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S1. X-ray powder diffraction (XRPD) spectroscopy 
 

 

Figure S 1. PNP[CoRh(ox)3] X-ray powder diffraction (XRPD) profile indexed following Ref. 1 

 

 

Figure S 2. Comparison between X-ray powder diffraction patterns of PNP[CoRh(ox)3] and of the isostructural  
PNP[FeFe(ox)3] and PNP[MnFe(ox)3] adapted from Ref.1 The main diffraction peaks in PNPCoRh (red lines) coincide 
with those reported in Ref.1 for structural equivalent materials with different metallic centers.  

 



 

Table S 1. Refined unit cell parameters of PNP[FeFe (ox)3] and PNP[MnFe(ox)3] at room temperature reported in 
Ref.1  

Compound Space group 
used for 
refinement 

a (Å) b (Å) c (Å) Interlayer 
distance 

(Å) 

PNP[FeFe(ox)3] P 6(5) 9.38(1) 9.38(1) 86.6(2) 14.5 

PNP[MnFe(ox)3] P 6(5) 9.41(1) 9.41(1) 87.1(2) 14.5 

 

 

S2. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 
 

The metallic proportion of the PNP[CoRh(ox)3] samples is determined by inductively coupled 

plasma mass spectroscopy. First, the sample is atomized in a microwaves oven. Thereafter the 

CoRh ratio is determined in a Agilent 7900 ICP-MS. The result on two different test samples is 

summarized in Table S2: 

Table S 2. Co and Rh composition measured in a Agilent 7900 ICP-MS 

Sample Co (mg/g) Rh (mg/g) 

PNP[CoRh(ox)3]- Sample 1 25.2 ± 0.4 49.4 ± 0.8 

PNP[CoRh(ox)3]- Sample 2 14.8 ± 0.3 30.8 ± 0.2 

 

 

Taking into account the atomic mass of Co and Rh: 58.999 g/mol and 102.9055 g/mol, the Co/Rh 

ratio in the material can be estimated, as summarized in Table S3. The value is very close to a 

1:1 ratio expected for the PNP[CoRh(ox)3] oxalate. 

 

Table S 3. Rh/Co ratio estimated from the ICP-MS analysis in Table S2 

Sample Co (mmol/g) Rh (mmol/g) Rh/Co Ratio 

PNP[CoRh(ox)3]- Sample 1 0.427 0.480 1.124 

PNP[CoRH(ox)3]- Sample 2 0.251 0.299 1.193 

 

The complex formula is [Ph3NNPh3][CoRh(C2O4)3](H2O)3 with sum: N2O15RhCoC42H36. The 

molecular weight is mw= 970.5910 g/mol 

 

 

 

 



S3. Additional Electron Paramagnetic Resonance (EPR) 

spectroscopy spectra 
 

 

Figure S 3 The analogous isolated [tetrabutylammonium (TBA)]CoRh(ox)3 center, with an identical 2D CoRh oxalate 

lattice, was dissolved in a Zn (diamagnetic) matrix. The corresponding EPR spectrum can be understood from a 

distorted octahedral environment of Co(II). The simulation allows determining the anisotropic g values and an upper 

limit for the hyperfine splitting. The magnetic exchange interaction in the all-Co(II) sample causes an averaging of the 

g anisotropy, asymmetric shape and the apparent shift to lower fields of the signal. All the spectra were taken at 20K. 

An asterisk is marking a spurious signal from impurities. 

 

 

 

TBACoRh(ox)3

TBACo0.05Zn0.95Rh(ox)3



S4. Electronic level structure of Co2+ in [PNP]CoRh 
 

The electronic configuration of a Co2+ ion is [Ar]3d7. The electronic ground state according to 

Hund’s rules is then 4F with L = 3 and S = 3/2, resulting in 2L+1 = 7 initially degenerated levels for 

the free ion, as seen in Figure S4. 

 

Figure S 4. Energy level diagram of the Co2+ in an octahedral field resulting from the successive application of the 
interaction terms in Eq. 1. The ground state can be described with an effective angular momentum J = 1/2 and geff = 
4.33. 2 

 

The Hamiltonian describing Co2+ ions in the octahedral ligand field introduced by the 

coordination with the oxalate ligands is: 

 

ℋ = ℋ𝑐𝑟𝑦𝑠 + ℋ𝑆𝑂 + ℋℎ𝑦𝑝𝑒𝑟𝑓𝑖𝑛𝑒 + ℋ𝑍𝑒𝑒𝑚𝑎𝑛    Eq. 1 

 

where ℋ𝑐𝑟𝑦𝑠 is the crystal field contribution, ℋ𝑆𝑂 is the spin-orbit coupling,  ℋℎ𝑦𝑝𝑒𝑟𝑓𝑖𝑛𝑒is the 

hyperfine contribution due to the coupling between nuclear and electronic spins and ℋ𝑍𝑒𝑒𝑚𝑎𝑛 

is the Zeeman contribution describing the interaction with the external magnetic field B. 

The three oxalate ligands surrounding the Co2+ give rise to an octahedral symmetry of the form 

ℋ𝑐𝑟𝑦𝑠 = 𝐵4(𝑂4
0 + 5𝑂4

4)     Eq. 2 

Where 𝑂𝑚
𝑙  are Stevens operators and 𝐵4 is related to the strength of the crystal field. Assuming 

and intermediate ligand field, the initially degenerate levels split as seen in Figure S4. The lowest 

lying energy level is a degenerate orbital triplet with an effective orbital momentum �̂� = 1 and 

S = 3/2. 

