Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2023

This version of the ESI published 10/02/2023 replaces the previous version published 19/01/2023. The yields of compounds 1a, 2a, 2b, 3a, and 4b in Section I.1 have been updated to include yields both before and after recrystallization.

BOINPYs: Facile Synthesis and Photothermal Properties Triggered by Photoinduced Nonadiabatic Decay

Lizhi Gai,^{‡a} Ruijing Zhang,^{‡bd} Xiuguang Shi,^a Zhigang Ni,^a Sisi Wang,^{ac} Jun-Long Zhang,^{*be} Hua Lu,^{*a} Zijian Guo^c

^a College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China.

^b Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.

° State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.

^d Spin-X Institute, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.

^e Chemistry and Chemical Engineering, Guangdong Laboratory, Shantou 515031, China

These authors contributed equally

□E-mail: hualu@hznu.edu.cn; zhangjunlong@pku.edu.cn

Table of Contents

I. Experimental Section

I.1 Synthesis and Characterization	S3-S8
I.2 TD-DFT calculations	S9-S10
I.3 X-ray analysis	S11-12
I.4 Spectroscopic measurements	S13-S14
I.5 Singlet oxygen generation	S15-S16
I.6 PTT properties of dyes	S17-S19
I.7 Preparation of 2b @F127 nanoparticle	S20
I.8 General animals culture	S20-S23
II. ¹ H NMR, ¹³ C NMR spectra and HR-MS	S24-S44
III. Cartesian coordinates	S45-S51
IV. References	S52

I. Experimental Procedures

Methods

Materials

All reactions were carried out under a dry argon atmosphere by using Schlenk techniques. All reagents were obtained from commercial suppliers and used without further purification unless otherwise indicated. All air- and moisture-sensitive reactions were carried out under a nitrogen atmosphere. Glassware was dried in an oven at 100°C and cooled under a stream of inert gas before use. Dichloromethane was distilled over calcium hydride. The water used in this study was deionized with a Milli-QSP reagent water system (Millipore) to a specific resistivity of 18.2 MΩ cm⁻¹. All the solvents employed for the spectroscopic measurements were of spectroscopic grade.

Instrumentation

¹H NMR, ¹³C NMR spectra were recorded on a Bruker DRX400 / 500 spectrometer and referenced to the residual proton signals of the solvent. HR-MS were recorded on a Bruker Daltonics microTOF-Q II spectrometer. UV-visible absorption spectra and fluorescence emission spectra were recorded on a commercial spectrophotometer (Shimadzu UV-1800 and Horiba JobinYvonFluorolog-3 spectrofluorimeter) at room temperature. Photothermal effects were determined using a UNI-T UT325 thermometer. Infrared (IR) thermal imaging was performed using a FLIR E53 thermal imaging camera.

I.1 Synthesis and Characterization

(Z)-2-(pyridin-2-ylmethylene)indolin-3-one

To a stirred solution of 1-acetylindolin-3-one (500 mg, 2.8 mmol) and picolinaldehyde (306 mg, 2.8 mmol) in DMF (10 mL) under argon atmosphere at room temperature, then triethylamine (0.4 ml) was added to the mixture and stirred vigorously overnight. The reaction mixture solution was added to distilled water and left to stand for a period of time when solid and liquid separate. The orange product (*Z*)-2-(pyridin-2-ylmethylene)indolin-3-one (602 mg, 95% yield) was obtained by filtering and drying. ¹H NMR (400 MHz, CDCl₃): δ ppm 9.96 (s, 1 H), 8.66 (d, *J* = 4.0 Hz, 1 H), 7.70-7.66 (m, 2 H), 7.45 (t, *J* = 8.0 Hz, 1 H), 7.38 (d, *J* = 8.0 Hz, 1 H), 7.14 (t, *J* = 4.0 Hz, 1 H), 6.97 (d, *J* = 8.0 Hz, 1 H), 6.90 (t, *J* = .08 Hz, 1 H), 6.61 (s, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ ppm 186.9, 155.9, 153.2, 149.3, 137.4, 136.6, 135.0, 127.5, 125.6, 122.2, 120.7, 120.1, 112.9, 105.2. HRMS-ESI: m/z: calcd for [C₁₄H₁₁N₂O]⁺: 223.0866, found: 223.0857.

(Z)-2-(quinolin-2-ylmethylene)indolin-3-one

Prepared from (Z)-2-(pyridin-2-ylmethylene)indolin-3-one analogously to (Z)-2-(quinolin-2-ylmethylene)indolin-3one (80% yield). ¹H NMR (400 MHz, CDCl₃): δ ppm 10.46 (s, 1 H), 8.07 (d, *J* = 12.0 Hz, 2 H), 7.77-7.69 (m, 3 H), 7.52-7.45 (m, 2 H), 7.43 (d, *J* = 8.0 Hz, 1 H), 7.01 (d, *J* = 8.0 Hz, 1 H), 6.92 (t, *J* = 8.0 Hz, 1 H), 6.69 (s, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ ppm 187.9, 156.6, 153.1, 148.7, 139.1, 136.6, 136.3, 123.0, 128.8, 126.6, 125.2, 124.1, 121.3, 120.4, 111.3, 104.6. HRMS-ESI: m/z: calcd for [C₁₈H₁₃N₂O]⁺: 273.1022, found: 273.1026.

(Z)-2-(benzo[d]thiazol-2-ylmethylene)indolin-3-one

Prepared from (Z)-2-(pyridin-2-ylmethylene)indolin-3-one analogously to (Z)-2-(benzo[d]thiazol-2ylmethylene)indolin-3-one (87% yield). ¹H NMR (400 MHz, DMSO- d_6) δ 10.37 (s, 1H), 8.13 (d, J = 8.3 Hz, 2H), 7.62 – 7.56 (m, 3H), 7.47 – 7.45 (m, 1H), 7.38 (d, J = 8.0 Hz, 1H), 6.98 (t, J =8.0 Hz, 1H), 6.79 (s, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 186.7, 163.5, 153.9, 153.7, 137.5, 137.1, 134.9, 126.8, 125.4, 124.4, 122.5, 122.3, 120.9, 119.7, 113.2, 97.4. HRMS-ESI: m/z: calcd for [C₁₆H₁₁N₂OS]⁺: 279.0587, found: 279.0577.

6,6-difluoro-6l4,7l4-pyrido[1',2':1,6][1,3,2]diazaborinino[3,4-a]indol-13(6H)-one (1a)

(Z)-2-(pyridin-2-ylmethylene)indolin-3-one (450 mg, 2 mmol) was dissolved in dichloromethane (50 mL) and triethylamine (2 mL) was added under argon atmosphere at room temperature. After 10 minutes, boron trifluoride ether (2.5 mL) was added and the reaction was stopped when the raw material disappeared at TLC. Then extraction

with CH₂Cl₂, concentration in vacuo, and flash column chromatography employing gradient elution afforded the desired product **1a** (66% yield) and further recrystallization by CH₂Cl₂/hexane (~56%).

¹H NMR (400 MHz, CDCl₃): δ ppm 8.68 (d, *J* = 8.0 Hz, 1 H), 7.97 (t, *J* = 8.0 Hz, 1 H), 7.66 (d, *J* = 8.0 Hz, 1 H), 7.53 (t, *J* = 8.0, 4.0 Hz, 1 H), 7.51 (s, 1 H), 7.44 (t, *J* = 8.0, 4.0 Hz, 1 H), 7.37 (d, *J* = 8.0 Hz, 1 H), 7.00 (t, *J* = 8.0 Hz, 1 H), 6.48 (s, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ ppm 189.0, 155.2, 150.9, 142.9, 142.2, 141.2, 137.5, 125.9, 125.4, 122.2, 121.8, 121.7, 114.6, 94.2. HRMS-ESI: m/z: calcd for [C₁₄H₉BF₂N₂NaO]⁺: 293.0671, found: 293.0674.

14,14-difluoro-14l4,15l4-indolo[1',2':3,4][1,3,2]diazaborinino[1,6-a]quinolin-8(14H)-one (2a)

2a was prepared analogously to **1a** (64% yield) and further recrystallization by CH₂Cl₂/hexane (~44%). ¹H NMR (400 MHz, CD₂Cl₂) δ ppm 8.90 (d, *J* = 8.0 Hz, 1H), 8.28 (d, *J* = 8.0 Hz, 1H), 7.87 (t, *J* = 8.0 Hz, 2H), 7.65 (dd, *J* = 8.0, 4.0 Hz, 2H), 7.56 (d, *J* = 8.0 Hz, 1H), 7.50 (d, *J* = 8.0 Hz, 1H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.04 (t, *J*=8.0 Hz, 1H), 6.47 (s, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ ppm 153.1, 142.4, 137.7, 132.7, 129.6, 127.7, 127.6, 125.2, 124.3, 122.6, 121.0, 114.3, 95.4, 39.5. HRMS-ESI : m/z: calcd for [C₁₈H₁₂BF₂N₂O]⁺: 321.1009, found: 321.0998.

6,6-difluoro-6l4,7l4-benzo[4',5']thiazolo[3',2':1,6][1,3,2]diazaborinino[3,4-a]indol-14(6H)-one (3a)

3a was prepared analogously to **1a** (71% yield) and further recrystallization by CH₂Cl₂/hexane (~51%). ¹H NMR (400 MHz, CDCl₃) δ ppm 8.36 (d, *J* = 8.0 Hz, 1 H), 7.82 (d, *J* = 12.0 Hz, 1 H), 7.67 (d, *J* = 8.0 Hz, 1 H), 7.63 (d, *J* = 8.0 Hz, 1 H), 7.57 (t, *J* = 8.0 Hz, 1 H), 7.51 (d, *J* = 8.0 Hz, 1 H), 7.48 (t, *J* = 8.0 Hz, 1 H), 7.08 (t, *J* = 8.0, 4.0 Hz, 1 H), 6.59 (s, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ ppm 187.8, 167.5, 154.9, 145.3, 142.9, 137.7, 129.6, 128.7, 126.7, 125.6, 123.9, 122.1, 121.6, 119.8, 115.8, 87.9. HRMS-ESI: m/z: calcd for [C₁₆H₉BF₂N₂NaOS]⁺: 349.0392, found: 349.0395.

