonsky,*^a Maria Pakhnova,^a Edgar A. Engel,^b and Michele Ceriotti^a 3

Α **Constructing the Datasets** 5

A.1 Dataset Curation 6

We start with a dataset containing approximately 10'600 ground-state, geometry-optimized configurations originally used for training (10'000) and testing (604) a model for predicting NMR chemical shieldings for organic molecular crystals¹. 8 These molecular crystals contain 14 of the most common chemical species, and their energies have already been computed q using the protocol described in Sec. A.2. For our study, we selected all H, C, N, O, and S-containing molecular crystals 10 composed of non-polymeric, neutrally-charged molecules and less than 200 atoms per unit cell. This resulted in 2'707 and 11 551 such crystals for training and testing, corresponding to 3'242 and 628 molecules, respectively. A similar screening 12 protocol was applied to the ethenzamide co-crystals summarized in Appendix A.4. All data and workflows were managed 13 by the signac and signac-flow packages 2,3 . 14

Reducing to H, C, N, O, S First, we eliminated all structures containing chemical species other than H, C, N, O, and S. We 15 have limited our dataset to these species to maximize the diversity of our dataset while minimizing the size of our SOAP 16 representation (the length scales with $O(n_{species}^2)$). This resulted in the largest reduction of the overall dataset, from 17 roughly 10'000 to 3'800 crystals. 18

Separating the Crystals We then separated each crystal into its molecular constituents. First, we computed radial dis-19 tribution functions, combining the data from all structures in a single histogram for each pair of chemical species. We 20 determined the cutoff distance for covalent bonds as the first near-zero minimum after the first neighbor peak. We com-21 puted a supercell consisting of 3^3 - 7^3 repeat unit cells for each crystal to screen for polymers.

22

Determining the Set of Unique Molecules Finally, we determined the irreducible set of constituent molecules by identifying 23 identical/redundant molecules based on the similarity of their SOAP features. In practice, a similarity kernel $K_{mm'} = \mathbf{x}_m \cdot$ 24 $\mathbf{x}_{m'}$ was constructed by computing the similarity of each pair of molecules m and m' and iteratively removing molecules 25 m' > m, for which $K_{mm'} > \epsilon$. For the later step of identifying the molecular motifs, we were careful to index the location 26 of each atom in the original crystal within the constituent molecules. . 27

Eliminating Charged Molecules We computed the molecular charges from density-functional tight-binding (DFTB) calcu-28 lations, using the DFTB+ package⁴ and the Third-Order Parameterization for Organic and Biological Systems $(3OB)^{5,6}$ 29 to perform a Γ -point calculation for each crystal structure. Structures containing molecules carrying an absolute charge 30 greater than 0.5e were eliminated. We also eliminated those crystals with common zwitterionic moieties such as NH_2^+ or 31 COO⁻. These steps ensure that for the given dataset the lattice energies are defined unequivocally. 32

A.2 Relaxing Molecular Geometries 33

35

36

37

38

39

40

41

Quantum-Espresso Parameterization To ensure that the resultant geometries and energies are consistent and comparable to those obtained for the crystal structures in Cordova et al.¹, the geometry optimizations for the molecules were performed using the same computational parameters using Quantum Espresso⁷. These parameters were as follows: the PBE exchange-correlation functional⁸, the D2 dispersion correction⁹, ultrasoft pseudopotentials with GIPAW reconstruction 10,11 , and an equivalent plane-wave energy cutoff of 60 Ryd. We converged the energies within 1E-4 Ryd and forces below 1E-3 Ryd/Bohr, respectively. Furthermore, we compute the binding energy based on the lowest energy conformer represented in the dataset, ensuring comparability between crystals and co-crystals of similar stoichiometries without needing to obtain the global minimum conformation of each molecule.

Simulation Boxes for Molecules in vacuo To determine the simulation boxes appropriate to describe the molecules in vacuo, 42 we performed Γ -point calculations. We converged the results with respect to the size of the simulation cell and, e.g., the 43

^a Laboratory of Computational Science and Modeling (COSMO), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

^b TCM Group, Trinity College, Cambridge University, Cambridge, UK

^{*} Present address: Rose.Cersonsky@wisc.edu

separation between the periodic images of the molecules. Based on calculations using a variety of simulation cell sizes for

⁴⁵ 20 different molecules, we determined a minimum vacuum padding of 2-4 times the largest dimension of the molecule

⁴⁶ proved sufficient to converge the resultant molecular energies. We confirmed these results against those obtained using

⁴⁷ Martyna-Tuckerman electrostatic decoupling ¹².

48 A.3 Properties of the Resulting Dataset

- ⁴⁹ Properties of the resulting dataset are given in Fig. S1, with an inset denoting the correlation of a given property with
- the error in regressing the lattice energy (ϵ_{δ}) given the best-performing model reported in the text. Red curves and lines
- ⁵¹ denote the testing set, and black curves and lines are the training set.

