# **Electronic Supporting Information**

# Regulating the assembly and expansion of the silver cluster from the Ag<sub>37</sub> to Ag<sub>46</sub> nanowheel driven by heteroanions

Rakesh Kumar Gupta,<sup>a</sup> Li Li,<sup>a</sup> Zhi Wang,<sup>a</sup> Bao-Liang Han,<sup>a</sup> Lei Feng,<sup>a</sup> Zhi-Yong Gao,<sup>b</sup> Chen-Ho Tung,<sup>a</sup> and Di Sun<sup>\*a</sup>

<sup>a</sup>Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, China. E-mail: dsun@sdu.edu.cn

<sup>b</sup>School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China.

#### **Experiment details**

The silver precursor  $[^{i}PrSAg]_{n}^{1}$  and the macrocyclic ligand *p*-phenyl-thiacalix[4]arene (H<sub>4</sub>PTC4A)<sup>2</sup> were prepared according to the reported literature. Silver benzoate (PhCOOAg, 99%) was procured from Shanghai Titan Scientific Co., Ltd. Other chemicals and solvents involved in the syntheses were of analytical grade and used without further purification. Infrared spectra were recorded on a Bruker Tensor II spectrophotometer (Bruker Optics GmbH, Ettlingen, Germany) utilizing a single attenuated total reflectance (ATR) accessory covering a wavenumber range from 500 to 4000 cm<sup>-1</sup>. The final spectra were the average of 32 scans accumulated using Bruker's Opus software 8.1, taken at 4 cm<sup>-1</sup> resolution. The samples were measured under the same mechanical force pushing the samples in contact with the diamond window. Powder X-ray diffraction (PXRD) analyses were carried out on a microcrystalline powder using a Rigaku Oxford Diffraction XtaLAB Synergy diffractometer using Cu radiation ( $\lambda = 1.54184$  Å). The PXRD patterns were processed with the CrysAlisPro software suite<sup>3</sup> using the Powder function. UV-Vis absorption spectra were recorded on a Thermo Scientific Evolution 220 UV-visible spectrophotometer. Mass spectra (MS) were recorded on a Bruker impact II high definition mass spectrometer, quadrupole and time-of-flight (Q/TOF) modules. Typical measurement conditions are as follows: end plate offset = -400 V; dry gas = 3 L min<sup>-1</sup>, nebulizer = 0.3 bar, capillary voltage = 3500 V, sample flow rate = 180  $\mu$ L h<sup>-1</sup>. The data analyses of mass spectra were performed based on the isotope distribution patterns using Compass Data Analysis software (Version 4.4).

### X-ray Crystallography

Single crystals of Ag37 and Ag46 with appropriate dimensions were selected under an optical microscope and rapidly coated with high vacuum grease (Dow Corning Corporation) to prevent decomposition. The single-crystal X-ray diffraction (SCXRD) data of Ag37 and Ag46 were recorded at 173 K and 100 K, respectively, on a Rigaku Oxford Diffraction XtaLAB Synergy diffractometer equipped with Rigaku Hypix detector and an Oxford Cryosystems CryostreamPlus 800 open-fow N<sub>2</sub> cooling device. A Cu K $\alpha$  radiation ( $\lambda = 1.54184$  Å) from PhotonJet micro-focus X-ray sources was used for the measurement. The diffraction images were processed and scaled using the CrysAlis<sup>Pro</sup> software.<sup>3</sup> Both structures were solved using the charge-flipping algorithm, as implemented in the program SUPERFLIP<sup>4</sup> and refined by full-matrix least-squares techniques against  $F_0^2$  using the SHELXL program<sup>5</sup> through the OLEX2 interface.<sup>6</sup> Hydrogen atoms at carbon were placed in calculated positions and refined isotropically by using a riding model. Appropriate restraints or constraints were applied to the geometry and the atomic displacement parameters of the atoms in the cluster. All structures were examined using the Addsym subroutine of PLATON<sup>7</sup> to ensure that no additional symmetry could be applied to the models. Pertinent crystallographic data collection and refinement parameters are collated in Table S1. Selected bond lengths and angles are collated in Table S6.

## Dye adsorption measurements

Cationic dyes of methylene blue (MB) and rhodamine B (RhB), and anionic dye of methyl orange (MO) were used to evaluate the adsorption performance of the freshly prepared **Ag46**. In brief, the sample of **Ag46** (15 mg) was added to 5 mL aqueous solutions containing different dyes, followed by stirring at 1500 rpm in darkness at room temperature. The UV-Vis absorption spectra of the solutions were collected at different time intervals. The adsorption efficiency of **Ag46** was determined using the following equation:

adsorption efficiency = 
$$1 - \frac{C_t}{C_o} \times 100\% = 1 - \frac{A_t}{A_o} \times 100\%$$

where  $C_o$  and  $C_t$ ,  $A_o$  and  $A_t$  correspond to the concentration and absorbance of dyes before and after adsorption.

#### **Molecular Docking Studies**

Molecular docking studies were conducted using HEX 8.0.0 software with the following parameters: correlation type = shape only; grid dimension = 0.6; FFT mode = three-dimensional (3D); ligand range = 180; receptor range = 180; distance range = 40; twist range = 360. Mercury 2021.3.0 software was used to generate PDB (Protein Data Bank) from the crystal structure of **Ag46**. The coordinates of MB and RhB were taken from internet sources as mol files and converted to PDB files using Mercury 2021.3.0 software. It was envisaged that the coordinated CH<sub>3</sub>CN in the cavity of *p*-phenyl-thiacalix[4]arene would exchange with solvent molecules. Therefore, CH<sub>3</sub>CN was removed in order to better understand the interactions of **Ag46** with dyes. Later, the generated PDB files were used for molecular docking studies. Discovery Studio 2021 software was used to modify the structure and visualize the noncovalent interaction between **Ag46** and dyes.

# Synthesis

### Synthesis of Ag37

In a 10 mL glass reactor, H<sub>4</sub>PTC4A (12 mg, 0.015 mmol), ['PrSAg]<sub>n</sub> (9.2 mg, 0.05mmol) and NaCl (2 mg, 0.034 mmol) were added and dissolved in a CH<sub>3</sub>CN/CH<sub>2</sub>Cl<sub>2</sub>/DMF solution (6.5 mL, v:v:v = 8:4:1). Then, PhCOOAg (22.9 mg, 0.1 mmol) were added to the above mixture after magnetically stirring for one hour at room temperature. After stirring for another three hours, the turbid solution is sealed in a 25 mL Teflon-lined reaction vessel and kept at 65 °C for 2000 minutes. The yellow-fusiform crystals suitable for X-ray diffraction analysis were obtained upon slowly cooling to room temperature (Yield: 5%; 1.3 mg). Selected IR peaks (cm<sup>-</sup> 1): 1677 (m), 1585 (m), 1421 (s), 1303 (m), 1238 (m), 1043 (w), 874 (m), 747 (s), 696 (s), 608 (s).

#### Synthesis of Ag46

The same synthetic procedure, as described for **Ag37**, was applied by adding  $(NH_4)_2Cr_2O_7$  (7.3 mg, 0.029 mmol) and NaCl (2 mg, 0.034 mmol) simultaneously instead of NaCl. Dark-red cubic crystals were successfully obtained (Yield: 50%; 14 mg). In addition, a tenfold scale-up of the synthesis (Yield: 50%; 140 mg) can be obtained by increasing the amount of reactants: 0.15 mmol H<sub>4</sub>PTC4A, 0.5 mmol ['PrSAg]<sub>n</sub>, 1 mmol PhCOOAg, 0.19 mmol (NH<sub>4</sub>)<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>, 0.051 mmol NaCl and 39 mL CH<sub>3</sub>CN/CH<sub>2</sub>Cl<sub>2</sub>/DMF (v:v:v = 8:4:1). Selected IR peaks (cm<sup>-1</sup>): 1584 (m), 1426 (s), 1308 (m), 1238 (m), 1145 (w), 1033 (w), 884 (w), 752 (s), 685 (s), 603 (s).

Figure S1: Microscope photographs of crystals of Ag37 and Ag46.