6,6-diphenyl-6l4,7l4-pyrido[1',2':1,6][1,3,2]diazaborinino[3,4-a]indol-13(6H)-one (1b)

To a stirred solution of (Z)-2-(pyridin-2-ylmethylene)indolin-3-one (450 mg, 2 mmol) and triphenylboron (500 mg, 2.1 mmol) in anhydrous solution of toluene under argon and the solution was heated to the reflux temperature for 3 h. The solvent was removed in vacuo and purified by column chromatography to yield (733 mg, 95%) of purple black solid. ¹H NMR (400 MHz, CDCl₃): δ ppm 8.09 (d, *J* = 8.0 Hz, 1 H), 7.79 (t, *J* = 8.0 Hz, 1 H), 7.61 (d, *J* = 8.0 Hz, 1 H), 7.39 (d, *J* = 8.0 Hz, 1 H), 7.33-7.30 (m, 4 H), 7.28-7.26 (m, 6 H), 7.15 (t, *J* = 5.0 Hz, 1 H), 7.08 (t, *J* = 8.0 Hz, 1 H), 6.77 (t, *J* = 8.0 Hz, 1 H), 6.40 (s, 1 H), 6.09 (d, *J* = 8.0 Hz, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ ppm 189.7, 158.5, 151.8, 145.6, 144.8, 140.1, 136.8, 133.9, 127.9, 127.1, 125.3, 125.1, 122.1, 121.2, 120.1, 114.9, 96.3. HRMS-ESI: *m*/*z*: calcd for [C₂₆H₁₉BN₂NaO]⁺: 409.1487, found: 409.1467.

14,14-diphenyl-14l4,15l4-indolo[1',2':3,4][1,3,2]diazaborinino[1,6-a]quinolin-8(14H)-one (2b)

2b was prepared analogously to **1b** (78% yield) and further recrystallization by CH₂Cl₂/hexane (~68%). ¹H NMR (400 MHz, CDCl₃): δ ppm 8.35 (d, *J* = 8.0 Hz, 1 H), 8.14 (d, *J* = 8.0 Hz, 1 H), 7.68-7.64 (m, 5 H), 7.53 (d, *J* = 8.0 Hz, 1 H), 7.45 (d, *J* = 8.0 Hz, 1 H), 7.31-7.24 (m, 4 H), 7.22 -7.19 (m, 4 H), 7.09 (t, *J* = 8.0 Hz, 1 H), 6.76 (t, *J* = 4.0 Hz, 1 H), 6.39 (s, 1 H), 6.34 (d, *J* = 8.0 Hz, 1 H). ¹³C NMR (100 MHz, CD₂Cl₂): δ ppm 189.7, 157.4, 153.9, 144.3, 142.2, 141.3, 136.6, 133.9, 130.6, 129.0, 128.9, 128.0, 126.8, 126.5, 126.3, 125.0, 124.3, 122.6, 121.0, 115.5, 95.4. HRMS-ESI: *m/z*: calcd for [C₃₀H₂₂BN₂O]⁺: 437.1825, found: 437.1837.

6,6-diphenyl-6l4,7l4-benzo[4',5']thiazolo[3',2':1,6][1,3,2]diazaborinino[3,4-a]indol-14(6H)-one (3b)

3b was prepared analogously to **1b** (80% yield). ¹H NMR (400 MHz, CDCl₃): δ ppm 7.71 (d, *J* = 8.0 Hz, 1 H), 7.59 (d, *J* = 8.0 Hz, 1 H), 7.56-7.54 (m, 4 H), 7.34 (d, *J* = 8.0 Hz, 1 H), 7.30-7.27 (m, 7 H), 7.18 (t, *J* = 8.0 Hz, 1 H), 7.11 (t, *J* = 8.0 Hz, 1 H), 6.83 (t, *J* = 8.0 Hz, 1 H), 6.47 (s, 1 H), 6.29 (d, *J* = 8.0 Hz, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ ppm 189.4, 166.4, 157.9, 145.9, 145.7, 137.0, 133.9, 130.6, 128.0, 127.6, 127.1, 125.5, 125.2, 122.3, 121.9, 121.4, 121.3, 115.9, 89.1. HRMS-ESI: m/z: calcd for [C₂₈H₂₀BN₂OS]⁺: 443.1389, found: 443.1375.

(Z)-2-((5-bromopyridin-2-yl)methylene)indolin-3-one

Prepared from (Z)-2-(pyridin-2-ylmethylene)indolin-3-one analogously to (Z)-2-((5-bromopyridin-2-yl)methylene)indolin-3-one (90% yield). ¹H NMR (400 MHz, CDCl₃) δ ppm 9.69 (s, 1H), 8.69 (d, *J* = 2.2 Hz, 1H), 7.78 (dd, *J* = 8.0, 4.0 Hz, 1H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.47 – 7.43 (m, 1H), 7.26 (s, 1H), 6.97 (d, *J* = 8.0 Hz, 1H), 6.92 (t, *J* = 8.0 Hz, 1H), 6.52 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ ppm 187.72, 154.4, 153.1, 150.5, 139.3, 138.4, 136.7, 127.1, 125.3, 120.8, 120.5, 118.3, 111.7, 103.9. HRMS-ESI: *m/z*: calcd for [C₁₄H₉BrN₂O+H]+300.9971, found: 300.9956.

9-bromo-6,6-diphenyl-6l4,7l4-pyrido[1',2':1,6][1,3,2]diazaborinino[3,4-a]indol-13(6H)-one (1c)

1c was prepared analogously to **1b** (90% yield). ¹H NMR (400 MHz, CDCl₃): δ ppm 8.10 (d, *J* = 4.0 Hz, 1 H), 7.85 (d, *J* = 4.0 Hz, 1 H), 7.60 (d, *J* = 4.0 Hz, 1 H), 7.32-7.28 (m, 10 H), 7.24 (d, *J* = 8.0 Hz, 1 H), 7.07 (t, *J* = 8.0 Hz, 1 H), 6.80 (t, *J* = 8.0, 4.0 Hz, 1 H), 6.32 (s, 1 H), 6.04 (d, *J* = 8.0 Hz, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ ppm 188.8, 158.5, 151.7, 146.9, 144.9, 142.7, 136.8, 132.0, 128.7, 127.3, 125.9, 125.1, 122.0, 120.5, 115.8, 114.9, 95.2. HRMS-ESI: *m/z*. calcd for [C₂₆H₁₉BBrN₂O]+: 465.0773, found: 465.0780.

6,6,9-triphenyl-6l4,7l4-pyrido[1',2':1,6][1,3,2]diazaborinino[3,4-a]indol-13(6H)-one (4a)

Compound **1c** (150 mg, 0.32 mmol), Pd(PPh₃)₄ (37 mg, 0.032 mmol) and 4,4,5,5-tetramethyl-2-phenyl-1,3,2dioxaborolane (80 µL, 0.38 mmol) in THF (15 mL) were mixed under an argon atmosphere, then degassed sodium carbonate aqueous solution (1 mL, 2 M in water) was added and the mixture was heated at reflux for 2 h. After cooling to room temperature, the mixture was poured into water and extracted with CH₂Cl₂, then dried over anhydrous Na₂SO₄, and the solvent was evaporated. The residue was purified by column chromatography on silica gel and a product **4a** (123 mg, 83%) was found. ¹H NMR (400 MHz, CDCl₃): δ ppm 8.31 (d, *J* = 8.0 Hz, 1 H), 7.99 (d, *J* = 8.0 Hz, 1 H), 7.63 (d, *J* = 8.0 Hz, 1 H), 7.46-7.37 (m, 8 H), 7.34-7.27 (m, 8 H), 7.11 (t, *J* = 8.0 Hz, 1 H), 6.78 (t, *J* = 8.0 Hz, 1 H), 6.45 (s, 1 H), 6.15 (d, *J* = 8.0 Hz, 1 H). ¹³C NMR (100 MHz, CD₂Cl₂): δ ppm 189.5, 158.6, 150.0, 145.0, 144.1, 139.5, 136.7, 135.6, 135.1, 134.1, 129.8, 129.5, 128.1, 127.3, 126.9, 125.9, 125.0, 122.5, 120.3, 115.1, 96.2. HRMS-ESI: *m/z* calcd for [C₃₂H₂₄BN₂O]⁺: 463.1982, found: 463.1995.