Finally the spin-orbit coupling given by ℋ𝑆𝑂 = 𝜆�⃗� · 𝑆  breaks the ground state degeneracy into 

three sets of levels with effective angular momentum 𝐽 = ±1/2,±3/2,±5/2 as seen in Figure 

S4. The ground state can be described as degenerated doublet 𝐽 = ±1/2 with g = 4.33.2 

Deviations from the latter value arise as a result of distortions from perfect octahedral symmetry 

and spin-spin interactions (see previous section). 



S5. Modelling of the specific heat measurements 
 

Schottky contribution: Fluctuation-dissipation theorem 
 

The low temperature magnetic contribution to the specific heat (cm), known as Schottky 

contribution is calculated by using the fluctuation-dissipation theorem given by: 

𝑐𝑚

𝑅
=

〈𝑈2〉−〈𝑈〉2

𝑇2       Eq. 3 

Where R is the gas constant and U is the internal magnetic energy of the system: 

𝑈 = 𝑁𝐴
∑ 𝐸𝑖𝑒

−
𝐸𝑖

𝑘𝐵𝑇
𝑖

𝑍
     Eq. 4 

where NA is the Avogadro number, Z is the partition function and Ei are the magnetic energy 

levels obtained from the diagonalization of the spin Hamiltonian of each isolated Co2+ ion. 

 

Heisenberg model for a J = 1/2 system. 
 

For B = 0 and sufficiently low temperatures, the specific heat given by Eqs. 3 and 4 nearly 

vanishes, as the two levels associated with the J = 1/2 ground state are degenerate and hyperfine 

interactions are too weak to give rise to a sizeable contribution. The specific heat high-

temperature tail observed experimentally (see Figure 3b in the main text), requires then to go 

beyond the picture of isolated spins. Spin-spin interactions can be approximately modeled by 

using a J = 1/2 Heisenberg model. The high-T approximation for the specific heat is then:2 

 

𝑐

𝑅
=

1

2
(
𝐽(𝐽+1)

3𝐾𝐵
)
2
𝑍

3𝐽𝑒𝑓𝑓
2

𝑇2      Eq. 5 

 

Where Z = 6 is the number of nearest neighbors, J = 1/2 is the effective angular momentum and 

Jeff is the effective spin-spin coupling strength. Fitting the experimental data measured at B = 0 

using Eq. 5 gives Jeff = 0.2 K (see Fig. 3b in the main text). 

 

S6. Entropy 
 

The entropy content Sm of a magnetic system is given by: 

𝑆𝑚 = 𝑅𝑙𝑛(2𝐽 + 1)     Eq. 6 

 



where J is the effective spin. The magnetic entropy can be determined from the experimental 

specific heat as: 

 

𝑆𝑚(𝑇)

𝑅
= ∫

𝑐𝑚

𝑇
𝑑𝑇

𝑇

0
     Eq. 7 

 

Figure S5 shows Sm as a function of temperature for B = 1 T obtained from the cm data shown in 

Figure 2b of the main text. A saturation value of Sm ≈ Rln2 = 0.69R is found which, according to 

Eq. 6, corresponds to J = 1/2. In addition, this shows that the J = 1/2 ground state is the only 

populated level below 10 K.  

 

 

 

 

Figure S 5. Magnetic entropy Sm calculated by using Eq. 7 and the specific heat at B = 1 T in the main text.  The 
saturation value is close to 0.69, consistent with a J = 1/2 ground state. The entropy shows that the ground state is 
the only populated level in this range of temperatures 

 



 

Figure S 6. Magnetic entropy Sm calculated by using Eq. 7 and the specific heat at B = 0 T in the main text.   

 

Figure S 7. Magnetic entropy at 0 T and 1T from Figures S5 and S6. Entropy at 0T has been scaled for comparison.  

 

S7. Modelling of the magnetic susceptibility measurements 
 

Figure 4a in the main manuscript shows that χ’T continuously drops with decreasing 

temperature. This occurs mainly as a consequence of the depopulation of excited electronic 

states. 

The temperature dependence of χ can be described by considering the two lowest doublets 

separated by the energy Δ:3 

𝜒 =
𝑁

𝑘𝐵(𝑇−𝑇0)
{𝐶0 + 𝐶1 (

2𝑘𝐵𝑇

𝛥
) 𝑡𝑎𝑛ℎ (

𝛥

2𝑘𝐵
) + 𝐶2 𝑡𝑎𝑛ℎ (

𝛥

2𝑘𝐵𝑇
)} + 𝜒0  Eq. 8 

 



Where N is the number of paramagnetic entities, kB is the Boltzmann constant, the C0, C1 and C2 

quantities depend on the electronic wave function of the two Kramers doublets involved, and χ0 

accounts for diamagnetic and other temperature independent contributions to the magnetic 

susceptibility. T0 accounts for the magnetic interactions with the neighboring atoms, and plays 

the role of an effective Weiss temperature. 

The fit to the experimental χT in Figure 4a is obtained with the values summarized in Table S4. 

The large Δ value confirms that the system can be simplified to a single J = 1/2 doublet below 15 

K. Moreover, the curve can only be fitted by introducing a finite T0 value, accounting for 

interactions. 

Note that C2 is negligible small within the error. For low enough temperatures, that that is T<< 

Δ, the susceptibility can be approximated to χ = N(C0+C2)/kB (T-T0)+χ0, as shown in ref1. A 

negligible small C2 value would imply a χ ≈ N(C0)/kB (T-T0)+χ0, that is, the Curie law for an isolated 

doublet. In other words the smaller C2 the more the system behaves as an isolated doublet at 

low temperatures. 

 

Table S 4. Fitting values for the parameters in Eq. 8. 

Parameter Fitting value 

Δ 366 K 

C0 1.68 emuK/mol 

C1 8.23 emuK/mol 

C2 0 emuK/mol 

Χ0 -0.031 emu/mol 

T0 -0.38 K 
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