Figure S2: (a) and (b) Ag<sub>2</sub> (core)@Ag<sub>35</sub> (shell) skeletal structure of Ag37 viewed



along two orthogonal directions.

Figure S3: The coordinated solvent molecules (CH<sub>3</sub>CN or DMF) present in each PTC4A<sup>4</sup> of Ag37. Colour code: Ag, purple; Na, brown; O, red; S, yellow; Cl, green; C, gray; N, pale blue.



Figure S4: (a) and (b) The coordination and distribution of 10 <sup>*i*</sup>PrS<sup>-</sup> ligands on the Ag<sub>2</sub>@Ag<sub>35</sub> skeleton of Ag37 viewed along two orthogonal directions. Colour code: Ag, purple and cyan; S, yellow; C, gray.



Figure S5: Extended structure of Ag37 showing self-assembly into a layered

pattern along the [100] direction.

Figure S6: The coordinated CH<sub>3</sub>CN molecules present in each PTC4A<sup>4-</sup> of Ag46. Colour code: Ag, purple; O, red; S, yellow; Cl, green; C, gray; N, pale blue; Cr, light orange.



Figure S7: (a) and (b) The coordination and distribution of 12 <sup>*i*</sup>PrS<sup>-</sup> ligands on the Ag<sub>4</sub>@Ag<sub>42</sub> skeleton of Ag46 viewed along two orthogonal directions. Colour code: Ag, purple and cyan; S, yellow; C, gray.



Figure S8: Extended structure of Ag46 showing self-assembly into a layered array



along the [010] direction.

Figure S9: The structure and dimension of PTC4A<sup>4-</sup> ligand. Colour code: C, gray;



O, red; S, yellow; H, white.

Figure S10: Electrostatic potential energy map for the PTC4A<sup>4-</sup> ligand via Multiwfn software<sup>8</sup>.



Figure S11: Visualization of the docked structure of MB and Ag46 using discovery studio software. The  $\pi \cdots \pi$  interactions are shown with the dashed light blue line. Colour code: Ag, purple; Cr, dark green; O, red; S, yellow; Cl, bright green; C, gray and sea blue; N, blue.



Figure S12: Visualization of docked structure of RhB and Ag46 using discovery studio software. The C-H $\cdots \pi$  and  $\pi \cdots \pi$  interactions are shown with the dashed light blue line. Colour code: Ag, purple; Cr, dark green; O, red; S, yellow; Cl, bright green; C, gray and dark pink; N, blue.



Figure S13: UV-Vis spectra of Ag37 and Ag46.



The solid-state UV-Vis absorption spectra of Ag37 and Ag46 were recorded at room temperature, and both exhibit similar shoulder peaks in the wavelength of 250-1000 nm. These two peaks at 350 nm and 420 nm can be attributed to ligand-based absorption and S  $3p \rightarrow Ag$  5s electronic transition, respectively.<sup>9</sup> Also, the absorption edge of Ag46 is wider, which is consistent with the colors of the samples (yellow for Ag37; black-red for Ag46) (Fig. S1).



plots of Ag37 (a) and Ag46 (b).

The band-gap of Ag37 and Ag46 were respectively calculated to be 1.66, and 0.87 eV based on the Kubelka-Munk function of  $(\alpha h \upsilon)^{1/2} = \kappa (h \upsilon - E_g)$  (E<sub>g</sub> is the band gap (eV), h is the Planck's constant (J.s),  $\upsilon$  is the light frequency (s<sup>-1</sup>),  $\kappa$  is the absorption constant and  $\alpha$  is the absorption coefficient).<sup>10,11</sup>

Figure S15: Compared PXRD patterns of Ag37.



Figure S16: Compared PXRD patterns of Ag46.



Figure S17: The IR spectrum of Ag37.



Figure S18: The IR spectrum of Ag46.



Figure S19: The crystal packing diagrams in unit cell of Ag37 viewed along *a* (a), *b* (b) and *c* (c) axis. Color code: purple, Ag; red, O; yellow, S; gray, C; blue, N; darkgreen, Na; green, Cl.



Figure S20: The crystal packing diagrams in unit cell of Ag46 viewed along *a* (a), *b* (b) and *c* (c) axis. Color code: purple, Ag; red, O; cyan, Cr; yellow, S; gray, C; blue, N; green, Cl.



| Compound              | Ag37                                                                                                                | Ag46                                           |
|-----------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Empirical formula     | C <sub>288</sub> H <sub>248</sub> Ag <sub>37</sub> Cl <sub>11</sub> N <sub>6</sub> NaO <sub>24</sub> S <sub>3</sub> | $C_{336}H_{270}Ag_{46}Cl_6Cr_2N_6O_{32}S_{36}$ |
|                       | 0                                                                                                                   |                                                |
| Formula weight        | 9542.84                                                                                                             | 11336.44                                       |
| Temperature/K         | 173(2)                                                                                                              | 100.00(11)                                     |
| Crystal system        | monoclinic                                                                                                          | triclinic                                      |
| Space group           | $P2_1/n$                                                                                                            | <i>P</i> -1                                    |
| a/Å                   | 17.8704(4)                                                                                                          | 26.4405(4)                                     |
| b/Å                   | 38.6083(6)                                                                                                          | 30.6300(6)                                     |
| c/Å                   | 47.7137(5)                                                                                                          | 31.6049(6)                                     |
| α/°                   | 90                                                                                                                  | 62.291(2)                                      |
| β/°                   | 94.9150(10)                                                                                                         | 74.7925(16)                                    |
| $\gamma/^{\circ}$     | 90                                                                                                                  | 70.3241(17)                                    |
| Volume/Å <sup>3</sup> | 32798.8(10)                                                                                                         | 21165.1(8)                                     |
| Ζ                     | 1                                                                                                                   | 1                                              |
| $\rho_{calc}g/cm^3$   | 1.933                                                                                                               | 1.779                                          |
| µ/mm <sup>-1</sup>    | 20.326                                                                                                              | 19.441                                         |
| F(000)                | 18508.0                                                                                                             | 10944.0                                        |
| Radiation/Å           | Cu Ka ( $\lambda = 1.54184$ )                                                                                       | Cu Ka ( $\lambda = 1.54184$ )                  |
| Reflections collected | 218186                                                                                                              | 201709                                         |
| Independent           | 57831 [ $R_{int} = 0.1043, R_{sigma}$                                                                               | 74374 [ $R_{int} = 0.0802, R_{sigma}$          |
| reflections           | = 0.0811]                                                                                                           | = 0.0750]                                      |
| Data/parameters       | 57831/3616                                                                                                          | 74374/4300                                     |
| Goodness-of-fit on    | 1.271                                                                                                               | 1.067                                          |
| <i>F</i> <sup>2</sup> |                                                                                                                     |                                                |
| Final R indexes       | $R_1 = 0.1265, wR_2 = 0.3384$                                                                                       | $R_1 = 0.0846, wR_2 = 0.2504$                  |
| [I>=2σ (I)]           |                                                                                                                     |                                                |
| Final R indexes [all  | $R_1 = 0.1717, wR_2 = 0.3781$                                                                                       | $R_1 = 0.1340, wR_2 = 0.2966$                  |
| data]                 |                                                                                                                     |                                                |
| Largest diff.         | 2.63/-3.28                                                                                                          | 2.41/-2.28                                     |
| peak/hole/eÅ-3        |                                                                                                                     |                                                |

 Table S1: Crystal data and structure refinements for Ag37 and Ag46.