Fig. S1 Analysis of the structures contained in this dataset. In each panel, we show the histogram of a structural parameter across the training set (black) and testing set (red). For parameters not reported in the original data entry, we have assumed ambient conditions, as noted in each panel. In the insets, we show the relationship between these parameters and the error in regressing the binding energy using the remnant model described in the text, ϵ_{δ} to show that there is the relationship between these parameters and the regression performance.

Of the 3'258 total crystals, 23 (0.7%) are shown to be unstable (e.g., $\Delta_c > 0$) for the reference DFT method at am-52 bient conditions. The majority of these are structures were experimentally determined at high pressure (CSD Refs. VOF-53 VAN23¹³, JAYDUI06¹⁴, PHENAN14¹⁵), low temperature (HAMFEJ¹⁶, ZZZEEU05¹⁷, EHAJUS¹⁸, NTSALA¹⁹, ZAQFAB²⁰, 54 IDUWEJ²¹, UWUFAV²², UVOMIC²³, LAGMUC²⁴, GAFYES²⁵, PUYVAG²⁶, NUZGOG²⁷, NSBTOA²⁸), or have high r-factors (QNACRD03²⁹). From visual analysis, the remaining six crystals (LINJUN³⁰, XOSBIS³¹, TETYOH³², DBANQU³³, NAPDCX³⁴, 56 and DUPLUV³⁵) appear to have kinetically trapped molecular components, with a large difference between the crystal-57 lized molecular geometry and the dilute gas molecular geometry. This can be due to many reasons, but we reason that 58 this is due to small strains induced by the reported lattice parameters, as computing the variable cell relaxations results in 59 a marginally different crystal that has a negative lattice energy. 60

Table S1 Summary of Crystals with $\delta_c>0$

_

	n_c	δ_c [kJ/mol]	Packing Coeff.	R-Factor [%]	Exp. Temp. [K]	Exp. Press. [GPa]	Ζ	Zʻ
VOFVAN23 ¹³	52	0.0430	0.7760	7.45	295.	1.	2	1
HAMFEJ ¹⁶	68	0.2930	0.7440	3.87	100.	-	4	1
ZZZEEU05 ¹⁷	68	0.3180	0.7580	7.89	20.	-	4	1
LINJUN ³⁰	68	0.3990	0.7380	4.10	-	-	4	1
EHAJUS ¹⁸	30	0.4420	0.7450	3.18	150.	-	2	0
XOSBIS ³¹	60	0.4580	0.7190	2.90	296.	-	4	1
NTSALA ¹⁹	68	1.1170	0.7520	4.90	108.15	-	4	1
ZAQFAB ²⁰	72	2.0340	0.7090	7.15	123.	-	4	1
TETYOH ³²	80	2.1780	0.7020	4.84	293.	-	4	2
IDUWEJ ²¹	30	3.4640	0.72	4.40	123.20	-	2	0
JAYDUI06 ¹⁴	44	3.4890	0.8570	7.64	295.	5.93	4	1
UWUFAV ²²	104	3.7560	0.7650	11.39	100.	-	4	1
DBANQU ³³	144	3.8130	0.75	9.65	-	-	4	1
NAPDCX ³⁴	48	3.8580	0.7580	8.20	-	-	2	1
UVOMIC ²³	60	4.0790	0.7770	5.43	125.	-	1	0
LAGMUC ²⁴	16	4.2590	0.7330	2.02	100.	-	2	0
DUPLUV ³⁵	132	4.8510	0.7410	4.20	-	-	4	1
GAFYES ²⁵	112	5.67	0.7440	5.88	150.	-	4	1
PUYVAG ²⁶	14	5.9990	0.7290	4.90	173.	-	1	0
PHENAN14 ¹⁵	96	6.0820	0.7540	11.30	293.	0.70	4	1
NUZGOG ²⁷	16	8.4160	0.7430	4.26	100.	-	1	0
QNACRD03 ²⁹	72	9.2720	0.7550	20.60	-	-	2	1
NSBTOA ²⁸	80	20.9550	0.8150	9.	153.15	-	4	1

61 A.4 Ethenzamide Co-Crystals

- ⁶² For our case study later in the text, we have curated a set of ethenzamide co-crystals from the Cambridge Structure
- ⁶³ Database, as summarized in Table S2. We have screened and computed energies using the exact protocols as in A.1 A.2.