(E)-6,6-diphenyl-9-styryl-6l4,7l4-pyrido[1',2':1,6][1,3,2]diazaborinino[3,4-a]indol-13(6H)-one (4b)

To a solution of ethynylbenzene (204 mg, 2.0 mmol) and catecholborane (0.26 mL, 2.4 mmol) in THF and the solution was heated to reflux under an argon atmosphere. After 1.5 h, catecholborane (0.2 mL, 1.8 mmol) was added again and stirred at the same temperature for 2h. Cooling to room temperature, the degassed solution of **1c** (600 mg, 1.3 mmol) and Pd(PPh₃)₄ (550 mg, 0.48 mmol) in THF (20 mL) was added dropwise and continued to react for half an hour. Then the degassed aqueous Na₂CO₃ (2 mL, 2 M in the water) was added and the mixture was heated to reflux for 10 h. After cooling to room temperature, extraction with CH₂Cl₂, concentration in vacuo, and flash column chromatography employing gradient elution afforded the desired product **4b** (482 mg, 76 % yield) and further recrystallization by CH₂Cl₂/hexane (-56%). ¹H NMR (400 MHz, CD₂Cl₂): δ ppm 8.08 (s, 1 H), 8.05 (d, J = 8.0 Hz, 1 H), 7.57 (d, J = 8.0 Hz, 1 H), 7.48-7.45 (m, 2 H), 7.42 (s, 1 H), 7.38-7.34 (m, 7 H), 7.32-7.27 (m, 6 H), 7.08 (d, J = 8.0 Hz, 1 H), 7.05 (s, 1 H), 6.86 (d, J = 16.0 Hz, 1 H), 6.78 (t, J = 8.0 Hz, 1 H), 6.41 (s, 1 H), 6.09 (d, J = 8.0 Hz, 1 H). ¹³C NMR (100 MHz, CD₂Cl₂): δ ppm 187.4, 170.7, 158.4, 150.1, 144.9, 144.5, 136.6, 136.3, 136.0, 134.2, 132.6, 129.3, 128.1, 127.3, 127.2, 125.9, 125.0, 123.0, 122.5, 120.3, 115.1, 96.6. HRMS-ESI: m/z: calcd for [C₃₄H₂₆BN₂O]*: 489.2139, found: 489.2147.

6,6-diphenyl-9-(phenylethynyl)-6l4,7l4-pyrido[1',2':1,6][1,3,2]diazaborinino[3,4-a]indol-13(6H)-one (4c)

Compound **1c** (232 mg, 0.5 mmol), $PdCl_2(PPh_3)_2$ (105 mg, 0.15 mmol) and Cul (9.5 mg, 0.05 mmol) were dissolved in degassed solution of toluene/triethylamine (20 mL, 5:1, v/v) under an argon atmosphere, then ethynylbenzene (0.5 mL, 2.2 mmol) was added and the mixture was stirred at 60 °C for 10 h. The mixture was allowed to cool to room temperature and then was washed with water and extracted with CH_2CI_2 , concentrated and chromatographed to afford a purple black solid (190 mg, 78% yield). ¹H NMR (400 MHz, CDCI₃): δ ppm 8.18 (d, J = 4.0 Hz, 1 H), 7.82 (d, J = 8.0 Hz, 1 H), 7.61 (d, J = 4.0 Hz, 1 H), 7.50-7.37 (m, 2 H), 7.35-7.31 (m, 8 H), 7.30-7.28 (m, 6 H), 7.09 (t, J = 8.0 Hz, 1 H), 6.80 (t, J = 8.0 Hz, 1 H), 6.37 (s, 1 H), 6.04 (d, J = 8.0 Hz, 1 H). ¹³C NMR (100 MHz, CD₂Cl₂): δ ppm 189.4, 157.8, 150.7, 148.0, 145.1, 142.4, 136.8, 134.2, 132.1, 129.8, 129.0, 128.2, 127.4, 125.4, 125.1, 122.5, 122.1, 120.7, 118.4, 114.1, 96.0, 95.5, 84.7. HRMS-ESI: m/z: calcd for [C₃₄H₂₄BN₂O]⁺: 487.1982, found: 487.1985.

I.2 TD-DFT calculation

The ground state structures of compounds **1a-3b** and **4a-4c** are optimized using the density functional theory (DFT) method with the B3LYP functional and 6-31G(d) basis set. The absorption properties were predicted by the timedependent (TD-DFT) method with the same basis set. The vertical excitation related calculations are based on the optimized ground-state geometry (S₀ state), while the emission related calculations were based on the optimized excited state (S₁ state) geometry at the B3LYP/6-31G (d, p) level. Anisotropy of the induced current density (ACID) plots were calculated by Herges's method.^{S1} Nucleus independent chemical shifts (NICS) values were calculated using the standard gauge invariant atomic orbital (GIAO)^{S2} method at the level of B3LYP/6-311G(d,p). All NICS values have been calculated at 1 Å above the center (NICS(1)) of each ring. All of the calculations were performed with the Gaussian09 program package.^{S3}

Fig. S1. Frontier orbital energy and nodal patterns of the frontier π MOs of the dyes **1b-4c** were calculated in dichloromethane with the PCM by using the B3LYP functional with the 6-31G (d, p) basis set.

Fig. S2. (a) Potential energy curves (PECs) of the S_0 and S_1 states of BOISPY and BOINPY. (b) Isosurfaces (isovalue = 0.002) of hole and electron distributions for the S_1 state of BOISPY and BOINPY. ^{S4} The blue and green isosurfaces represent hole and electron distributions, respectively.

 Table S1. Selected transition energies and wave functions of dyes calculated using the TD-DFT method with the

 B3LYP functional and 6-31G (d, *p*) basis set.

Dyes	State ^a	Energy [eV]	λ _{abs} [nm]	f ^b	Orbitals (coefficient) ^c
1a	S1	2.48	500	0.21	H→L (96%)
1b	S1	2.22	559	0.14	H→L (98%)
2a	S1	2.36	527	0.29	H→L (97%)
2b	S1	2.04	607	0.19	H→L (99%)
3a	S1	2.44	509	0.27	H→L (96%)
3b	S1	2.13	582	0.18	H→L (98%)
1a-Br	S1	2.45	506	0.26	H→L (97%)
1c	S1	2.18	568	0.17	H→L (98%)
4a	S1	2.16	573	0.22	H→L (98%)
4b	S1	2.08	597	0.40	H→L (97%)
4c	S1	2.12	585	0.34	H→L (97%)

^aExcited state. ^bOscillator strength. ^cMOs involved in the transitions with H and L denoting the HOMO and LUMO, respectively.

I.3 X-ray analysis

Crystals of dyes **1a**, **3a** and **2b** suitable for X-ray analysis were obtained by slow diffusion of hexane into their dichloromethane solutions about a week period at room temperature. A suitable crystal was chosen and mounted on a glass fiber using grease. Data were collected using a diffractometer equipped with a graphite crystal monochromator situated in the incident beam for data collection at room temperature. The determination of unit cell parameters and data collections were performed with Mo K α radiation (λ) at 0.71073 Å. The structure was solved by the direct method using the SHELXS-974 program and refined by the least-squares method on F², SHELXL-97, incorporated in SHELXTL V5.10.

Crystallographic Data for compound **1a**: C₁₄H₉BF₂N₂O, M_w =270.04, monoclinic, space group P 21/c, *a* = 7.7662(11) Å, *b* = 20.908(3) Å, *c* = 7.2899(11) Å, *a* = 90.00 °, *β* = 90.463(3)°, *γ* = 90.00 °, *V* = 1183.7(3) Å³, *Z* = 4, F(000) = 552.0, *ρ* = 1.515 Mg m⁻³, *R*1 [I>2 σ (I)] = 0.0733, w*R*2 [all data] = 0.2239, GOF = 1.023. CCDC 2142887.

Crystallographic Data for compound **2b**: C₃₀H₂₁BN₂O, M_w = 436.30, tetragonal, space group I 41/a, a = 17.675(3)Å, b = 17.675(3) Å, c = 29.023(5) Å, $\alpha = 90.00$ °, $\beta = 90.00$ °, $\gamma = 90.00$ °, V = 9067(3) Å³, Z = 16, F(000) = 3648.0, $\rho = 1.278$ Mg m⁻³, *R*1 [I>2 σ (I)] = 0.0643, w*R*2 [all data] = 0.2155, GOF = 1.018. CCDC 2142890.

Crystallographic Data for compound **3a**: C₁₆H₉BF₂N₂OS, M_w = 326.12, monoclinic, space group P 21/c, *a* = 7.763(3) Å, *b* = 24.877(10) Å, *c* = 7.273(3) Å, *a* = 90.00 °, *β* = 90.525(12)°, *γ* = 90.00 °, *V* = 1404.5(10) Å³, *Z* = 4, F(000) = 664.0, *ρ* = 1.542 Mg m⁻³, *R*1 [I>2 σ (I)] = 0.0807, w*R*2 [all data] = 0.2198, GOF = 1.125. CCDC 2142888.

Fig. S3. Packing diagram (right) views of the molecular structures of **1a** (a), **3a** (b), and **2b**(c) with the thermal ellipsoids set at 50% probability. Green for F atom, red for O atom, blue for N atom, black for C atom, pink for B atom, grey for H, yellow for S.

I.4 Spectroscopic measurements

Fig. S4 The absorption spectra of 1a-4c in different solvents.

Fig. S5 (a) The emission of **1a-3b** in 2-Methyltetrahydrofuran solution at room temperature. (b) The emission of **1b**, and **4a-4c** in 2-Methyltetrahydrofuran solution at room temperature.