Table S2: The formulae of the key species detected in positive-ion mode ESI-MS

| Peak | Species                                                                                                                                               | Exp. <i>m/z</i> | Sim. <i>m/z</i> |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|
| 1a   | $[NaCl_7@Ag_{36}(PTC4A)_5(^iPrS)_8]^{2+}$                                                                                                             | 4370.551        | 4370.499        |
| 1b   | [NaCl <sub>7</sub> @Ag <sub>37</sub> (PTC4A) <sub>5</sub> ( <sup><i>i</i></sup> PrS) <sub>6</sub> (H <sub>2</sub> O)(OH) <sub>3</sub> ] <sup>2+</sup> | 4383.535        | 4383.434        |
| 1c   | $[NaCl_6@Ag_{36}(PTC4A)_5(^iPrS)_9(H_2O)]^{2+}$                                                                                                       | 4398.522        | 4398.527        |
| 1d   | [NaCl <sub>7</sub> @Ag <sub>37</sub> (PTC4A) <sub>5</sub> ( <sup><i>i</i></sup> PrS) <sub>7</sub> (H <sub>2</sub> O)(OH) <sub>2</sub> ] <sup>2+</sup> | 4412.498        | 4412.446        |
| 1e   | $[NaCl_7@Ag_{36}(PTC4A)_5(^{i}PrS)_8(DMF)(CH_3CN)]^{2+}$                                                                                              | 4427.485        | 4427.539        |
| 1f   | [NaCl <sub>7</sub> @Ag <sub>37</sub> (PTC4A) <sub>5</sub> ( <sup><i>i</i></sup> PrS) <sub>8</sub> (H <sub>2</sub> O)(OH)] <sup>2+</sup>               | 4441.486        | 4441.458        |
| 1g   | $[NaCl_6@Ag_{36}(PTC4A)_5(^{i}PrS)_9(H_2O)(DMF)(CH_3CN)]^{2+}$                                                                                        | 4455.460        | 4455.566        |
| 1h   | [NaCl <sub>7</sub> @Ag <sub>37</sub> (PTC4A) <sub>5</sub> ( <sup><i>i</i></sup> PrS) <sub>9</sub> (H <sub>2</sub> O)] <sup>2+</sup>                   | 4470.961        | 4470.970        |

of Ag37 dissolved in MeOH/CH<sub>2</sub>Cl<sub>2</sub>.

Table S3: The formulae of the key species detected in negative-ion mode ESI-MS

| Peak | Species                                                         | Exp. <i>m/z</i> | Sim. $m/z$ |
|------|-----------------------------------------------------------------|-----------------|------------|
| 2a   | $[Cl_6@Ag_{44}(PTC4A)_6(PrS)_{15}Cl]^{2-}$                      | 5451.8405       | 5451.7616  |
| 2b   | $[(CrO_4)Cl_6@Ag_{44}(PTC4A)_6({}^iPrS)_{13}Cl(CH_3OH)_2]^{2-}$ | 5466.8209       | 5466.7212  |
| 2c   | $[Cl_6@Ag_{44}(PTC4A)_6({}^{i}PrS)_{16}(H_2O)]^{2-}$            | 5480.8020       | 5480.7961  |

# of Ag46 dissolved in MeOH/CH<sub>2</sub>Cl<sub>2</sub>.

| Dves    | Dves structure                                                                                     | x (Å) | v (Å) | z (Å) |
|---------|----------------------------------------------------------------------------------------------------|-------|-------|-------|
| MB      |                                                                                                    | 4.00  | 7.93  | 16.34 |
| МО      |                                                                                                    | 5.31  | 7.25  | 17.39 |
| RhB     |                                                                                                    | 5.6   | 11.8  | 15.9  |
| H₄PTC4A | Ph<br>Ph<br>OH<br>OH<br>OH<br>OH<br>Ph<br>Ph<br>Ph<br>OH<br>Ph<br>OH<br>OH<br>Ph<br>OH<br>OH<br>Ph | 7.4   | 9.9   | 14.7  |

Table S4: The structure and dimension of dye molecules used in the dye-

absorption experiments and the H<sub>4</sub>PTC4A ligand.

| Dyes | Noncovalent interactions (Å) |                |
|------|------------------------------|----------------|
|      | $\pi\cdots\pi$               | $C-H\cdots\pi$ |
| MB   | 3.13, 3.79, 3.82             |                |
| RhB  | 3.33, 3.66, 4.00             | 3.04, 3.84     |

 Table S5: Various noncovalent interactions between Ag46 and dyes.

| Ag37     |           |           |           |
|----------|-----------|-----------|-----------|
| Ag1—Ag16 | 3.333(3)  | Ag16—S1   | 2.444(4)  |
| Ag1—Ag24 | 3.303(3)  | Ag16—S15  | 2.611(5)  |
| Ag1—Ag30 | 3.315(3)  | Ag16—O8   | 2.319(12) |
| Ag1—Ag31 | 3.278(3)  | Ag16—O14  | 2.320(13) |
| Ag1—O3   | 2.545(14) | Ag17—Ag25 | 3.300(4)  |
| Ag1—O8   | 2.312(13) | Ag17—O5   | 2.381(15) |
| Ag1—O14  | 2.505(13) | Ag17—O6   | 2.355(17) |
| Ag1-019  | 2.23(1)   | Ag17—O20  | 2.336(13) |
| Ag1—N2   | 2.32(2)   | Ag17—O22  | 2.405(14) |
| Ag2—Ag6  | 3.116(6)  | Ag17—O23  | 2.391(14) |
| Ag2—Ag30 | 2.948(3)  | Ag18—Ag24 | 2.764(1)  |
| Ag2—Cl3  | 2.795(6)  | Ag18—S4   | 2.449(5)  |
| Ag2—Cl8  | 2.673(5)  | Ag18—S19  | 2.549(5)  |
| Ag2—S20  | 2.404(5)  | Ag18—O10  | 2.304(14) |
| Ag2—S22  | 2.425(5)  | Ag18—O12  | 2.469(12) |
| Ag3—Ag5  | 3.220(13) | Ag19—Ag21 | 2.989(2)  |
| Ag3—Ag7  | 3.084(3)  | Ag19—Ag29 | 3.256(3)  |
| Ag3—Ag25 | 3.227(3)  | Ag19—S10  | 2.564(4)  |
| Ag3—Ag37 | 3.372(3)  | Ag19—S12  | 2.452(5)  |
| Ag3—Cl6  | 2.664(5)  | Ag19—O2   | 2.450(12) |
| Ag3—S12  | 2.430(5)  | Ag19—O13  | 2.315(12) |
| Ag3—S17  | 2.356(6)  | Ag20—S11  | 2.572(5)  |
| Ag4—Ag18 | 2.964(3)  | Ag20—S14  | 2.495(5)  |
| Ag4—Ag20 | 3.083(3)  | Ag20—O12  | 2.501(13) |
| Ag4—S4   | 2.453(4)  | Ag20—O24  | 2.316(16) |
| Ag4—S14  | 2.527(4)  | Ag21—Ag34 | 3.245(2)  |
| Ag4—N5   | 2.43(3)   | Ag21—Cl4  | 2.790(5)  |
| Ag5—Ag35 | 3.276(12) | Ag21—S12  | 2.479(4)  |
| Ag5—Ag37 | 3.320(11) | Ag21—S28  | 2.440(4)  |
| Ag5—Cl1  | 2.541(12) | Ag22—Ag24 | 3.192(2)  |
| Ag5—Cl3  | 2.586(11) | Ag22—Cl1  | 2.776(4)  |
| Ag5—Cl6  | 2.621(12) | Ag22—C18  | 2.747(5)  |
| Ag5—Cl11 | 2.591(10) | Ag22—S1   | 2.463(4)  |
| Ag6—Ag22 | 3.225(5)  | Ag22—S4   | 2.442(4)  |
| Ag6—Ag27 | 3.256(5)  | Ag23—Ag25 | 3.060(2)  |
| Ag6—Ag34 | 3.371(5)  | Ag23—Ag37 | 3.026(2)  |
| Ag6—Cl1  | 2.766(7)  | Ag23—S17  | 2.399(5)  |
| Ag6—Cl3  | 2.575(8)  | Ag23—S29  | 2.526(7)  |
| Ag6—Cl8  | 2.610(7)  | Ag23—O24  | 2.275(15) |

Table S6: Selected bond distances (Å) and bond angles (°) for Ag37 and Ag46.