Table S2 Summary of Ethenzamide Co-crystals

	Co-former	n_c	E_c [Ryd]	δ_c [kJ/mol]	Packing Coeff.	R-Factor [%]	Exp. Temp. [K]	Ζ	Zʻ
VAKTOS ³⁶	Ethylmalonic Acid	80	-920.76	-6.74	0.69	4.58	110.0	2	1
ORIKOR ³⁷	2-NBA	80	-1015.04	-5.98	0.69	6.19	296.0	2	1
VAKTOS01 ³⁶	Ethylmalonic Acid	160	-1841.51	-6.71	0.68	9.62	110.0	4	1
JIFHAK ³⁸	2,4 DHBA	160	-1922.96	-6.13	0.65	5.47	296.0	4	1
REHSUU ³⁹	4-hydroxybenzoic Acid	156	-1756.28	-6.32	0.72	5.98	110.0	4	1
QULLUF ⁴⁰	Gentisic Acid (2,5 DHBA)	160	-1922.94	-6.41	0.7	7.63	110.0	4	2
REHTAB ³⁹	Fumaric Acid	58	-671.35	-6.78	0.69	7.63	110.0	2	1
ORILAE ³⁷	2,4-DNBA	168	-2470.77	-7.43	0.69	4.03	296.0	4	1
WUZJUX ⁴¹	3,5 DNBA	84	-1235.34	-5.97	0.63	8.04	110.0	2	1
VUHFIO01 ⁴²	Saccharin	160	-2129.21	-6.18	0.69	5.95	110.0	4	1
VUHFIO ⁴²	Saccharin	80	-1064.59	-5.91	0.71	3.81	110.0	2	1
WUZJEH ⁴¹	3,5 DNBA, Dioxane	98	-1373.7	-5.97	0.72	7.4	160.0	2	1
WUZJOR ⁴¹	3,5 DNBA	84	-1235.33	-5.87	0.61	6.26	110.0	2	1
QULLUF02 ⁴⁰	Gentisic Acid (2,5 DHBA)	160	-1922.9	-6.06	0.72	6.19	110.0	4	1
ODIDEN01 ⁴³	3,5 DHBA and H2O	160	-2152.0	-8.86	0.7	6.62	296.0	2	1
WUZHOP ⁴¹	3,5 DNBA	168	-2470.72	-6.32	0.72	5.44	110.0	4	1
ORIKIL ³⁷	Gallic acid	128	-1499.15	-6.49	0.65	3.82	296.0	2	1
TIWPIB ⁴⁴	Glutaric Acid	160	-1841.74	-8.03	0.67	4.88	293.0	4	1
WUZKAE ⁴¹	3,5 DNBA	84	-1235.34	-5.97	0.64	6.34	110.0	2	1
REHSAA ³⁹	Salicylic Acid	156	-1756.29	-5.74	0.71	7.31	100.0	4	1
WUZJIL ⁴¹	3,5 DNBA, Dioxane	98	-1373.7	-5.98	0.72	5.69	110.0	2	1
ODICUC ⁴⁵	2,4 DHBA	160	-1922.93	-5.95	0.69	4.49	296.0	4	1
QULLUF01 ⁴⁰	Gentisic Acid (2,5 DHBA)	160	-1922.94	-6.43	0.7	12.33	110.0	4	1
WUZKEI ⁴¹	3,5 DNBA	84	-1235.33	-5.9	0.63	5.47	110.0	2	1
ORILEI ³⁷	3-toluic acid	164	-1644.76	-5.53	0.67	3.91	296.0	4	1
REHSII ³⁹	Vanillic Acid	172	-1977.88	-6.04	0.7	7.37	193.0	4	1
ORIKUX ³⁷	3-NBA	160	-2030.17	-6.03	0.69	5.42	296.0	4	1
FENQEX ⁴³	Gentisic Acid (2,5 DHBA)	160	-1922.94	-6.41	0.7	4.9	296.0	4	2
WUZHOP01 ⁴¹	3,5 DNBA	84	-1235.34	-5.92	0.72	7.62	110.0	2	1

64 B Methods

65 B.1 SOAP Hyperparameters

⁶⁶ SOAP descriptors were generated using the Librascal library⁴⁶ (commit 6f7a4002) using the following hyperparameters:

67	• max_radial: 8	72	• cutoff_smooth_width: 0.5	77 •	cutoff_function_type:
68	• max_angular: 4	73	 soap_type: "PowerSpectrum" 	78	"RadialScaling"
69	 interaction_cutoff: 7.0 	74	 gaussian_sigma_type: 	79	cutoff_function_parameters:
70	• gaussian_sigma_constant:	75	"Constant"	80	{rate: 1.5, exp: 3.0, scale:
71	0.3	76	 radial_basis: "GTO" 	81	2.0}

As tuning these hypers could favor one representation over another, we chose cutoff and scaling parameters to be consistent with the chemical geometry, noting that changing these parameters within this range has minimal effect on the errors. We determined the number of radial and angular channels (corresponding to the "resolution" of the descriptors) by balancing the number of features in each feature vector with the in-sample error of δ_c . The resulting SOAP vectors included 3-body correlations for each atomic neighborhood up to 7Å, weighting neighbor contributions with a radial scaling procedure introduced in Willatt *et al.*⁴⁷.

- 88 B.2 Filtering the Environmental Contributions
- ⁸⁹ As noted in the main text, we applied a filtering scheme to the estimated contributions of each atomic environment. This
- ⁹⁰ technique reduces the number of extreme contributions attributed to any given environment, as shown in the changes in

⁹¹ distribution in Fig. S2.