		λ_{abs}	ε _{abs}	Film		λ_{abs}	ε _{abs}	Film
	solvent	[nm]	[M⁻¹ cm⁻¹]	[nm]		[nm]	[M⁻¹ cm⁻¹]	[nm]
1a	Hexane	518	26500		1b	586	18400	
	Toluene	521	25800			590	18300	
	CH_2CI_2	518	24900	527		593	16900	644
	THF	515	26100			585	16800	
	CH₃CN	510	25900			585	16800	
2a	Hexane	552	13500		2b	636	25400	
	Toluene	556	48200			641	24600	
	CH_2CI_2	552	52200	567		644	24500	720
	THF	550	52600			637	23900	
	CH₃CN	545	50800			638	23700	
3a	Hexane	531	32800		3b	604	24300	
	Toluene	534	30900			613	24800	
	CH_2CI_2	534	30700	576		618	24100	672
	THF	531	30900			611	23800	
	CH₃CN	528	31100			615	24000	
4a	Hexane	598	16000		4b	618	23600	
	Toluene	604	16200			618	20600	
	CH_2CI_2	608	15400	645		625	24500	660
	THF	599	16200			612	26200	
	CH₃CN	599	14800			620	25200	
4c	Hexane	613	78000					
	Toluene	612	76400					
	CH_2CI_2	621	72200	639				
	THF	611	74300					
	CH₃CN	617	72300					

Table S2 The absorption of 1a-3b and 4a-4c in various solvents and the film at 298 K

I.5 Singlet oxygen generation

Singlet oxygen quantum yields of the photosensitizers were calculated by monitoring the photooxidation of 1,3diphenyl isobenzofuran (DPBF), a known singlet oxygen scavenger, using Rose Bengal (RB) for **1a-3a** ($\Phi_{\Delta}(RB)$ =0.75 in methanol) and using MB for **1b-3b** and **4a-4c**($\Phi_{\Delta}(MB)$ =0.57 in DCM).^{S5} The mixture of photosensitizer and DPBF was irradiated with a 635 nm laser beam at a power of 100 mW/cm² at 50 s intervals. The absorbance was measured after each irradiation and a decrease in the absorption band intensity for DPBF at 411 nm was observed. The following equation was used to calculate the singlet oxygen quantum yield of the sensitizer:

$$\Phi_{\Delta(x)} = \Phi_{\Delta(\text{std})}(\frac{S_x}{S_{\text{std}}})(\frac{F_{\text{std}}}{F_x})$$

where $\Phi_{\Delta(x)}$ is the singlet oxygen quantum yield of the sample, the ' χ ' and 'std' subscripts denote the sample and MB standard, respectively, S denotes the slope of a plot of the change in absorbance for DPBF at 414 nm vs the irradiation time, and *F* is the absorption correction factor, which is given by $F = 1-10^{-OD}$ (where OD represents the optical density of sample and MB at the irradiation wavelength).

Fig. S6. Absorbance decrease at 414 nm of DPBF in the presence of **1a-3a**, **RB** under irradiation of 525 nm laser. The single oxygen generation is based on a plot of changes in absorbance by DPBF at 414 nm against irradiation time ($\lambda_{irr} = 525$ nm) in the presence of RB, or photosensitizer in dichloromethane.

Fig. S7. Absorbance decrease at 414 nm of DPBF in the presence of **1b-3b** and **4a-4c**, **MB** under irradiation of 635 nm laser. The single oxygen generation is based on a plot of changes in absorbance by DPBF at 414 nm against irradiation time ($\lambda_{irr} = 635$ nm) in the presence of MB, or photosensitizer in dichloromethane

I.6 PTT properties of dyes

Photothermal property of BOINPYs 2b and 4a-4c

The photothermal effect of dye in DMF was examined under 650 nm laser irradiationy recording the temperature of the samples as the irradiation time increases. At the same time, pure DMF was used as a negative control group. (1) With a 650 nm laser irradiation (0.8 W cm⁻²) for 15 min, the temperature-rising curve of dye with different concerntration (12.5, 25, 50, and 100 µmol/L) and pure DMF were recorded. (2) dye (50 µmol/L) were irradiated by a 650 nm laser with different laser intensity (0.2, 0.4, 0.8, and 1.0 W cm⁻²) for 15 min. (3) dye sample was circulatively irradiated at power density of 0.8 W/cm² for four times, consisting of irradiation period of 15 min and cooling progress until the sample temperature decreased to room temperature.

Photothermal Conversion Efficiency of BOINPYs 2b, 4a-4c and 2b@F127

2b or 4a-4c in DMF or **2b**@F127 NPs in water were irradiation by 650 nm laser for 15 min and then cooled to room temperature, and the temperature of samples were recorded by an infrared camera, relatively. At the same time, pure DMF or water were used as the negative control group.

The photothermal conversion efficiencies (η) was measured and calculated according to these equations (1-4):

$$\eta = \frac{hS(T_{\max} - T_{surr}) - Q_s}{I(1 - 10^{-A})}$$
(1)

$$\theta = \frac{\Delta T}{\Delta T_{\max}} = \frac{T - T_{surr}}{T_{max} - T_{surr}} \qquad (2)$$

 $t = -\tau l n \theta \tag{3}$

$$hS = \frac{mC_{\rm p}}{\tau} \tag{4}$$

where *h* is the heat transfer coefficient, **S** is the surface area of the container. The T_{max} and T_{surr} are the maximum temperature of the solution and the ambient temperature, respectively, *I* is the laser power, *A* is the absorbance of the sample at 650 nm and Q_s expresses the heat associated with light absorption by the solvent. *m* and C_p are the mass and heat capacity of the system, respectively, *t* is the heat transfer time constant, which can be determined by the linear relationship of *t* versus -ln θ through the natural cooling curve of the sample.

Fig. S8. (a) Photothermal conversion and (b) temperature changes of **2b** at different concentrations in DMF upon irradiation of 650 nm laser (0.8 W cm⁻²). (c) Photothermal heating curves of **2b** (50 μ M) upon 650 nm laser irradiation with different power intensities. (d) Temperature-change curves of **2b** with or without laser irradiation (650 nm, 0.8 W·cm⁻²). (e) Linear fitting of the time vs -Ln(θ) plot of **2b**. θ is a dimensionless parameter, known as the driving force temperature. (f) Photothermal stability of **2b** for four heating and cooling cycles.

Fig. S9. (a) Photothermal conversion and (b) temperature changes of **4a-4c** at different concentrations in DMF upon irradiation of 650 nm laser (0.8 W cm⁻²), linear fitting of the time vs $-Ln(\theta)$ plot of **4a-4c**. θ is a dimensionless parameter, known as the driving force temperature. (f) Photothermal stability of **4a-4c** for three heating and cooling cycles.

I.7 Preparation of 2b@F127 nanoparticle

2b (2 mg) and Poloxamer F127 (6 mg) was completely dissolved in THF (3 mL) and then 10 mL deionized water was added dropwise into the above solution. After stirring for 24 hours at room temperature, the organic solvent THF was dialyzed against PBS buffer (pH 7.4) for 48 h. **2b**@F127 were stored at 4 °C for further use.

I.8 General animals culture

Cell culture

HeLa cells were cultured in Dulbecco's modified Eagle medium (DMEM, Corning) supplemented with 10 % fetal bovine serum (FBS), 1 % penicillin and streptomycin in an atmosphere of 5 % CO₂ and 95 % air at 37 °C.

ROS detection

ROS generation in live cells was determined using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA), an indicator that reacts with cellular ROS to provide an increase in green fluorescence (DCF). HeLa cells were seeded into confocal dishes. **2b**@F127 (100 μ M) was then added. After 24 h, DCFH-DA (10 μ M) was added and incubated for another 30 min. The cells subject to different treatment conditions (control, Laser, **2b**@F127, and **2b**@F127 + Laser) were then imaged by means of confocal fluorescence microscopy (Ex₄₈₈ / Em₅₂₅).

Cytotoxicity testing

CCK 8 assay was carried out to evaluate the dark toxicity and phototoxicity of 2b@F127. HepG2 cells were first seeded in two 96-well plates, which were incubated at 37 °C for 24 h. After removal of the medium and rinsing with PBS, HepG2 were pretreated with 2b@F127 (final concentration contains 0, 10, 20, 30, 40, 50, 75 or 100 µM) solutions for 24 h. One plate was kept in the dark for studying dark toxicity, and another plate was irradiated using the 650 nm laser at a power of 0.5 W cm⁻² for 10 min. The cells were incubated for 24 h, followed by addition of CCK 8 (10 µL) for additional 1 h incubation. The absorbance at 450 nm was measured using a Microplate Reader.

Dead/live cell co-staining

To demonstrate visually the killing effect of 2b@F127, HeLa cells were incubated on confocal plates for 24 h and then treated under different conditions (control, Laser, 2b@F127, and 2b@F127 + Laser). After incubation for 24 h, each plate was incubated with 1 mL of dye solution (2 μ M calcein AM and 4 μ M PI), co-stained for 30 min at 37 °C, and imaged using a confocal fluorescence microscope.

In vivo phototherapy

Nude mice bearing subcutaneous HeLa tumors (~ 100 mm³) were divided into four groups randomly (5 mice for each group): Control, **2b**@F127, Laser, **2b** @F127 + Laser. All samples were injected intratumorally with concentration of 200 μ M. The 650 nm laser irradiation was applied in corresponding groups with powder density of 0.5 W cm⁻² for 10 min. After treatment of all the mice on the first day, tumor growth was measured by vernier caliper every two days for 2 weeks and tumor volume (V) was calculated as V = (tumor length) × (tumor width)²/2. The body weight of each mouse was monitored every other day using a digital balance during the treatment. Finally, the tumor issue and main organs (heart, liver, spleen, lung and kidney) of each group after treatment were extracted and fixed with 4% paraformaldehyde for hematoxylin and eosin (H&E) staining. TUNEL analysis of the tumors were also carried out.

Fig. S10 (a) Time-dependent fluorescence spectral changes observed for PBS 7.4 of **2b**@F127 upon light irradiation at 650 nm. (b) Fluorescence changes of SOSG in **2b**@F127 under irradiation (650 nm, 0.2 W cm⁻²) as a function of time. (c) Intracellular ROS level of HeLa cells under different conditions (control without any treatment, Laser, **2b**@F127 and **2b**@F127 + Laser). (d) Corresponding quantification of CLSM images using the green mean fluorescence intensity of DCFH-DA. (e) Fluorescence images of calcein AM (green fluorescence; live cells) and PI (red fluorescence; dead cells) co-stained HeLa cells under different conditions. (f) Typical photographs of colony formation of cancer cells treated with various treatments. Scale bars: 100 μm.