| Ag23—O17  | 2.634(5)   | Ag37—S20  | 2.439(4)  |
|-----------|------------|-----------|-----------|
| Ag6-Cl10  | 2.559(7)   | Ag24—S4   | 2.545(4)  |
| Ag7—Ag17  | 3.300(3)   | Ag24—S24  | 2.629(5)  |
| Ag7—Ag19  | 2.8654(19) | Ag24—O14  | 2.389(12) |
| Ag7—S12   | 2.502(4)   | Ag24—O19  | 2.339(13) |
| Ag7—S16   | 2.580(4)   | Ag25—S13  | 2.564(5)  |
| Ag7—O20   | 2.369(13)  | Ag25—S17  | 2.426(4)  |
| Ag7—O22   | 2.396(13)  | Ag25—O6   | 2.380(15) |
| Ag8—Ag18  | 3.241(3)   | Ag25—O22  | 2.459(13) |
| Ag8—Ag20  | 3.327(3)   | Ag26—Ag28 | 3.313(3)  |
| Ag8—Ag23  | 3.317(3)   | Ag26—Ag32 | 3.287(3)  |
| Ag8—Ag33  | 3.305(3)   | Ag26—O4   | 2.391(13) |
| Ag8—Cl11  | 2.904(7)   | Ag26—O15  | 2.447(13) |
| Ag8—O1    | 2.52(3)    | Ag26—O16  | 2.36(2)   |
| Ag8—O10   | 2.512(13)  | Ag26—O18  | 2.357(13) |
| Ag8—012   | 2.255(15)  | Ag26—O21  | 2.416(14) |
| Ag8—017   | 2.240(14)  | Ag27—Ag28 | 3.073(2)  |
| Ag8—O24   | 2.586(14)  | Ag27—Cl10 | 2.681(5)  |
| Ag9—Ag27  | 3.205(2)   | Ag27—S1   | 2.425(4)  |
| Ag9—Ag36  | 3.098(2)   | Ag27—S6   | 2.422(4)  |
| Ag9—Cl1   | 2.854(5)   | Ag28—S6   | 2.444(4)  |
| Ag9—Cl4   | 2.664(5)   | Ag28—S27  | 2.549(6)  |
| Ag9—S6    | 2.482(5)   | Ag28—O15  | 2.343(13) |
| Ag9—S8    | 2.472(4)   | Ag28—O16  | 2.500(16) |
| Ag10—Ag16 | 2.8083(18) | Ag29—Ag36 | 3.294(3)  |
| Ag10—Ag26 | 3.285(3)   | Ag29—O2   | 2.281(12) |
| Ag10—Ag27 | 3.1894(18) | Ag29—O7   | 2.255(13) |
| Ag10—S1   | 2.519(4)   | Ag29—O11  | 2.236(15) |
| Ag10—S3   | 2.582(5)   | Ag29—O13  | 2.475(13) |
| Ag10—O4   | 2.379(13)  | Ag30—Ag33 | 2.926(2)  |
| Ag10-016  | 2.400(17)  | Ag30—S20  | 2.427(4)  |
| Ag11—Ag17 | 3.236(3)   | Ag30—S21  | 2.581(5)  |
| Ag11—Ag20 | 2.8574(17) | Ag30—O3   | 2.369(15) |
| Ag11—S2   | 2.603(4)   | Ag30—O19  | 2.371(13) |
| Ag11—S14  | 2.473(4)   | Ag31—Ag32 | 2.805(2)  |
| Ag1106    | 2.300(16)  | Ag31—S7   | 2.612(5)  |
| Ag11—O23  | 2.393(13)  | Ag31—S22  | 2.516(4)  |
| Ag12—Ag14 | 2.8741(16) | Ag31—O3   | 2.338(18) |
| Ag12—Ag29 | 3.370(3)   | Ag31—O8   | 2.393(13) |
| Ag12—S18  | 2.630(5)   | Ag32—Ag34 | 2.955(2)  |
| Ag12—S28  | 2.461(5)   | Ag32—S5   | 2.556(5)  |
| Ag12—O2   | 2.451(10)  | Ag32—S22  | 2.439(5)  |
| Ag12—O9   | 2.324(14)  | Ag32—O4   | 2.347(14) |

| Ag13—Ag15   | 2.7939(19) | Ag32—O18     | 2.345(12)  |
|-------------|------------|--------------|------------|
| Ag13—Ag17   | 3.264(4)   | Ag33—Ag37    | 3.134(2)   |
| Ag13—Ag35   | 2.9670(17) | Ag33—S20     | 2.461(5)   |
| Ag13—S8     | 2.459(4)   | Ag33—S25     | 2.547(6)   |
| Ag13—S26    | 2.581(4)   | Ag33—O10     | 2.328(14)  |
| Ag13—O20    | 2.409(12)  | Ag33—O17     | 2.576(14)  |
| Ag13—O23    | 2.333(13)  | Ag34—Cl10    | 2.904(5)   |
| Ag14—Ag26   | 3.258(3)   | Ag34—S22     | 2.416(5)   |
| Ag14—Ag34   | 3.366(2)   | Ag34—S28     | 2.408(5)   |
| Ag14—S9     | 2.570(5)   | Ag35—Cl6     | 2.924(5)   |
| Ag14—S28    | 2.489(5)   | Ag35—S8      | 2.486(5)   |
| Ag14—015    | 2.330(15)  | Ag35—S14     | 2.462(5)   |
| Ag14—018    | 2.467(11)  | Ag36—S6      | 2.444(4)   |
| Ag15—Ag29   | 3.363(3)   | Ag36—S23     | 2.576(6)   |
| Ag15—S8     | 2.522(4)   | Ag36—O7      | 2.506(12)  |
| Ag15—S30    | 2.626(5)   | Ag36—O9      | 2.344(12)  |
| Ag15—07     | 2.435(13)  | Ag37—Cl11    | 2.626(6)   |
| Ag15—O13    | 2.358(11)  | Ag37—S17     | 2.454(4)   |
| Ag16—Ag22   | 3.1739(18) |              |            |
| O8—Ag1—O3   | 88.6(5)    | O20—Ag17—O6  | 164.3(4)   |
| 08—Ag1—014  | 84.6(4)    | O20—Ag17—O22 | 87.4(5)    |
| 08—Ag1—N2   | 96.2(7)    | O20—Ag17—O23 | 89.2(5)    |
| O14—Ag1—O3  | 153.5(4)   | O23—Ag17—O22 | 162.2(4)   |
| O19—Ag1—O3  | 88.4(5)    | S4—Ag18—S19  | 128.17(16) |
| 019—Ag1—08  | 155.1(4)   | S4—Ag18—O12  | 119.5(4)   |
| O19—Ag1—O14 | 87.2(5)    | O10—Ag18—S4  | 142.5(4)   |
| O19—Ag1—N2  | 108.3(7)   | O10—Ag18—S19 | 79.4(4)    |
| N2—Ag1—O3   | 105.8(5)   | O10—Ag18—O12 | 89.3(5)    |
| N2—Ag1—O14  | 100.4(5)   | O12—Ag18—S19 | 75.8(3)    |
| C18—Ag2—C13 | 96.20(19)  | S12—Ag19—S10 | 123.54(15) |
| S20—Ag2—Cl3 | 101.63(19) | O2—Ag19—S10  | 75.1(3)    |
| S20—Ag2—Cl8 | 105.17(18) | O2—Ag19—S12  | 132.4(3)   |
| S20—Ag2—S22 | 142.30(19) | O13—Ag19—S10 | 78.2(3)    |
| S22—Ag2—Cl3 | 104.36(18) | O13—Ag19—S12 | 134.5(3)   |
| S22—Ag2—Cl8 | 98.68(18)  | O13—Ag19—O2  | 89.4(4)    |
| S12—Ag3—Cl6 | 107.77(18) | S14—Ag20—S11 | 125.54(17) |
| S17—Ag3—Cl6 | 104.06(19) | S14—Ag20—O12 | 116.6(4)   |
| S17—Ag3—S12 | 143.78(19) | O12—Ag20—S11 | 74.0(3)    |
| S4—Ag4—S14  | 142.5(2)   | O24—Ag20—S11 | 77.4(4)    |
| N5—Ag4—S4   | 109.2(6)   | O24—Ag20—S14 | 149.6(4)   |
| N5—Ag4—S14  | 103.2(7)   | O24—Ag20—O12 | 87.1(5)    |
| Cl1—Ag5—Cl3 | 95.6(3)    | S12—Ag21—Cl4 | 101.43(16) |
| Cl1—Ag5—Cl6 | 110.4(5)   | S28—Ag21—Cl4 | 94.89(17)  |