Fig. S2 Effect of "Smearing" the Contributions using Eq. (11). Note that $\mathbf{x}_c^{(s-g)}$ yields the most stable result, compared to $\mathbf{x}_c^{(s)}$ and $\mathbf{x}_c^{(g)}$.

Notice that all of these vary based on representation and environment. In most cases, we see the distribution narrow with the smearing – signifying a regularization to the estimated contributions (*e.g.*, dampening of extreme values). The smearing converges to a constant set of contributions with an increasing smearing cutoff, typically 2.0-3.0 Å (we use 2.0Å for all results in the text).

96 B.3 Identifying Molecular Motifs

⁹⁷ We employed RDKIT Substructure Matching⁴⁸ to identify the molecular motifs. For this, we took (our typical) .xyz format ⁹⁸ of the molecular geometries and converted them to .mol format using the openbabel software⁴⁹. When labeling each ⁹⁹ collection of atoms, we assign each fragment its most specific designation, *e.g.*, each *nitro* group was not also considered ¹⁰⁰ as two *nitroso* groups. We used the SMARTS strings⁵⁰ listed in Table S3 to identify motifs in the molecules.

	Name	SMARTS String	# Instances
	Disulfide	[#6]~[#16;X2]~[#16;X2]~[#6]	256
	Dithiole	s1~s~c~c~c1, s1~c~s~c~c1	138
	Sulfide Chain	[#16]~[#16;X2]~[#16;X2]~[#16]	200
	Sulfinamide	[SX3] (~[0X1]) (~[#6]) ~ [#7]	7
	Sulfinyl	$[!#8] \sim [#16 \cdot X3] (\sim [!#8]) \sim [0X1]$	190
	Sulfonate Esters	$[SYA](~[OY1])(~[OY1])([#6])~[O\cdotY2 -]$	58
	Sulfonyl	$[0, \frac{1}{2}] ([0, \frac{1}{2}] ([0, \frac{1}{2}]) ([0, \frac{1}$	545
sec	Thiorolo		162
Ba	Thiazolidina	$SI^{*}II^{*}C^{*}C^{*}CI, SI^{*}C^{*}II^{*}C^{*}CI$	103
nr			150
ulf	I hiocardonyi		359
ŝ	Thiocarboxamide	[#1,#6]~C(~[SX1])[#/]	1/6
	Thiodiazole	s1~n~c~n~c1, s1~c~n~n~c1, s1~n~n~c~c1, s1~n~c~c~n1	289
	Thioether	[#6]~[SX2]~[#6]	1920
	Thioketone	L#6]~L#6](~LS;X1])L#6]	42
	Thiol	[#6;!\$(C=,#[!#6])][SX2H]	54
	Thiophene	s1~c~c~c1	516
	Thiourea	[#7]~C(~[SX1])[#7]	318
	Aryl Amines	[N\$(N-c);H1,H2;r0]	1209
	Carbonyls	[#6,#7,#1]~[C!\$([C;X3](~[#8])~[#8])](~[#6,#8,#1])~[O;X1]	1549
	3°Amines	[#7;X3;H0]([#6])([#6])[#6]	1859
	2°Amines	[#7;X3;H1]([#6])[#6]	1504
	1°Amines	[#7;X3;H2][#6]	752
	Acetamide	[#7;X3;r0;H2]~[#6;X3;H0]~[0;X1]	342
	Azide	[#7;X2]~[#7;X2]~[#7;X1]	266
	Azo	[#6]_N=N-[#6]	115
	Carbamide	[#7:X3]~C(~[0:X1])~[#7:X3]	399
	Diazine		758
	Hydrazine	$[\#7 \cdot \chi_3] \sim [\#7 \cdot \chi_3 \cdot H^2]$	414
eq	Hydroxyl, amines	[#^;,X0] [#^;,X0;112] [#A]~[#7·¥3](~[#A])~[#8·H1]	02
as	Imidazole		7 <u>7</u> AAA
D-B	Innuazoie		70
gei	Nitrilo		/0
LT O	Nitro	L#OJ~[#/;AI] [#0.¥1] [#7] [#0.¥1]	00
N.	NILIO	L#O;AI]~L#/]~L#O;AI]	2129
	NILFOSO	[#/]~[#8;1]	498
	Oxidiazole	01~n~c~n~c1, 01~c~n~n~c1, 01~n~n~c~c1, 01~n~c~c~n1	344
	Oxime	[#6]~[#7;X2]~[#8;H1]	285
	Pentazole	n1~n~n~n1	4
	Pyrazole	n1~n~c~c~c1	458
	Pyridine	n1~c~c~c~c1	574
	Pyrrole	n1~c~c~c1	219
	Tetrazine	n1~n~n~c~c1, n1~n~c~n~c1	74
	Tetrazole	n1~c~n~n1	630
	Triazine	n1~n~n~c~c~c1, n1~n~c~n~c~c1, n1~c~n~c~n~c1	285
	Triazole	n1~n~n~c~c1, n1~c~n~n~c1	657
	Carboxyls	[0;X1]~C~[0;H1]	1023
	Alcohols	[#6!\$([#6]=0)]~[0;H1]	2603
q l	Carbonate	[#8;X2]~[C](~[#8;X1])~[#8;X2]	54
ase	Epoxide	01CC1	252
-Bé	Ester	C(~[0;X1])-[0;H0;X2]-[C]	1218
fen	Ether	[#8;X2](~[C;r0])~[#6]	736
xyε	Furan	o1~c~c~c1	256
Ö	Ketone	[#6][CX3](~[0;X1])[#6]	1041
	Peroxides	[#8;X2]~[0;X2]	77
	Water	[0H2]	868
	Alkane	[C;H2,H3]-[C;H2,H3]	4784
sed	Alkene	[C:H1,H0] = [C:H1,H0]	2413
Ba	Alkvne	[C]#[C:H1]	8
-uc	Benzene-like Rings	c1ccccc1	3280
I b	Ethyl	[C:H2:X4]~[C:H3:X4]	709
C ^a	Methyl	[C;H3;X4]	5313