Fig. S11 H&E images of the heart, liver, spleen, lung and kidney under different treatments. Scale bar: 100 µm.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

-- 0.02

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

2.01 1.57 1.41 1.25 1.25 1.25 0.88

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

S35

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

HRMS Spectra

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name D:\Data\Q-TOF-LUH-210106-SXG-1 01.d Method ESI+100-800-201112.m Sample Name Comment

Acquisition Date 1/8/2021 2:13:01 PM

Operator BDAL@DE Instrument / Ser# microTOF-Q II 228888.10

324

Mass Spectrum SmartFormula Report

Analysis Info

Acquisition Date 1/8/2021 2:14:29 PM Analysis Name D:\Data\Q-TOF-LUH-210106-SXG-2_01.d Method ESI+100-800-201112.m BDAL@DE Operator microTOF-Q II 228888.10 Sample Name Instrument / Ser# Comment 324

Acquisition Parameter

Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.0 Bar
Focus	Active	Set Capillary	4800 ∨	Set Dry Heater	220 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 ∨	Set Dry Gas	5.0 l/min
Scan End	750 m/z	Set Collision Cell RF	180.0 ∨pp	Set Divert Valve	Waste

Analysis Info Acquisition Date 1/8/2021 2:21:20 PM Analysis Name D:\Data\Q-TOF-LUH-210106-SXG-3_01.d Method ESI+100-800-201112.m Operator BDAL@DE Sample Name microTOF-Q II 228888.10 Instrument / Ser# 324 Comment Acquisition Parameter Ion Polarity Source Type ESI Positive Set Nebulizer 1.0 Bar Set Capillary Set End Plate Offset Set Dry Heater Set Dry Gas 220 °C 5.0 l/min 4800 V -500 V Focus Active Scan Begin Scan End 50 m/z 750 m/z Set Collision Cell RF 180.0 Vpp Set Divert Valve Waste +MS, 1.4-1.6min #81-97 Intens x104 5 279.0577 4 3-Chemical Formula: C₁₆H₁₀N₂OS Exact Mass: 278.1 2 1 274.2727 287.1369 0 260 265 270 275 280 285 290 295 m/z mSigma # Sigma e⁻Conf Ion Formula rdb N-Rule Meas. m/z # m/z err [ppm] Score C16H11N2OS 100.00 279.0577 1 279.0587 3.5 3.7 12.5 even ok Mass Spectrum SmartFormula Report Analysis Info Acquisition Date 1/8/2021 2:23:18 PM Analysis Name D:\Data\Q-TOF-LUH-210106-SXG-4_01.d Method ESI+100-800-201112.m Operator BDAL@DE Sample Name Instrument / Ser# microTOF-Q II 228888.10 324 Comment Acquisition Parameter . Source Type ESI Ion Polarity Positive Set Nebulizer 1.0 Bar Set Capillary Set End Plate Offset 4800 V -500 V Set Dry Heater Set Dry Gas 220 °C 5.0 l/min Focus Active Scan Begin Scan End 50 m/z 750 m/z Set Collision Cell RF 180.0 Vpp Set Divert Valve Waste Intens. x10⁴ +MS, 1.9-1.9min #114-116 300.9956 4 3 2 Chemical Formula: C14H9BrN2O Exact Mass: 300.0

300

mSigma

9.0

err [ppm]

-5.0

305

Sigma

1

310

rdb

10.5

Score

100.00

315

N-Rule

ok

e^COnf

even

m/z

295

m/z

300.9971

290

Ion Formula

C14H10BrN2O

0

Meas. m/z

300.9956

285

#

1

mSigma

3.1

Ion Formula

C26H19BN2NaO

m/z

409.1487

err [ppm]

-4.9

Meas. m/z

409.1467

#

1

Sigma

1

Score

100.00

rdb

18.5

e Conf

even

m/z

N-Rule

ok

Analysis Info

Analysis Name Method Sample Name Comment

D:\Data\Q-TOF-LUH-210106-SXG-9_01.d ESI+100-800-201112.m

Acquisition Date 1/8/2021 2:36:03 PM

Operator BDAL@DE Instrument / Ser# microTOF-Q II 228888.10

324

Mass Spectrum SmartFormula Report

Analysis Info

D:\Data\Q-TOF-LUH-210106-SXG-10_01.d Analysis Name Method ESI+100-800-201112.m Sample Name Comment

1/8/2021 2:40:11 PM Acquisition Date Operator BDAL@DE microTOF-Q II 228888.10 Instrument / Ser#

324

Acquisition Parameter Source Type 1.0 Bar 220 °C 5.0 I/min FSI Ion Polarity Positive Set Nebulizer 4800 V Set Dry Heater Focus Active Set Capillary -500 V Scan Begin Scan End 50 m/z Set End Plate Offset Set Dry Gas 750 m/z Set Collision Cell RF 180.0 Vpp Set Divert Valve Waste

mSigma

11.3

rdb

22.5

100.00

e Conf

ok

even

Ion Formula

C32H24BN2O

m/z

463.1982

err [ppm]

-2.9

Meas. m/z

463.1995

#

1

Analysis Info

Analysis Name Method Sample Name Comment

D:\Data\Q-TOF-LUH-210106-SXG-13 01.d ESI+100-800-201112.m

1/8/2021 2:47:50 PM Acquisition Date

BDAL@DE Operator Instrument / Ser# microTOF-Q II 228888.10

324

Mass Spectrum SmartFormula Report

Analysis Info

D:\Data\Q-TOF-LUH-210106-SXG-14_01.d Analysis Name ESI+100-800-201112.m Method Sample Name Comment

1/8/2021 2:50:35 PM

Acquisition Date

Acquisition Parameter

				1.0 Du
Active	Set Capillary	4800 V	Set Dry Heater	220 °C
0 m/z	Set End Plate Offset	-500 V	Set Dry Gas	5.0 l/min
′50 m/z	Set Collision Cell RF	180.0 Vpp	Set Divert ∀alve	Waste
	50 m/z 750 m/z	50 m/z Set Capiliary 50 m/z Set End Plate Offset 50 m/z Set Collision Cell RF	50 m/z Set Capillary 4000 V 50 m/z Set End Plate Offset -500 V 50 m/z Set Collision Cell RF 180.0 Vpp	Set Capitally 4600 V Set Div Heater 50 m/z Set End Plate Offset -500 V Set Dry Gas 750 m/z Set Collision Cell RF 180.0 Vpp Set Divert Valve

BDAL@DE Operator Instrument / Ser# microTOF-Q II 228888.10 324

III Cartesian coordinates

DFT optimized S_0 state geometry of compound **1a**.

Center	Ato	mic Ato	mic	Coordinates	(Angstroms)	
Num	ber	Number	туре	X	ΥZ	
 1	6	0	3.938819	0.808442	-0.147487	
2	6	0	4.606962	-0.411304	-0.261219	
3	6	0	3.880491	-1.611351	-0.283583	
4	6	0	2.484693	-1.638686	-0.193140	
5	6	0	1.830359	-0.416429	-0.072082	
6	6	0	2.549155	0.794704	-0.054181	
7	7	0	0.445451	-0.177637	0.033373	
8	6	0	0.230717	1.163288	0.108251	
9	6	0	1.568269	1.886537	0.066994	
10	8	0	1.724685	3.094685	0.115891	
11	5	0	-0.661092	-1.192309	0.320420	
12	7	0	-2.045285	-0.428136	-0.026637	
13	6	0	-2.179566	0.936853	0.022301	
14	6	0	-1.004942	1.738963	0.155312	
15	6	0	-3.119616	-1.217080	-0.256495	
16	6	0	-4.390040	-0.705879	-0.416055	
17	6	0	-4.564461	0.686334	-0.335569	
18	6	0	-3.468369	1.497688	-0.122541	
19	9	0	-0.572797	-2.308542	-0.495643	
20	9	0	-0.720963	-1.545893	1.655954	
21	1	0	4.474776	1.752523	-0.129984	
22	1	0	5.689246	-0.435778	-0.335709	
23	1	0	4.416192	-2.551770	-0.377375	
24	1	0	1.928605	-2.567682	-0.224997	
25	1	0	-1.087013	2.817193	0.205201	
26	1	0	-2.902947	-2.277148	-0.301488	
27	1	0	-5.223627	-1.374350	-0.593639	
28	1	0	-5.552127	1.122563	-0.448144	
29	1	0	-3.567265	2.576356	-0.076077	

SCF done: -948.38292093 Hartree No imaginary Frequency.