| Cl1—Ag5—Cl11 | 117.8(5)   | S28—Ag21—S12 | 153.43(16) |
|--------------|------------|--------------|------------|
| Cl3—Ag5—Cl6  | 108.3(4)   | C18—Ag22—C11 | 98.85(16)  |
| Cl3—Ag5—Cl11 | 116.7(5)   | S1—Ag22—C18  | 98.32(16)  |
| Cl11—Ag5—Cl6 | 107.5(3)   | S4—Ag22—Cl1  | 103.43(13) |
| Cl3—Ag6—Cl1  | 90.6(2)    | S4—Ag22—C18  | 105.26(17) |
| Cl3—Ag6—Cl8  | 103.5(3)   | S1—Ag22—Cl1  | 98.14(15)  |
| S20—Ag37—S17 | 143.62(18) | S4—Ag22—S1   | 144.87(15) |
| C18—Ag6—C11  | 102.6(2)   | S17—Ag23—S29 | 132.7(2)   |
| Cl10—Ag6—Cl1 | 114.5(2)   | O24—Ag23—S17 | 144.1(4)   |
| Cl10—Ag6—Cl3 | 117.3(2)   | O24—Ag23—S29 | 79.6(4)    |
| Cl10—Ag6—Cl8 | 122.9(3)   | S4—Ag24—S24  | 116.29(15) |
| S12—Ag7—S16  | 125.30(15) | O14—Ag24—S4  | 107.6(3)   |
| O20—Ag7—S12  | 153.1(3)   | O14—Ag24—S24 | 76.7(3)    |
| O20—Ag7—S16  | 75.1(3)    | O19—Ag24—S4  | 162.9(3)   |
| O20—Ag7—O22  | 86.8(4)    | O19—Ag24—S24 | 74.3(3)    |
| O22—Ag7—S12  | 113.4(3)   | O19—Ag24—O14 | 87.6(4)    |
| O22—Ag7—S16  | 76.2(3)    | S17—Ag25—S13 | 136.7(2)   |
| O1—Ag8—Cl11  | 169.2(11)  | S17—Ag25—O22 | 113.0(3)   |
| O1—Ag8—O24   | 100.9(12)  | O6—Ag25—S13  | 77.3(4)    |
| O10—Ag8—Cl11 | 84.0(3)    | O6—Ag25—S17  | 141.4(3)   |
| O10—Ag8—O1   | 91.3(12)   | O6—Ag25—O22  | 88.9(5)    |
| O10—Ag8—O24  | 167.0(5)   | O22—Ag25—S13 | 76.9(3)    |
| O12—Ag8—Cl11 | 82.0(4)    | O4—Ag26—O15  | 164.3(4)   |
| O12—Ag8—O1   | 88.3(12)   | O4—Ag26—O21  | 96.4(5)    |
| O12—Ag8—O10  | 89.3(4)    | O16—Ag26—O4  | 88.5(5)    |
| O12—Ag8—O24  | 86.4(5)    | O16—Ag26—O15 | 91.0(5)    |
| O17—Ag8—Cl11 | 89.0(4)    | O16—Ag26—O21 | 100.9(6)   |
| O17—Ag8—O1   | 100.8(12)  | O18—Ag26—O4  | 86.5(5)    |
| O17—Ag8—O10  | 90.9(5)    | O18—Ag26—O15 | 89.7(5)    |
| O17—Ag8—O12  | 170.9(6)   | O18—Ag26—O16 | 164.1(5)   |
| O17—Ag8—O24  | 91.5(5)    | O18—Ag26—O21 | 94.7(5)    |
| O24—Ag8—Cl11 | 83.2(3)    | O21—Ag26—O15 | 99.0(6)    |
| Cl4—Ag9—Cl1  | 103.25(17) | S1—Ag27—Cl10 | 104.81(16) |
| S6—Ag9—Cl1   | 114.26(14) | S6—Ag27—Cl10 | 103.26(16) |
| S6—Ag9—Cl4   | 102.67(16) | S6—Ag27—S1   | 150.60(15) |
| S8—Ag9—Cl1   | 89.63(15)  | S6—Ag28—S27  | 137.33(17) |
| S8—Ag9—Cl4   | 102.91(16) | S6—Ag28—O16  | 118.1(4)   |
| S8—Ag9—S6    | 139.43(17) | O15—Ag28—S6  | 136.5(4)   |
| S1—Ag10—S3   | 126.09(15) | O15—Ag28—S27 | 78.8(4)    |
| O4—Ag10—S1   | 154.1(4)   | O15—Ag28—O16 | 90.1(5)    |
| O4—Ag10—S3   | 76.2(3)    | O16—Ag28—S27 | 75.1(4)    |
| O4—Ag10—O16  | 87.9(6)    | O2—Ag29—O13  | 89.6(4)    |
| O16—Ag10—S1  | 108.4(4)   | O7—Ag29—O2   | 161.8(5)   |

| O16—Ag10—S3  | 77.7(4)    | O7—Ag29—O13   | 87.1(4)    |
|--------------|------------|---------------|------------|
| S14—Ag11—S2  | 125.55(16) | O11—Ag29—O2   | 98.4(6)    |
| O6—Ag11—S2   | 76.4(3)    | 011—Ag29—07   | 99.8(6)    |
| O6—Ag11—S14  | 156.3(4)   | O11—Ag29—O13  | 100.6(5)   |
| O6—Ag11—O23  | 89.0(5)    | S20—Ag30—S21  | 128.48(18) |
| O23—Ag11—S2  | 76.1(3)    | O3—Ag30—S20   | 130.9(4)   |
| O23—Ag11—S14 | 104.2(3)   | O3—Ag30—S21   | 76.7(4)    |
| S28—Ag12—S18 | 130.38(16) | O3—Ag30—O19   | 89.5(5)    |
| O2—Ag12—S18  | 74.4(3)    | O19—Ag30—S20  | 132.8(3)   |
| O2—Ag12—S28  | 107.1(3)   | O19—Ag30—S21  | 77.3(3)    |
| O9—Ag12—S18  | 77.0(3)    | S22—Ag31—S7   | 129.47(17) |
| O9—Ag12—S28  | 150.2(3)   | O3—Ag31—S7    | 76.3(3)    |
| O9—Ag12—O2   | 90.3(4)    | O3—Ag31—S22   | 99.7(4)    |
| S8—Ag13—S26  | 125.02(17) | O3—Ag31—O8    | 91.7(5)    |
| O20—Ag13—S8  | 131.7(3)   | O8—Ag31—S7    | 74.2(3)    |
| O20—Ag13—S26 | 77.0(3)    | O8—Ag31—S22   | 155.5(3)   |
| O23—Ag13—S8  | 134.1(3)   | S22—Ag32—S5   | 128.55(17) |
| O23—Ag13—S26 | 78.3(3)    | O4—Ag32—S5    | 78.3(3)    |
| O23—Ag13—O20 | 88.9(4)    | O4—Ag32—S22   | 134.9(3)   |
| S28—Ag14—S9  | 128.98(16) | O18—Ag32—S5   | 77.1(3)    |
| O15—Ag14—S9  | 77.5(3)    | O18—Ag32—S22  | 129.3(3)   |
| O15—Ag14—S28 | 149.5(3)   | O18—Ag32—O4   | 87.8(5)    |
| O15—Ag14—O18 | 89.9(4)    | S20—Ag33—S25  | 130.92(19) |
| O18—Ag14—S9  | 75.5(3)    | S20—Ag33—O17  | 107.2(3)   |
| O18—Ag14—S28 | 109.8(3)   | S25—Ag33—O17  | 74.5(4)    |
| S8—Ag15—S30  | 130.97(16) | O10—Ag33—S20  | 150.2(4)   |
| O7—Ag15—S8   | 108.3(3)   | O10—Ag33—S25  | 77.5(4)    |
| O7—Ag15—S30  | 75.4(3)    | O10—Ag33—O17  | 87.4(4)    |
| O13—Ag15—S8  | 151.4(3)   | S22—Ag34—Cl10 | 99.74(16)  |
| O13—Ag15—S30 | 76.0(3)    | S28—Ag34—Cl10 | 93.87(17)  |
| O13—Ag15—O7  | 85.8(4)    | S28—Ag34—S22  | 164.46(17) |
| S1—Ag16—S15  | 128.18(17) | S8—Ag35—Cl6   | 98.02(16)  |
| O8—Ag16—S1   | 141.8(3)   | S14—Ag35—Cl6  | 91.43(16)  |
| O8—Ag16—S15  | 76.7(3)    | S14—Ag35—S8   | 158.87(15) |
| O8—Ag16—O14  | 88.7(4)    | S6—Ag36—S23   | 127.54(17) |
| O14—Ag16—S1  | 122.8(3)   | S6—Ag36—O7    | 129.5(3)   |
| O14—Ag16—S15 | 75.3(3)    | O7—Ag36—S23   | 72.6(3)    |
| O5—Ag17—O22  | 98.6(5)    | O9—Ag36—S6    | 134.7(3)   |
| O5—Ag17—O23  | 99.2(5)    | O9—Ag36—S23   | 77.6(4)    |
| O6—Ag17—O5   | 96.7(5)    | O9—Ag36—O7    | 91.5(4)    |
| O6—Ag17—O22  | 90.8(5)    | S17—Ag37—Cl11 | 108.44(17) |
| O6—Ag17—O23  | 87.8(5)    | S20—Ag37—Cl11 | 107.94(16) |
| O20—Ag17—O5  | 99.0(5)    | S20—Ag37—S17  | 143.62(18) |