Table S3 Table of SMARTS Strings used to Identify Molecular Motifs. Notice that some SMARTS strings deviate from typical convention in orderto accommodate the translation from thermodynamic coordinates (.xyz) to molecular connectivity graph format (.mol), as well as to define certaingroups as mutually exclusive $6 \mid$ Journal Name, [year], [vol.], 1–17

¹⁰¹ C Additional Results and Visualizations

102 C.1 Learning Curves

(a) Learning Curve of Various Representations on $\delta_c.$

(b) Learning Curve of $\mathbf{x}_{c}^{(s)}$ on \mathbf{e}_{c} .

(c) Learning Curve of $\mathbf{x}_m^{(g)}$ on \mathbf{e}_m .

Fig. S3 Learning curves for lattice energy for the various representations used in this study. We varied the ratio of mutually-exclusive and randomlyselected training and testing points in each learning curve and conducted a regularized ridge regression. For each ratio, we conducted ten trials with random training sets and report the average (line) and standard deviations (shaded area).

For each descriptor, we constructed learning curves to demonstrate the saturation (or lack thereof) of the regression model on lattice energy. Each learning curve was run using scikit-learn.model_selection.learning_curve using a 10-fold cross-validation on a regularized ridge regression pulling randomly from our established training set. All learning curves demonstrate that we are still within a small-data regime (noted by the absence of saturation), justifying our focus on simple and data-efficient linear models.

108 C.2 Kernel Ridge Regression Models

Kernel Type	Structure-Wise Definition	Equivalent RKHS Definition			
	$K_{AB} = \frac{1}{n_A n_B} \sum_{a,b} \dots$	K =			
Crystal Environments	$k\left(\mathbf{x}_{a}^{(s)},\mathbf{x}_{b}^{(s)} ight)$	$\left[\phi_{c}^{\left(s ight)}\left(\phi_{c'}^{\left(s ight)} ight)^{T} ight]$			
Molecular Environments	$k\left(\mathbf{x}_{a}^{\left(g ight)},\mathbf{x}_{b}^{\left(g ight)} ight)$	$\left[\phi_{c}^{\left(g ight)}\left(\phi_{c'}^{\left(g ight)} ight)^{T} ight]$			
Remnant of the RKHS Features	$k\left(\mathbf{x}_{a}^{\left(s\right)},\mathbf{x}_{b}^{\left(s\right)}\right)+k\left(\mathbf{x}_{a}^{\left(g\right)},\mathbf{x}_{b}^{\left(g\right)}\right)$	$\left[\left(\phi_c^{(s)} - \phi_c^{(g)} \right) \left(\phi_{c'}^{(s)} - \phi_{c'}^{(g)} \right)^T \right]$			
	$-k\left(\mathbf{x}_{a}^{\left(s\right)},\mathbf{x}_{b}^{\left(g\right)}\right)-k\left(\mathbf{x}_{a}^{\left(g\right)},\mathbf{x}_{b}^{\left(s\right)}\right)$				
Remnant Environments	$k\left(\mathbf{x}_{a}^{(s-g)},\mathbf{x}_{b}^{(s-g)}\right)$	$\left[\phi_{c}^{(s-g)}\left(\phi_{c'}^{(s-g)}\right)^{T}\right]$			

Table S4 Equations for Non-linear Kernels We computed regressions using the given kernel equations for crystals A and B and their corresponding atoms a and b. Mercer's theorem ensures that for a positive-definite kernel on x, there exists a non-linear mapping $x \mapsto \phi$ such that $K = \phi \phi^T$, for which we have included our notation.

¹⁰⁹ We computed regressions with both (i) an optimized RBF kernel (with optimal γ found by employing a subset of 1,000 ¹¹⁰ crystals taken from the training set and (ii) a parameter-free cosine kernel. We ran kernel ridge regression models using ¹¹¹ scikit-learn.linear_model.KernelRidge⁵¹ employing a 90/10 training / validation split. The results on the offset test ¹¹² set are given in Table S5.