 			<u> </u>			
Center	Atom	ic Atc	mic	Coordinates	(Angstroms)	
Numb	ber 1	Number	Туре	Х	Y Z	
 1	6	0	4.485069	-0.686828	-0.237753	
2	6	0	4.885867	0.592481	0.144891	
3	6	0	3.919244	1.579690	0.384645	
4	6	0	2.548472	1.336209	0.247859	
5	6	0	2.151866	0.058354	-0.148533	
6	6	0	3.123279	-0.941006	-0.380054	
7	7	0	0.848621	-0.447532	-0.354042	
8	6	0	0.950475	-1.760570	-0.702171	
9	6	0	2.410546	-2.172781	-0.739106	
10	8	0	2.830710	-3.284335	-1.018015	
11	5	0	-0.530264	0.179386	0.034896	
12	7	0	-1.621523	-0.691624	-0.873530	
13	6	0	-1.408001	-2.008238	-1.201521	
14	6	0	-0.101249	-2.559723	-1.033237	
15	6	0	-2.812839	-0.122765	-1.162351	
16	6	0	-3.861782	-0.816525	-1.735698	
17	6	0	-3.680580	-2.173677	-2.034667	
18	6	0	-2.457078	-2.759011	-1.774580	
19	6	0	-0.899725	-0.113614	1.595739	
20	6	0	0.043551	-0.639006	2.496282	
21	6	0	-0.263700	-0.882808	3.837159	
22	6	0	-1.540761	-0.609720	4.324635	
23	6	0	-2.502840	-0.090299	3.456749	
24	6	0	-2.180329	0.150110	2.120875	
25	6	0	-0.621090	1.729742	-0.443047	
26	6	0	-0.977864	2.784551	0.414784	
27	6	0	-1.028889	4.109967	-0.029456	
28	6	0	-0.723329	4.416820	-1.354740	
29	6	0	-0.363662	3.389324	-2.230801	
30	6	0	-0.313849	2.072531	-1.775742	
31	1	0	5.203078	-1.480511	-0.421136	
32	1	0	5.938985	0.825813	0.262990	
33	1	0	4.240739	2.571750	0.689420	
34	1	0	1.825232	2.117038	0.441930	
35	1	0	0.086587	-3.593234	-1.295537	
36	1	0	-2.895013	0.926765	-0.911470	
37	1	0	-4.796490	-0.306726	-1.935542	

DFT optimized S_0 state geometry of compound **1b**.

38	1	0	-4.484339	-2.755132	-2.475535
39	1	0	-2.267123	-3.798231	-2.018665
40	1	0	1.047110	-0.865289	2.149142
41	1	0	0.496367	-1.289942	4.498914
42	1	0	-1.785439	-0.800128	5.365960
43	1	0	-3.504198	0.126788	3.819861
44	1	0	-2.956254	0.554730	1.474541
45	1	0	-1.212157	2.567482	1.452754
46	1	0	-1.305699	4.901318	0.662333
47	1	0	-0.761096	5.445386	-1.702977
48	1	0	-0.117595	3.616921	-3.264776
49	1	0	-0.021543	1.287781	-2.470544

SCF done: -1211.89501613 Hartree No imaginary Frequency.

 	·					
Center	Ato	mic Ato	mic	Coordinates	(Angstroms))
Numb	ber	Number	Туре	Х	Y Z	
 1	6	0	5.254005	-1.168877	-0.001682	
2	6	0	4.283210	-2.181173	-0.001912	
3	6	0	2.912697	-1.898508	-0.001336	
4	6	0	2.538857	-0.558758	-0.000386	
5	6	0	3.505323	0.465477	-0.000291	
6	6	0	4.866425	0.171844	-0.000920	
7	7	0	1.236549	-0.015032	0.000375	
8	6	0	1.318866	1.333174	0.000595	
9	6	0	2.783194	1.749268	0.000319	
10	8	0	3.195747	2.895849	0.000471	
11	5	0	-0.078440	-0.804962	0.002050	
12	7	0	-1.296134	0.268287	0.000219	
13	6	0	-1.089690	1.615219	0.000106	
14	6	0	0.229361	2.152723	0.000675	
15	6	0	-2.597473	-0.238292	-0.000286	
16	6	0	-3.716616	0.646215	-0.001177	
17	6	0	-3.474001	2.047914	-0.001428	
18	6	0	-2.196767	2.516580	-0.000756	
19	9	0	-0.177355	-1.588539	-1.138686	
20	9	0	-0.177766	-1.584256	1.145610	
21	6	0	-2.843672	-1.632815	0.000197	
22	6	0	-4.140187	-2.108789	-0.000218	
23	6	0	-5.246829	-1.236408	-0.001173	
24	6	0	-5.030930	0.123812	-0.001649	
25	1	0	6.306625	-1.432465	-0.002172	
26	1	0	4.602213	-3.219572	-0.002623	
27	1	0	2.171322	-2.688397	-0.001780	
28	1	0	5.595840	0.976064	-0.000830	
29	1	0	0.371271	3.225537	0.000722	
30	1	0	-4.318557	2.731278	-0.002101	
31	1	0	-1.981469	3.578809	-0.000871	
32	1	0	-2.018011	-2.326867	0.000781	
33	1	0	-4.304290	-3.182003	0.000180	
34	1	0	-6.256254	-1.634770	-0.001517	
35	1	0	-5.863924	0.821134	-0.002353	

DFT optimized S_0 state geometry of compound **2a**.

--

_

SCF done: -1102.02861162 Hartree No imaginary Frequency.

DFT optimized S_0 state geometry of compound **2b**.

 Center	Atomic	At	omic	Coordinates	(Angstrom	s)
Numb	er Nu	Imber	Туре	Х	Ϋ́Ζ	,
 1	6	0	-5.363900	0.471190	-0.351870	
2	6	0	-4.423060	1.494129	-0.174846	
3	6	0	-3.046254	1.246478	-0.129989	
4	6	0	-2.615585	-0.072899	-0.262035	
5	6	0	-3.562481	-1.101425	-0.461033	
6	6	0	-4.929583	-0.845514	-0.503705	
7	7	0	-1.297715	-0.593213	-0.258480	
8	6	0	-1.368281	-1.920133	-0.501438	
9	6	0	-2.817470	-2.353996	-0.628654	
10	8	0	-3.203523	-3.491694	-0.839676	
11	5	0	0.042744	0.152266	0.138471	
12	7	0	1.276808	-0.911503	-0.277301	
13	6	0	1.034988	-2.195043	-0.665941	
14	6	0	-0.284588	-2.724411	-0.685157	
15	6	0	2.599937	-0.465037	-0.220221	
16	6	0	3.673322	-1.283598	-0.690320	
17	6	0	3.377671	-2.597590	-1.143138	
18	6	0	2.096398	-3.048539	-1.097667	
19	6	0	2.933488	0.790583	0.338883	
20	6	0	4.244190	1.226917	0.370089	
21	6	0	5.292686	0.441007	-0.144322	

22	6	0	5.003071	-0.803990	-0.657734
23	6	0	0.166122	1.464494	-0.831285
24	6	0	0.400041	2.783753	-0.403050
25	6	0	0.459325	3.856099	-1.297051
26	6	0	0.293750	3.638261	-2.664483
27	6	0	0.066483	2.339961	-3.123760
28	6	0	0.000470	1.281332	-2.217894
29	6	0	0.061441	0.336741	1.760621
30	6	0	-0.625573	1.379309	2.414865
31	6	0	-0.687455	1.475805	3.806832
32	6	0	-0.059653	0.520771	4.605139
33	6	0	0.621357	-0.530768	3.991867
34	6	0	0.674002	-0.614947	2.600045
35	1	0	-6.422602	0.707281	-0.379853
36	1	0	-4.768069	2.519321	-0.073641
37	1	0	-2.344755	2.062537	-0.025935
38	1	0	-5.626433	-1.663888	-0.657432
39	1	0	-0.441017	-3.767281	-0.928365
40	1	0	4.184236	-3.233030	-1.497926
41	1	0	1.835997	-4.054016	-1.407338
42	1	0	2.164540	1.407078	0.770367
43	1	0	4.463038	2.195369	0.809190
44	1	0	6.314664	0.804883	-0.118292
45	1	0	5.791738	-1.448900	-1.035008
46	1	0	0.542757	2.987820	0.654672
47	1	0	0.638118	4.861098	-0.923352
48	1	0	0.340706	4.468623	-3.363592
49	1	0	-0.064407	2.153301	-4.186526
50	1	0	-0.191030	0.281250	-2.600843
51	1	0	-1.136524	2.137892	1.832078
52	1	0	-1.228742	2.299183	4.265737
53	1	0	-0.103665	0.592176	5.688361
54	1	0	1.112133	-1.288738	4.597060
55	1	0	1.210985	-1.450361	2.159675

SCF done: -1365.53167113 Hartree No imaginary Frequency.

DFT optimized S_0 state geometry of compound **3a**.

 Center	Ato	mic Ate	omic	Coordinates	(Angstron	 າຣ)
 Numb	ber	Number	Туре	X	Y _ Z	
1	6	0	-5.352300	-0.957340	-0.001466	;
2	6	0	-4.454583	-2.034332	-0.001246	i
3	6	0	-3.066956	-1.847126	-0.000633	1
4	6	0	-2.602773	-0.537110	-0.000189	
5	6	0	-3.494687	0.551214	-0.000477	
6	6	0	-4.873000	0.353785	-0.001103	
7	7	0	-1.261154	-0.087207	0.000509	
8	6	0	-1.250268	1.263418	0.000473	
9	6	0	-2.683920	1.780033	-0.000051	
10	8	0	-3.011259	2.953177	-0.000143	3
11	5	0	-0.005528	-0.986936	0.001812	2
12	7	0	1.236877	0.025425	0.000377	7
13	6	0	1.128053	1.362801	0.000373	3
14	6	0	-0.113232	2.031005	0.000634	1
15	9	0	0.059370	-1.767572	1.142239	9
16	9	0	0.059249	-1.770867	-1.136393	3
17	6	0	2.559704	-0.421696	-0.00025	5
18	6	0	3.502566	0.623605	-0.000592	2
19	16	0	2.679151	2.179417	-0.00023	9
20	6	0	2.987134	-1.755641	-0.000600)
21	6	0	4.354092	-2.006796	-0.001134	1
22	6	0	5.290147	-0.960323	-0.001389	9
23	6	0	4.873715	0.368210	-0.001149	9
24	1	0	-6.420620	-1.147177	-0.001954	4
25	1	0	-4.844569	-3.048073	-0.001592	2
26	1	0	-2.382455	-2.686887	-0.000612	2
27	1	0	-5.544898	1.206501	-0.001307	7
28	1	0	-0.185305	3.110051	0.000577	7
29	1	0	2.261642	-2.558653	-0.000576	5
30	1	0	4.702857	-3.034465	-0.00140	1
31	1	0	6.351538	-1.186504	-0.001820)
32	1	0	5.593319	1.179964	-0.001398	3

SCF done: -1422.79638570 Hartree No imaginary Frequency.