| Ag46     |           |           |            |
|----------|-----------|-----------|------------|
| Ag1—Ag2  | 2.89(2)   | Ag22—S20  | 2.485(3)   |
| Ag1—Ag41 | 2.95(3)   | Ag22—O30  | 2.388(11)  |
| Ag1—Ag43 | 3.05(3)   | Ag22—O32  | 2.276(9)   |
| Ag1—Cl2  | 2.32(3)   | Ag23—Ag42 | 3.2935(18) |
| Ag1—O2   | 2.18(3)   | Ag23—Ag44 | 3.315(2)   |
| Ag2—Ag29 | 2.981(6)  | Ag23—Ag45 | 2.820(2)   |
| Ag2—Ag38 | 3.021(5)  | Ag23—S15  | 2.583(4)   |
| Ag2—Cl3  | 2.407(8)  | Ag23—S21  | 2.472(3)   |
| Ag3—Ag10 | 3.151(6)  | Ag23—O10  | 2.408(12)  |
| Ag3—Ag27 | 3.313(7)  | Ag23—014  | 2.356(9)   |
| Ag3—Ag42 | 3.241(6)  | Ag24—Ag41 | 3.0560(17) |
| Ag3—Cl1  | 2.730(9)  | Ag24—S3   | 2.596(4)   |
| Ag3—Cl4  | 2.690(9)  | Ag24—S18  | 2.470(3)   |
| Ag3—O4   | 2.14(2)   | Ag24—O12  | 2.429(10)  |
| Ag4—Ag12 | 3.052(9)  | Ag24—O27  | 2.306(8)   |
| Ag4—Ag35 | 2.953(10) | Ag25—Ag37 | 3.0415(17) |
| Ag4—Cl5  | 2.306(13) | Ag25—Cl6  | 2.858(5)   |
| Ag5—Ag15 | 3.231(5)  | Ag25—S8   | 2.412(3)   |
| Ag5—Ag22 | 3.228(5)  | Ag25—S24  | 2.414(3)   |
| Ag5—Ag28 | 3.233(5)  | Ag25—O2   | 2.51(2)    |
| Ag5—Ag33 | 3.198(6)  | Ag26—Ag28 | 2.8447(16) |
| Ag5—O28  | 2.115(11) | Ag26—Ag29 | 3.0672(19) |
| Ag5—O30  | 2.136(10) | Ag26—S6   | 2.484(3)   |
| Ag6—Ag19 | 3.254(5)  | Ag26—S29  | 2.621(4)   |
| Ag6—Ag26 | 3.187(5)  | Ag26—O16  | 2.349(12)  |
| Ag6—Ag36 | 3.204(6)  | Ag26—O19  | 2.408(10)  |
| Ag6—O17  | 2.025(12) | Ag27—Ag33 | 3.3414(15) |
| Ag6-019  | 2.054(12) | Ag27—Cl1  | 2.811(4)   |
| Ag7—Ag17 | 3.163(3)  | Ag27—S20  | 2.430(4)   |
| Ag7—Ag24 | 3.140(4)  | Ag27—S28  | 2.438(4)   |
| Ag7—Ag30 | 3.055(4)  | Ag28—S6   | 2.501(3)   |
| Ag7—Ag39 | 3.146(4)  | Ag28—S19  | 2.625(4)   |
| Ag7—Cl2  | 2.882(7)  | Ag28—O26  | 2.362(9)   |
| Ag7—O9   | 2.104(11) | Ag28—O30  | 2.376(11)  |
| Ag7—O12  | 2.040(12) | Ag29—Cl3  | 2.841(5)   |
| Ag7—O22  | 2.525(12) | Ag29—S6   | 2.424(3)   |
| Ag7—O27  | 2.594(13) | Ag29—S18  | 2.411(3)   |
| Ag8—Ag13 | 3.377(10) | Ag30—Ag36 | 2.8298(18) |
| Ag8—Ag31 | 3.325(10) | Ag30—S14  | 2.492(4)   |
| Ag8—Ag34 | 3.078(12) | Ag30—S26  | 2.610(4)   |
| Ag8—Ag37 | 2.961(11) | Ag30—O12  | 2.362(11)  |
| Ag8—O13  | 1.944(16) | Ag30—O22  | 2.398(10)  |