	RBF K	Cernel	Cosine Kernel		
Regression Equation	RMSE	MAE	RMSE	MAE	
$\mathbf{e}_{c} = \left[\phi_{c}^{(s)} \left(\phi_{c'}^{(s)}\right)^{T}\right] \mathbf{w}_{c}$	0.904	0.665	1.039	0.772	
$\mathbf{e}_{m} = \left[\phi_{m}^{(g)} \left(\phi_{m'}^{(g)}\right)^{T}\right] \mathbf{w}_{m}$	0.392	0.294	0.496	0.373	
$\delta_c = \left[\phi_c^{(s)} \left(\phi_{c'}^{(s)}\right)^T\right] \mathbf{w}_c$	0.913	0.681	1.061	0.805	
$-\sum_{m \in c} \frac{n_m}{n_c} \left(\left[\phi_m^{(g)} \left(\phi_{m'}^{(g)} \right)^T \right] \mathbf{w}_m \right)$					
$\delta_{c} = \left[\phi_{c}^{(s)} \left(\phi_{c'}^{(s)}\right)^{T}\right] \mathbf{w}$	0.694	0.508	0.742	0.526	
$\delta_{c} = \left[\phi_{c}^{\left(g\right)} \left(\phi_{c'}^{\left(g\right)}\right)^{T}\right] \mathbf{w}$	1.097	0.714	1.097	0.71	
$\delta_{c} = \left[\left(\phi_{c}^{(s)} - \phi_{c}^{(g)} \right) \left(\phi_{c'}^{(s)} - \phi_{c'}^{(g)} \right)^{T} \right] \mathbf{w}$	0.541	0.403	0.589	0.425	
$\delta_{c} = \left[\phi_{c}^{(s-g)} \left(\phi_{c'}^{(s-g)}\right)^{T}\right] \mathbf{w}$	0.515	0.382	0.66	0.489	

Table S5 Results of Kernel Ridge Regression Exercises. We have written each equation using reproducing kernel hilbert space (RKHS) notation (see Table S4), denoting the training set with '. Note the difference between the bottom entries, which represent (1) the "remnant version of non-linear feature vectors ϕ and (2) the non-linear mapping of the remnant vector employed in the main text. In each kernel regression, an independent, 2-fold cross-validated model was built on our 2'707 crystal training set in an 80/20 train/validation split. Here we report the RMSE and MAE (in kJ/mol) on a separate testing set of 551 crystals (or the coinciding 628 molecules). Each regression equation w is unique to that regression.

C.3 Expanded Violin Plot

Fig. S4 Violin Plot from Fig. 2, expanded to include all functional groups. A representative example is shown above or below the violin plot with the functional group highlighted for each functional group. The lines on each plot denote each group's extrema and mean contributions. The plots colors reflect the number of examples within the dataset, ranging from 4 (pentazole) to 5313 (methyl groups)

C.4 Images of Phenanthrene Polymorphs

(a) View of PHENAN08⁵² along a axis.

(c) View of PHENAN08⁵² along b axis.

(e) View of PHENAN08⁵² along c axis.

(b) View of PHENAN14¹⁵ along a axis.

(d) View of PHENAN14¹⁵ along b axis.

(f) View of PHENAN14 15 along c axis.

Fig. S5 Axial views of the stable (a, c, e) and unstable (b, d, f) phenanthrene polymorphs. $3\times3\times3$ supercells are shown to include all intermolecular interactions.

C.5 Additional PCovR Maps

Fig. S6 PCovR map from Fig. 3, highlighting each type of functional group. Each map is on the same color scale; however, we have truncated the color bar to demonstrate the range of cohesive interactions. We have denoted the average of all group members by a square marker on the color bar.

Fig. S7 PCovR map from Fig. 3, highlighting each type of functional group. Each map is on the same color scale; however, we have truncated the color bar to demonstrate the range of cohesive interactions. We have denoted the average of all group members by a square marker on the color bar.

Fig. S8 PCovR map from Fig. 3, highlighting each type of functional group. Each map is on the same color scale; however, we have truncated the color bar to demonstrate the range of cohesive interactions. We have denoted the average of all group members by a square marker on the color bar.

Fig. S9 PCovR map from Fig. 3, highlighting each type of functional group. Each map is on the same color scale; however, we have truncated the color bar to demonstrate the range of cohesive interactions. We have denoted the average of all group members by a square marker on the color bar.

C.6 Parity Plot for Ethenzamide Dataset

Fig. S10 Parity plot showing regression errors for the 29 ethenzamide co-crystals. Regressions were computed using the regularized ridge regression trained the remnant descriptor $\mathbf{x}_c^{(s-g)}$ of the 2'707 training set crystals. Here we have labeled each point by its corresponding CSD refcode.