DFT optimized S_0 state geometry of compound **3b**.

Center	Ato	mic At	omic	Coordinates	(Angstroms)	
Numb	ber	Number	Туре	Х	Ϋ́Z	
 	~~~~			0.440000		
1	6	0	-5.402418	0.119209	-0.699282	
2	6	0	-4.505015	1.220004	-0.400232	
4	6	0	-2 630857	-0 190061	-0.342019	
5	6	Ő	-3 475230	-1 298849	-0.633473	
6	6	Õ	-4.852498	-1.160477	-0.775428	
7	7	0	-1.274038	-0.599903	-0.300378	
8	6	0	-1.225781	-1.937654	-0.484258	
9	6	0	-2.624766	-2.492670	-0.688802	
10	8	0	-2.902598	-3.665959	-0.868291	
11	5	0	-0.014155	0.242049	0.202047	
12	7	0	1.263873	-0.662733	-0.309860	
13	6	0	1.152360	-1.979533	-0.549144	
14	6	0	-0.072874	-2.673280	-0.561968	
15	6	0	2.592080	-0.216033	-0.395777	
16	16	0	3.508154	-1.235309	-0.733034	
10	10	0	2.070107	-2.704940	-0.920700	
10	6	0	3.077230	1.077920	-0.154544	
20	6	0	5 337609	0.297963	-0.277350	
21	6	ő	4 875755	-0.994688	-0.856477	
22	6	õ	0.004466	1.671655	-0.572858	
23	6	0	0.057591	2.912689	0.086941	
24	6	0	0.056878	4.121288	-0.616185	
25	6	0	0.007036	4.120288	-2.010279	
26	6	0	-0.042868	2.902601	-2.692412	
27	6	0	-0.045637	1.703867	-1.979400	
28	6	0	0.010220	0.284703	1.830004	
29	6	0	1.004875	-0.336550	2.606392	
30	6	0	0.984101	-0.315413	4.003221	
31	6	0	-0.048519	0.331912	4.679017	
32	6	0	-1.056396	0.953750	3.940516	
33	0	0	-1.021082	0.928083	2.540183	
35	1	0	-0.472233	0.204747	-0.000730	
36	1	0	-4.997402	1 964742	-0.437907	
37	1	Ő	-5 468012	-2 039078	-0.942975	
38	1	Ő	-0.123626	-3.739638	-0.735760	
39	1	0	2.400368	1.874819	0.115851	
40	1	Ō	4.815882	2.319257	-0.094076	
41	1	0	6.397338	0.513519	-0.719579	
42	1	0	5.558531	-1.795806	-1.119402	
43	1	0	0.101205	2.934624	1.172258	
44	1	0	0.096483	5.062445	-0.073764	
45	1	0	0.006877	5.057224	-2.560419	
46	1	0	-0.081962	2.888788	-3.778516	
47	1	0	-0.092306	0.766746	-2.530220	
48	1	U	1.824657	-0.856464	2.119395	
49 50	1	0	1.775024	-0.808936	4.001339	
50	1	0	-0.070307	0.349907	0.700120	
52	1	0	-1.0/2414	1 4 1 7 7 7 0	2 005727	
52		0	-1.020010	1.417770	2.000121	

# SCF done: -1686.30505803 Hartree No imaginary Frequency.

DFT optimized  $S_0$  state geometry of compound  $\mbox{1c}.$ 

 			-			
Center	Ato ber	mic Ato	omic Type	Coordinates X	(Angstroms) Y 7	1
1	6	0	-5.703385	-1.061808	-0.000992	
2	6	0	-4.779307	-2.117118	-0.000792	
3	6	0	-3.397508	-1.896466	-0.000375	
4	6	0	-2.963785	-0.574853	-0.000133	
5	6	0	-3.882426	0.491742	-0.000366	
6	6	0	-5.255757	0.259815	-0.000790	
7	7	0	-1.636897	-0.093226	0.000319	
8	6	0	-1.658249	1.263383	0.000281	
9	6	0	-3.103807	1.740959	-0.000095	
10	8	0	-3.464417	2.905097	-0.000193	
11	5	0	-0.363110	-0.939718	0.001130	
12	7	0	0.876959	0.111733	0.000389	
13	6	0	0.753810	1.477754	0.000346	
14	6	0	-0.548005	2.056204	0.000430	
15	6	0	2.096815	-0.473065	0.000074	
16	6	0	3.257450	0.269420	-0.000201	
17	6	0	3.175607	1.672548	-0.000173	
18	6	0	1.931202	2.263001	0.000089	
19	9	0	-0.243469	-1.713247	1.140712	
20	9	0	-0.243316	-1.715125	-1.137164	
21	35	0	4.940054	-0.605583	-0.000611	
22	1	0	-6.766774	-1.277667	-0.001321	
23	1	0	-5.144703	-3.140046	-0.000984	
24	1	0	-2.693357	-2.720112	-0.000296	
25	1	0	-5.947913	1.096252	-0.000958	

26	1	0	-0.665311	3.132204	0.000369
27	1	0	2.102666	-1.555299	0.000047
28	1	0	4.078875	2.272187	-0.000376
29	1	0	1.830214	3.342389	0.000070

SCF done: -3519.47989163 Hartree No imaginary Frequency.

DFT optimized	S ₀ state geo	ometry of	compound	4a.

Center	Ato	mic Ato	mic	Coordinates	(Angstroms)	
Numb	er	Number	Туре	Х	Y Z	
 			E 707E96	4 007060	1 102700	
1	6 6	0	5.797586	1.037303	-1.103789	
3	6	0	3.531344	1.546167	-0.308615	
4	6	0	3.144113	0.250096	-0.655656	
5	6	0	4.089765	-0.637907	-1.215675	
6	6	0	5.410182	-0.258626	-1.441746	
7	7	0	1.882333	-0.372258	-0.526785	
8	6	0	1.988145	-1.64/32/	-0.995881	
9 10	р В	0	3.407227	-1.914230	-1.454435	
11	5	0	0.614285	0.064814	0 290774	
12	7	0	-0.607308	-0.811205	-0.399269	
13	6	0	-0.394102	-2.069714	-0.904766	
14	6	0	0.945079	-2.515854	-1.114580	
15	6	0	-1.863666	-0.327264	-0.318514	
16	6	0	-2.997968	-1.035515	-0.706142	
17	6	0	-2./8/408	-2.344374	-1.189025	
19	6	0	-4 344599	-0 430603	-0 596553	
20	6	Õ	-5.459171	-1.215248	-0.255040	
21	6	0	-6.727373	-0.646867	-0.155520	
22	6	0	-6.906571	0.717038	-0.392274	
23	6	0	-5.807452	1.507915	-0.731438	
24	6	0	-4.539107	0.940897	-0.835982	
25	6	0	0.729847	-0.404848	1.848914	
20	6	0	2 058583	-0.100952	2.507 104	
28	6	0	1 001481	-1 127222	4 590014	
29	6	Õ	-0.188725	-1.374954	3.908550	
30	6	0	-0.314677	-1.017922	2.563361	
31	6	0	0.278536	1.638003	0.065952	
32	6	0	0.011068	2.517593	1.128840	
33	6	0	-0.29/013	3.864361	0.909666	
34	6	0	-0.349974	3 515672	-0.369003	
36	6	0	0 217464	2 175633	-1 235918	
37	1	Õ	6.818189	1.366721	-1.268968	
38	1	0	5.170616	2.923602	-0.279323	
39	1	0	2.830693	2.247682	0.124450	
40	1	0	6.108549	-0.971135	-1.870359	
41	1	0	1.129168	-3.507887	-1.50/323	
42 43	1	0	-1.940000	-2 043615	0.104576	
44	1	0	-1 327025	-3 839136	-1 685945	
45	1	Õ	-5.327993	-2.271383	-0.038473	
46	1	0	-7.574819	-1.268727	0.117261	
47	1	0	-7.894769	1.159836	-0.313347	
48	1	0	-5.938030	2.568263	-0.925558	
49	1	0	-3.697460	1.560919	-1.130118	
50 51	1	0	2.703432	0.298403	2.00/8/0	
52	1	0	1 106057	-1 404909	5 635216	
53	1	Ő	-1.021211	-1.850843	4.420692	
54	1	õ	-1.257701	-1.234348	2.067928	
55	1	0	0.049557	2.142103	2.147396	
56	1	0	-0.495479	4.518153	1.754959	
57	1	0	-0.587970	5.413591	-0.563755	
58 50	1 1	0	-0.125308	3.898500	-2.483878	
 	I	0	0.424320	1.529100	-2.000300	

SCF done: -1442.95876114 Hartree No imaginary Frequency.

DFT optimized  $S_{0}$  state geometry of compound  $\boldsymbol{4b}.$ 

Cent	er Ato	omic At	omic	Coordinate	s (Ang	stroms)	
N	umber	Number	Туре	Х	Y	Z	
	1	6 0	6.6633	87 0.4417 <i>′</i>	13 0.3	315683	
2	6	0	5.734501	1.475961	-0.13	1797	
3	6	0	4.355306	1.244891	-0.09	7790	
4	6	0	3.911789	-0.068028	-0.25	0610	
5	6	0	4.844623	-1.109973	-0.44	3134	
6	6	0	6.215525	-0.869005	-0.47	6561	
7	7	0	2.589433	-0.562254	-0.26	0081	
8	6	0	2.640009	-1.905491	-0.46	0461	

9	6	0	4.082414	-2.353160	-0.591640
10	8	0	4.451912	-3.487812	-0.781613
11	5	0	1.274118	0.228593	0.081231
12	7	0	0.049094	-0.872737	-0.197306
13	6	0	0.235370	-2.207056	-0.454516
14	6	0	1.556437	-2.726802	-0.551997
15	6	0	-1.203341	-0.384305	-0.110165
16	6	0	-2.362432	-1.143626	-0.263845
17	6	0	-2.173077	-2.521393	-0.531088
18	6	0	-0.901396	-3.033172	-0.622758
19	6	0	-3.656682	-0.484495	-0.140665
20	6	0	-4.867681	-1.071057	-0.249535
21	6	0	-6.176518	-0.426612	-0.130561
22	6	0	-7.332091	-1.218216	-0.270359
23	6	0	-8.605539	-0.663608	-0.167061
24	6	0	-8.754849	0.701332	0.079315
25	6	0	-7.618266	1.503714	0.220746
26	6	0	-6.347021	0.950171	0.117597
27	6	0	1.238507	0.588614	1.670993
28	6	0	1.669527	1.827514	2.182406
29	6	0	1.718638	2.091323	3.553161
30	6	Ō	1.333424	1.113092	4.469030
31	6	0	0.905412	-0.128455	3,997166
32	6	Ō	0.863831	-0.378321	2.625249
33	6	0	1.043790	1.451271	-0.968327
34	6	0	0.312314	2.613821	-0.656763
35	6	0	0.069443	3.613913	-1.602039
36	6	0	0.558788	3.481135	-2.901163