| Ag8—O23   | 1.981(17)  | Ag31—Ag39 | 2.8295(17) |
|-----------|------------|-----------|------------|
| Ag9—Ag15  | 2.8069(14) | Ag31—S22  | 2.444(4)   |
| Ag9—Ag44  | 3.243(2)   | Ag31—S23  | 2.624(4)   |
| Ag9—S4    | 2.487(3)   | Ag31—O21  | 2.276(13)  |
| Ag9—S16   | 2.571(3)   | Ag31—O23  | 2.476(11)  |
| Ag9—O20   | 2.438(9)   | Ag32—Ag34 | 3.0004(18) |
| Ag9—O25   | 2.373(9)   | Ag32—Cl6  | 2.808(5)   |
| Ag10—Ag15 | 3.0503(13) | Ag32—S5   | 2.418(4)   |
| Ag10—Cl1  | 2.810(4)   | Ag32—S22  | 2.408(3)   |
| Ag10—S4   | 2.445(3)   | Ag32—O5   | 2.53(3)    |
| Ag10—S6   | 2.440(3)   | Ag33—S27  | 2.609(4)   |
| Ag10—O4   | 2.52(2)    | Ag33—S28  | 2.499(4)   |
| Ag11—Ag14 | 3.0247(14) | Ag33—O28  | 2.369(11)  |
| Ag11—Ag20 | 2.7947(15) | Ag33—O32  | 2.357(11)  |
| Ag11—Ag44 | 3.212(2)   | Ag34—Ag40 | 2.8520(19) |
| Ag11—S1   | 2.470(3)   | Ag34—S5   | 2.494(4)   |
| Ag11—S12  | 2.583(3)   | Ag34—S7   | 2.611(4)   |
| Ag11—014  | 2.345(11)  | Ag34—O15  | 2.355(11)  |
| Ag11—O20  | 2.346(9)   | Ag34—O23  | 2.388(12)  |
| Ag12—Ag16 | 3.0380(15) | Ag35—Ag45 | 3.157(2)   |
| Ag12—Cl5  | 2.821(5)   | Ag35—Cl5  | 2.798(5)   |
| Ag12—S1   | 2.434(3)   | Ag35—S5   | 2.400(4)   |
| Ag12—S8   | 2.440(3)   | Ag35—S21  | 2.424(4)   |
| Ag12—O3   | 2.56(2)    | Ag36—Ag38 | 3.0056(17) |
| Ag13—Ag16 | 2.8471(13) | Ag36—S14  | 2.467(4)   |
| Ag13—S8   | 2.500(3)   | Ag36—S36  | 2.610(4)   |
| Ag13—S10  | 2.651(4)   | Ag36—O17  | 2.392(10)  |
| Ag13—O13  | 2.467(9)   | Ag36—O24  | 2.333(10)  |
| Ag13—O15  | 2.271(10)  | Ag37—Cl6  | 2.917(5)   |
| Ag14—Cl4  | 2.832(4)   | Ag37—S2   | 2.663(4)   |
| Ag14—S1   | 2.434(3)   | Ag37—S24  | 2.477(4)   |
| Ag14—S4   | 2.438(3)   | Ag37—O13  | 2.378(9)   |
| Ag15—S4   | 2.492(3)   | Ag37—O21  | 2.320(11)  |
| Ag15—S30  | 2.626(4)   | Ag38—Cl3  | 2.825(5)   |
| Ag15—O26  | 2.312(10)  | Ag38—S14  | 2.397(3)   |
| Ag15—O28  | 2.386(10)  | Ag38—S20  | 2.403(3)   |
| Ag16—Ag46 | 3.320(2)   | Ag39—Ag43 | 3.0581(18) |
| Ag16—S8   | 2.464(3)   | Ag39—S22  | 2.456(4)   |
| Ag16—S13  | 2.586(4)   | Ag39—S31  | 2.605(4)   |
| Ag16—011  | 2.326(9)   | Ag39—O9   | 2.409(11)  |
| Ag16—O29  | 2.370(11)  | Ag39—O22  | 2.310(10)  |
| Ag17—Ag37 | 2.8487(16) | Ag40—Ag46 | 3.360(2)   |
| Ag17—S9   | 2.607(4)   | Ag40—S5   | 2.481(4)   |

| Ag17—S24    | 2.510(3)   | Ag40—S17     | 2.587(5)   |
|-------------|------------|--------------|------------|
| Ag17—O9     | 2.404(10)  | Ag40—O29     | 2.381(12)  |
| Ag17—O27    | 2.375(9)   | Ag40—O31     | 2.392(17)  |
| Ag18—Ag24   | 2.8268(16) | Ag41—Cl2     | 2.866(5)   |
| Ag18—S18    | 2.457(3)   | Ag41—S18     | 2.422(4)   |
| Ag18—S34    | 2.632(4)   | Ag41—S24     | 2.401(4)   |
| Ag18—019    | 2.461(9)   | Ag42—Cl4     | 2.795(4)   |
| Ag18—O24    | 2.292(10)  | Ag42—S21     | 2.404(4)   |
| Ag19—Ag22   | 2.7756(15) | Ag42—S28     | 2.414(4)   |
| Ag19—S20    | 2.476(4)   | Ag43—Cl2     | 2.779(6)   |
| Ag19—S25    | 2.640(5)   | Ag43—S14     | 2.406(4)   |
| Ag19—016    | 2.276(12)  | Ag43—S22     | 2.420(4)   |
| Ag19—017    | 2.415(9)   | Ag44—O10     | 2.344(12)  |
| Ag20—Ag46   | 3.298(2)   | Ag44—O14     | 2.429(11)  |
| Ag20—S1     | 2.537(3)   | Ag44—O20     | 2.368(9)   |
| Ag20—S32    | 2.587(3)   | Ag44—O25     | 2.499(10)  |
| Ag20—O11    | 2.397(10)  | Ag44—N5      | 2.309(17)  |
| Ag20—O18    | 2.402(12)  | Ag45—Ag46    | 3.288(3)   |
| Ag21—Ag33   | 2.7747(18) | Ag45—S21     | 2.457(4)   |
| Ag21—Ag42   | 3.1475(17) | Ag45—S35     | 2.574(6)   |
| Ag21—Ag44   | 3.2206(19) | Ag45—O18     | 2.412(13)  |
| Ag21—S28    | 2.475(3)   | Ag45—O31     | 2.362(15)  |
| Ag21—S33    | 2.553(4)   | Ag46—O11     | 2.505(11)  |
| Ag21—O10    | 2.396(12)  | Ag46—O18     | 2.312(12)  |
| Ag21—O25    | 2.374(10)  | Ag46—O29     | 2.270(11)  |
| Ag22—Ag27   | 3.0704(18) | Ag46—O31     | 2.438(15)  |
| Ag22—S11    | 2.628(4)   | Ag46—N6      | 2.43(2)    |
| O2—Ag1—Cl2  | 139.0(15)  | O16—Ag26—S6  | 130.0(3)   |
| Cl4—Ag3—Cl1 | 116.1(2)   | O16—Ag26—S29 | 76.3(3)    |
| O4—Ag3—Cl1  | 96.9(7)    | O16—Ag26—O19 | 90.8(3)    |
| O4—Ag3—Cl4  | 121.8(6)   | O19—Ag26—S6  | 137.9(3)   |
| O28—Ag5—O30 | 162.4(5)   | O19—Ag26—S29 | 73.8(2)    |
| 017—Ag6—O19 | 161.0(5)   | S20—Ag27—Cl1 | 99.60(12)  |
| 09—Ag7—Cl2  | 87.1(3)    | S20—Ag27—S28 | 153.96(13) |
| O9—Ag7—O22  | 89.3(4)    | S28—Ag27—Cl1 | 95.64(12)  |
| O9—Ag7—O27  | 88.2(4)    | S6—Ag28—S19  | 126.95(13) |
| O12—Ag7—Cl2 | 91.5(3)    | O26—Ag28—S6  | 105.0(3)   |
| 012—Ag7—O9  | 178.2(5)   | O26—Ag28—S19 | 75.3(2)    |
| O12—Ag7—O22 | 91.9(4)    | O26—Ag28—O30 | 91.1(3)    |
| O12—Ag7—O27 | 90.4(4)    | O30—Ag28—S6  | 156.4(3)   |
| O22—Ag7—Cl2 | 87.1(3)    | O30—Ag28—S19 | 73.4(3)    |
| O22—Ag7—O27 | 168.8(4)   | S6—Ag29—Cl3  | 97.38(14)  |
| O27—Ag7—Cl2 | 81.9(3)    | S18—Ag29—Cl3 | 97.19(13)  |