113 Notes and references

- M. Cordova, E. A. Engel, A. Stefaniuk, F. Paruzzo, A. Hofstetter, M. Ceriotti and L. Emsley, *The Journal of Physical Chemistry C*, 2022, **126**, 16710–16720.
- 2 C. S. Adorf, V. Ramasubramani, B. D. Dice, M. M. Henry, P. M. Dodd and S. C. Glotzer, *glotzerlab/signac*, 2019, https://doi.org/10.5281/zenodo.2581326.
- ¹¹⁸ 3 C. S. Adorf, P. M. Dodd, V. Ramasubramani and S. C. Glotzer, *Computational Materials Science*, 2018, **146**, 220–229.
- ¹¹⁹ 4 B. Hourahine, B. Aradi, V. Blum, F. Bonafé, A. Buccheri, C. Camacho, C. Cevallos, M. Y. Deshaye, T. Dumitric, ¹²⁰ A. Dominguez, S. Ehlert, M. Elstner, T. van der Heide, J. Hermann, S. Irle, J. J. Kranz, C. Köhler, T. Kowalczyk,
- T. Kuba, I. S. Lee, V. Lutsker, R. J. Maurer, S. K. Min, I. Mitchell, C. Negre, T. A. Niehaus, A. M. N. Niklasson, A. J. Page,
- A. Pecchia, G. Penazzi, M. P. Persson, J. ezá, C. G. Sánchez, M. Sternberg, M. Stöhr, F. Stuckenberg, A. Tkatchenko,
 V. W.-z. Yu and T. Frauenheim, *The Journal of Chemical Physics*, 2020, **152**, 124101.
- ¹²⁴ 5 M. Gaus, A. Goez and M. Elstner, *Journal of Chemical Theory and Computation*, 2013, **9**, 338–354.
- ¹²⁵ 6 M. Gaus, X. Lu, M. Elstner and Q. Cui, *Journal of Chemical Theory and Computation*, 2014, **10**, 1518–1537.
- 7 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni,
 I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj,
 M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbrac-
- cia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari and R. M. Wentzcovitch, *Journal of Physics: Condensed Matter*, 2009, **21**, 395502.
- ¹³¹ 8 J. Perdew, K. Burke and M. Ernzerhof, *Physical Review Letters*, 1996, 77, 3865–3868.
- ¹³² 9 S. Grimme, Journal of Computational Chemistry, 2006, **27**, 1787–1799.
- ¹³³ 10 A. Dal Corso, *Computational Materials Science*, 2014, **95**, 337–350.
- ¹³⁴ 11 G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, **59**, 1758–1775.
- 135 12 G. J. Martyna and M. E. Tuckerman, *The Journal of Chemical Physics*, 1999, **110**, 2810–2821.
- 13 Marelli, E. and Casati, N. and Gozzo, F. and Macchi, P. and Simoncic, P. and Sironi, A., *CrystEngComm*, 2011, 13, 6845.
- ¹³⁸ 14 Podsiadlo, M. and Olejniczak, A. and Katrusiak, A., *The Journal of Physical Chemistry C*, 2013, **117**, 4759.
- ¹³⁹ 15 Fabbiani, F.P.A. and Allan, D.R. and David, W.I.F. and Moggach, S.A. and Parsons, S. and Pulham, C.R., *CrystEngComm*,
 ¹⁴⁰ 2004, 6, 504.