37	6	0	1.286636	2.339882	-3.242752
38	6	0	1.518458	1.347438	-2.290050
39	1	0	7,725008	0.665307	-0.335420
40	1	Ō	6.093236	2.494640	-0.013776
41	1	0	3.660894	2.064121	0.029641
42	1	0	6.904789	-1.694540	-0.626045
43	1	Ō	1.712865	-3.783268	-0.729197
44	1	0	-1.269974	0.677340	0.090642
45	1	Ō	-3.025951	-3.178196	-0.665945
46	1	0	-0.737840	-4.085178	-0.829022
47	1	Õ	-3.601338	0.583346	0.058361
48	1	0	-4.914591	-2.140842	-0.446471
49	1	Ō	-7.222708	-2.282609	-0.462385
50	1	0	-9.480401	-1.297237	-0.278957
51	1	Õ	-9.745451	1.138333	0.160633
52	1	Ō	-7 725654	2 567346	0 412387
53	1	õ	-5.480508	1.593906	0.230412
54	1	0	1 970467	2 614004	1 496848
55	1	õ	2 056645	3 063040	3 903962
56	1	õ	1.367259	1.314138	5.536230
57	1	Ō	0 604908	-0.903393	4 697684
58	1	õ	0.530146	-1.358648	2.293781
59	1	õ	-0.071203	2,749403	0.351377
60	1	õ	-0.497273	4.497959	-1.321070
61	1	0	0.376552	4.257570	-3.639058
62	1	õ	1.673136	2.223026	-4.251882
63	1	õ	2.085984	0.466848	-2.580345
	•	•			

SCF done: -1520.36558722 Hartree No imaginary Frequency.

DFT optimized S ₀ state geometry of compound $4c$ .							
-Center	Atomic	: At	omic	Coordinates	s (Angs	troms)	
Numl	ber Nu	mber	Туре	Х	Y	Z	
1	6	0	6.330414	4 1.409227	7 -1.04	9813	
2	6	0	5.315130	2.216515	-0.517	408	
3	6	0	4.017521	1.741888	-0.297	308	
4	6	0	3.745678	0.415204	-0.632	985	
5	6	0	4.769566	-0.403297	-1.159	394	
6	6	0	6.058125	0.080047	-1.3712	240	
7	7	0	2.536984	-0.307499	-0.508	645	
8	6	0	2.756889	-1.582671	-0.930	976	
9	6	0	4.199431	-1.739163	-1.372	589	
10	8	0	4.706477	-2.762645	-1.803	286	
11	5	0	1.229395	0.073629	0.260	458	
12	7	0	0.090956	-0.969945	-0.372	342	
13	6	0	0.426804	-2.233781	-0.799	333	
14	6	0	1.799735	-2.550918	-1.007	772	
15	6	0	-1.202734	-0.608696	-0.313	630	
16	6	0	-2.260977	-1.469969	-0.618	8419	
17	6	0	-1.926745	-2.788907	-1.009	284	
18	6	0	-0.603006	-3.152208	-1.102	2518	
19	6	0	-3.602785	-1.021887	-0.524	720	
20	6	0	-4.755776	-0.640344	-0.448	612	
21	6	0	-6.102095	-0.186206	-0.357	453	
22	6	0	-7.173100	-1.060555	-0.631	659	
23	6	0	-8.486566	-0.610294	-0.540	972	
24	6	0	-8.754892	0.711682	-0.177	539	
25	6	0	-7.699931	1.585721	0.096	080	
26	6	0	-6.382739	1.145897	0.008	423	
27	6	0	1.343630	-0.288382	1.845	483	
	DF -Center Numl 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	DFT optimiz           -Center         Atomic           1         6           2         6           3         6           4         6           5         6           6         7           7         8         6           9         6         10         8           11         5         12         7           13         6         14         6           15         6         6         17           13         6         14         6           16         6         17         6           18         6         19         6           20         6         21         6           21         6         22         6           23         6         24         6           25         6         26         6           26         6         27         6	DFT optimized S₀           -Center         Atomic         At           Number         Number           1         6         0           2         6         0           3         6         0           4         6         0           5         6         0           6         0         7           7         0         8         6           9         6         0           10         8         0           11         5         0           12         7         0           13         6         0           14         6         0           15         6         0           16         0         0           17         6         0           20         6         0           21         6         0           22         6         0           23         6         0           24         6         0           25         6         0           26         6         0           27         6	DFT optimized So state geome           -Center         Atomic         Atomic           Number         Number         Type           1         6         0         6.33041/           2         6         0         5.315130           3         6         0         4.017521           4         6         0         3.745678           5         6         0         4.769566           6         6         0         6.058125           7         7         0         2.536984           8         6         0         2.756889           9         6         0         4.199431           10         8         0         4.706477           11         5         0         1.229395           12         7         0         0.090956           13         6         0         -1.202734           16         6         0         -1.202734           16         6         0         -1.202734           18         6         0         -6.102095           20         6         0         -7.773100           23         6	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

28	6	0	2.569789	-0.629866	2.442662
29	6	0	2.676431	-0.927701	3.803421
30	6	0	1.545889	-0.897245	4.618321
31	6	0	0.311793	-0.564858	4.056908
32	6	0	0.221263	-0.267365	2.696886
33	6	0	0.761739	1.587095	-0.096698
34	6	0	0.480459	2.558696	0.879259
35	6	0	0.097574	3.859053	0.534378
36	6	0	-0.016766	4.223132	-0.806649
37	6	0	0.257146	3.278677	-1.799363
38	6	0	0.640804	1.986589	-1.443429
39	1	0	7.323143	1.819213	-1.204248
40	1	0	5.538629	3.248908	-0.263281
41	1	0	3.254601	2.387224	0.117263
42	1	0	6.821074	-0.578964	-1.774582
43	1	0	2.079231	-3.537299	-1.356100
44	1	0	-1.392949	0.411359	-0.007639
45	1	0	-2.716058	-3.494963	-1.243723
46	1	0	-0.320098	-4.146861	-1.428539
47	1	0	-6.960502	-2.086561	-0.913420
48	1	0	-9.303983	-1.292500	-0.754331
49	1	0	-9.781235	1.059085	-0.107909
50	1	0	-7.904632	2.613958	0.378690
51	1	0	-5.560399	1.821435	0.219496
52	1	0	3.469778	-0.665215	1.836284
53	1	0	3.644437	-1.187145	4.224167
54	1	0	1.623077	-1.131086	5.676547
55	1	0	-0.580303	-0.538512	4.677408
56	1	0	-0.757481	-0.013619	2.295361
57	1	0	0.570311	2.296568	1.929282
58	1	0	-0.109230	4.586315	1.315239
59	1	0	-0.313302	5.232589	-1.078168
60	1	0	0.176042	3.552174	-2.848151
61	1	0	0.859298	1.268376	-2.231089

SCF done: -1519.11441293 Hartree

_____

No imaginary Frequency

# **IV. References**

- S1 D. Geuenich, K. Hess, F. Köhler, R. Herges, Anisotropy of the induced current density (ACID), a general method to quantify and visualize electronic delocalization, *Chem. Rev.* 2005, 105(10), 3758-3772.
- S2 Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. R. Schleyer, Nucleus-independent chemical shifts(NICS) as an aromaticity criterion, *Chem. Rev.* **2005**, 105(10), 3842-3888.
- S3 Gaussian 16, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT.
- S4 T. Lu, F. Chen, J. Comput. Chem., 2012, 33, 580-592.
- S5 Y. C. Yang, Q. L. Guo, H. C. Chen, Z. K. Zhou, Z. J. Guo and Z. Shen, Chem. Commun., 2013, 49, 3940-3943.