- ¹⁴¹ 16 Rheingold, A.L., CSD Communication, 2016.
- Adam, M.S. and Gutmann, M.J. and Leech, C.K. and Middlemiss, D.S. and Parkin, A. and Thomas, L.H. and Wilson,
 C.C., *New Journal of Chemistry*, 2010, 34, 85.
- ¹⁴⁴ 18 Breton, G.W. and Martin, K.L., *Journal of Organic Chemistry*, 2002, **67**, 6699.
- ¹⁴⁵ 19 Talberg, H.J., Acta Chemica Scandinavica [1989-1999], 1977, **31**, 485.
- ¹⁴⁶ 20 Castello-Mico, A. and Julia Nafe, and Higashida, K. and Karaghiosoff, K. and Gingras, M. and Knochel, P., Organic
 ¹⁴⁷ Letters, 2017, 19, 360.
- ¹⁴⁸ 21 Ohkita, M. and Suzuki, T. and Nakatani, K. and Tsuji, T., *Chemistry Letters*, 2001, 988.
- ¹⁴⁹ 22 K.Mitsudo, T.Murakami, T.Shibasaki, T.Inada, H.Mandai, H.Ota, Seiji Suga, Synlett, 2016, 27, 2327.
- Chien-Yang Chiu, and Bumjung Kim, and Gorodetsky, A.A. and Sattler, W. and Sujun Wei, and Sattler, A. and Steiger wald, M. and Nuckolls, C., *Chemical Science*, 2011, 2, 1480.
- ¹⁵² 24 Mereiter, K. and Rosenau, T., CSD Communication, 2004.
- ¹⁵³ 25 Berridge, R. and Serebryakov, I.M. and Skabara, P.J. and Orti, E. and Viruela, R. and Pou-Amerigo, R. and Coles, S.J.
 ¹⁵⁴ and Hursthouse, M.B., *Journal of Materials Chemistry*, 2004, **14**, 2822.
- ¹⁵⁵ 26 Britton, D., Acta Crystallographica Section E: Structure Reports Online [2001-2014], 2002, 58, 0637.
- ¹⁵⁶ 27 Maris, T., CSD Communication, 2016.
- Panfilova, L.V. and Antipin, M.Yu. and Churkin, Yu.D. and Struchkov, Yu.T., *Khimiya Geterotsiklicheskikh Soedinenii*,
 1979, 1201.
- ¹⁵⁹ 29 Lincke, G. and Finzel, H.-U., *Crystal Research and Technology*, 1996, **31**, 441.
- ¹⁶⁰ 30 Fang-Ming Miao, and Jin-Ling Wang, and Xiu-Shen Miao, ., *Acta Crystallographica,Section C: Crystal Structure Commu-*¹⁶¹ *nications [1983-2014]*, 1995, **51**, 712.
- ¹⁶² 31 Rabaca, S. and Oliveira, S. and Cerdeira, A.C. and Simao, D. and Santos, I.C. and Almeida, M., *Tetrahedron Letters*,
 ¹⁶³ 2014, 55, 6992.
- ¹⁶⁴ 32 Morak, B. and Pluta, K. and Suwinska, K. and Grymel, M. and Besnard, C. and Schiltz, M. and Kloc, C. and Siegrist, ¹⁶⁵ T., *Heterocycles*, 2005, **65**, 2619.
- ¹⁶⁶ 33 Entwistle, R.F. and Iball, J. and Motherwell, W.D.S. and Thompson, B.P., *Acta Crystallographica, Section B:Struct.Crys-* ¹⁶⁷ *tallogr:Cryst.Chem. [1968-1982]*, 1969, **25**, 770.
- ¹⁶⁸ 34 Derissen, J.L. and Timmermans, C. and Schoone, J.C., *Crystal Structure Communications*, 1979, **8**, 533.
- ¹⁶⁹ 35 Newkome, G.R. and Joo, Y.J. and Theriot, K.J. and Fronczek, F.R., *Journal of the American Chemical Society*, 1986,
 ¹⁷⁰ 108, 6074.
- ¹⁷¹ 36 Aitipamula, S. and Pui Shan Chow, and Tan, R.B.H., *CrystEngComm*, 2010, **12**, 3691.
- 172 37 Hariprasad, V.M. and Nechipadappu, S.K. and Trivedi, D.R., Crystal Growth and Design, 2016, 16, 4473.
- 173 38 Khatioda, R. and Bora, P. and Sarma, B., Crystal Growth and Design, 2018, 18, 4637.
- ¹⁷⁴ 39 Aitipamula, S. and Wong, A.B.H. and Pui Shan Chow ,and Tan, R.B.H., *CrystEngComm*, 2012, 14, 8515.
- ¹⁷⁵ 40 Aitipamula, S. and Pui Shan Chow, and Tan, R.B.H., *CrystEngComm*, 2009, **11**, 1823.
- 176 41 Aitipamula, S. and Pui Shan Chow, and Tan, R.B.H., Crystal Growth and Design, 2010, 10, 2229.
- 42 Aitipamula, S. and Pui Shan Chow, and Tan, R.B.H., *CrystEngComm*, 2009, **11**, 889.
- 43 Khatioda, R. and Saikia, B. and Das, P.J. and Sarma, B., CrystEngComm, 2017, 19, 6992.
- ¹⁷⁹ 44 Kozak, A. and Marek, P.H. and Pindelska, E., Journal of Pharmaceutical Sciences, 2018, 108, 1476.
- 45 Sarmah, K.K. and Boro, K. and Arhangelskis, M. and Thakuria, R., *CrystEngComm*, 2017, **19**, 826.
- ¹⁸¹ 46 F. Musil, M. Veit, A. Goscinski, G. Fraux, M. J. Willatt, M. Stricker, T. Junge and M. Ceriotti, *The Journal of Chemical Physics*, 2021, **154**, 114109.
- ¹⁸³ 47 M. J. Willatt, F. Musil and M. Ceriotti, *Phys. Chem. Chem. Phys.*, 2018, **20**, 29661–29668.
- 184 48 RDKit: Open-source cheminformatics., https://www.rdkit.org.
- ¹⁸⁵ 49 N. M. O'Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch and G. R. Hutchison, *Journal of Cheminformatics*,
 ¹⁸⁶ 2011, **3**, 33.
- ¹⁸⁷ 50 SMARTS: A Language for Describing Molecular Patterns, 1997, daylight.com/dayhtml/doc/theory/theory.smarts.
 ¹⁸⁸ html.

- ¹⁸⁹ 51 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
- V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot and E. Duchesnay, *Journal of Machine Learning Research*, 2011, **12**, 2825–2830.
- Petricek, V. and Cisarova, I. and Hummel, L. and Kroupa, J. and Brezina, B., *Acta Crystallographica, Section B: Structural Science* [1983-2012], 1990, 46, 830.