| O13—Ag8—O23  | 168.4(8)   | S18—Ag29—S6  | 148.48(13) |
|--------------|------------|--------------|------------|
| S4—Ag9—S16   | 134.42(12) | S14—Ag30—S26 | 126.99(13) |
| O20—Ag9—S4   | 107.8(2)   | O12—Ag30—S14 | 157.7(3)   |
| O20—Ag9—S16  | 75.7(2)    | O12—Ag30—S26 | 74.5(3)    |
| O25—Ag9—S4   | 145.5(2)   | O12—Ag30—O22 | 87.7(4)    |
| O25—Ag9—S16  | 76.9(2)    | O22—Ag30—S14 | 102.6(3)   |
| O25—Ag9—O20  | 92.3(3)    | O22—Ag30—S26 | 75.7(3)    |
| S4—Ag10—Cl1  | 102.86(11) | S22—Ag31—S23 | 126.44(15) |
| S4—Ag10—O4   | 104.3(5)   | S22—Ag31—O23 | 119.6(3)   |
| S6—Ag10—Cl1  | 93.32(12)  | O21—Ag31—S22 | 149.2(3)   |
| S6—Ag10—S4   | 149.92(12) | O21—Ag31—S23 | 77.7(3)    |
| S6—Ag10—O4   | 101.8(5)   | O21—Ag31—O23 | 83.3(4)    |
| O4—Ag10—Cl1  | 86.7(5)    | O23—Ag31—S23 | 72.8(3)    |
| S1—Ag11—S12  | 125.90(11) | S5—Ag32—Cl6  | 93.09(15)  |
| O14—Ag11—S1  | 133.1(2)   | S5—Ag32—O5   | 112.3(6)   |
| O14—Ag11—S12 | 76.9(2)    | S22—Ag32—Cl6 | 102.81(14) |
| O14—Ag11—O20 | 90.9(3)    | S22—Ag32—S5  | 150.99(13) |
| O20—Ag11—S1  | 131.2(2)   | S22—Ag32—O5  | 92.8(6)    |
| O20—Ag11—S12 | 76.8(2)    | O5—Ag32—Cl6  | 87.2(6)    |
| S1—Ag12—Cl5  | 93.46(14)  | S28—Ag33—S27 | 123.79(14) |
| S1—Ag12—S8   | 151.84(11) | O28—Ag33—S27 | 74.1(2)    |
| S1—Ag12—O3   | 87.2(5)    | O28—Ag33—S28 | 156.0(3)   |
| S8—Ag12—Cl5  | 102.15(16) | O32—Ag33—S27 | 77.0(2)    |
| S8—Ag12—O3   | 102.2(5)   | O32—Ag33—S28 | 108.3(3)   |
| O3—Ag12—Cl5  | 125.1(5)   | O32—Ag33—O28 | 90.5(4)    |
| S8—Ag13—S10  | 124.29(12) | S5—Ag34—S7   | 120.21(14) |
| O13—Ag13—S8  | 119.2(2)   | O15—Ag34—S5  | 123.0(2)   |
| O13—Ag13—S10 | 71.6(2)    | O15—Ag34—S7  | 77.2(3)    |
| O15—Ag13—S8  | 151.6(3)   | O15—Ag34—O23 | 93.4(4)    |
| O15—Ag13—S10 | 77.1(3)    | O23—Ag34—S5  | 142.3(3)   |
| O15—Ag13—O13 | 83.5(3)    | O23—Ag34—S7  | 73.7(3)    |
| S1—Ag14—Cl4  | 101.48(14) | S5—Ag35—Cl5  | 101.63(17) |
| S1—Ag14—S4   | 157.49(10) | S5—Ag35—S21  | 150.16(15) |
| S4—Ag14—Cl4  | 91.03(13)  | S21—Ag35—Cl5 | 95.72(15)  |
| S4—Ag15—S30  | 123.86(11) | S14—Ag36—S36 | 121.63(12) |
| O26—Ag15—S4  | 124.2(3)   | O17—Ag36—S14 | 141.2(3)   |
| O26—Ag15—S30 | 77.1(2)    | O17—Ag36—S36 | 74.5(2)    |
| O26—Ag15—O28 | 92.1(4)    | O24—Ag36—S14 | 126.8(2)   |
| O28—Ag15—S4  | 140.6(3)   | O24—Ag36—S36 | 76.7(2)    |
| O28—Ag15—S30 | 74.9(2)    | O24—Ag36—O17 | 89.8(3)    |
| S8—Ag16—S13  | 129.32(14) | S2—Ag37—Cl6  | 152.75(15) |
| O11—Ag16—S8  | 133.1(2)   | S24—Ag37—C16 | 94.07(14)  |
| 011—Ag16—S13 | 76.4(2)    | S24—Ag37—S2  | 112.94(15) |

| O11—Ag16—O29 | 88.3(3)    | O13—Ag37—Cl6 | 83.4(3)    |
|--------------|------------|--------------|------------|
| O29—Ag16—S8  | 131.4(2)   | O13—Ag37—S2  | 73.7(2)    |
| O29—Ag16—S13 | 76.5(3)    | O13—Ag37—S24 | 139.9(3)   |
| S24—Ag17—S9  | 121.07(13) | O21—Ag37—Cl6 | 92.1(3)    |
| O9—Ag17—S9   | 74.3(3)    | O21—Ag37—S2  | 74.8(3)    |
| O9—Ag17—S24  | 163.7(3)   | O21—Ag37—S24 | 127.1(3)   |
| O27—Ag17—S9  | 75.7(2)    | O21—Ag37—O13 | 93.0(4)    |
| O27—Ag17—S24 | 101.7(3)   | S14—Ag38—Cl3 | 97.24(14)  |
| O27—Ag17—O9  | 87.0(4)    | S14—Ag38—S20 | 154.97(13) |
| S18—Ag18—S34 | 125.72(13) | S20—Ag38—Cl3 | 93.53(15)  |
| S18—Ag18—O19 | 116.9(3)   | S22—Ag39—S31 | 129.95(13) |
| O19—Ag18—S34 | 73.2(2)    | O9—Ag39—S22  | 135.3(3)   |
| O24—Ag18—S18 | 151.1(3)   | O9—Ag39—S31  | 75.0(2)    |
| O24—Ag18—S34 | 77.0(3)    | O22—Ag39—S22 | 130.0(3)   |
| O24—Ag18—O19 | 84.7(3)    | O22—Ag39—S31 | 76.9(3)    |
| S20—Ag19—S25 | 128.02(14) | O22—Ag39—O9  | 87.5(4)    |
| O16—Ag19—S20 | 147.1(3)   | S5—Ag40—S17  | 124.97(15) |
| O16—Ag19—S25 | 76.2(3)    | O29—Ag40—S5  | 157.7(3)   |
| O16—Ag19—O17 | 88.7(3)    | O29—Ag40—S17 | 75.6(3)    |
| O17—Ag19—S20 | 117.8(3)   | O29—Ag40—O31 | 84.8(5)    |
| O17—Ag19—S25 | 72.7(2)    | O31—Ag40—S5  | 107.3(4)   |
| S1—Ag20—S32  | 130.59(12) | O31—Ag40—S17 | 75.5(3)    |
| O11—Ag20—S1  | 104.3(2)   | S18—Ag41—Cl2 | 97.95(16)  |
| O11—Ag20—S32 | 76.2(2)    | S24—Ag41—Cl2 | 94.33(16)  |
| O11—Ag20—O18 | 89.8(4)    | S24—Ag41—S18 | 155.63(14) |
| O18—Ag20—S1  | 152.9(3)   | S21—Ag42—Cl4 | 104.66(14) |
| O18—Ag20—S32 | 74.9(3)    | S21—Ag42—S28 | 149.86(14) |
| S28—Ag21—S33 | 130.28(13) | S28—Ag42—Cl4 | 97.98(14)  |
| O10—Ag21—S28 | 123.5(3)   | S14—Ag43—Cl2 | 96.99(17)  |
| O10—Ag21—S33 | 76.0(3)    | S14—Ag43—S22 | 148.86(13) |
| O25—Ag21—S28 | 136.8(2)   | S22—Ag43—Cl2 | 99.35(17)  |
| O25—Ag21—S33 | 77.6(2)    | O10—Ag44—O14 | 86.8(4)    |
| O25—Ag21—O10 | 92.1(4)    | O10—Ag44—O20 | 165.7(3)   |
| S20—Ag22—S11 | 125.28(12) | O10—Ag44—O25 | 90.3(4)    |
| O30—Ag22—S11 | 74.7(3)    | O14—Ag44—O25 | 164.8(3)   |
| O30—Ag22—S20 | 142.0(3)   | O20—Ag44—O14 | 88.4(3)    |
| O32—Ag22—S11 | 76.3(3)    | O20—Ag44—O25 | 90.9(3)    |
| O32—Ag22—S20 | 123.6(3)   | N5—Ag44—O10  | 96.6(6)    |
| O32—Ag22—O30 | 90.6(4)    | N5—Ag44—O14  | 94.8(5)    |
| S21—Ag23—S15 | 124.88(14) | N5—Ag44—O20  | 97.2(6)    |
| O10—Ag23—S15 | 76.3(3)    | N5—Ag44—O25  | 100.4(5)   |
| O10—Ag23—S21 | 111.4(3)   | S21—Ag45—S35 | 131.93(17) |
| O14—Ag23—S15 | 76.9(3)    | O18—Ag45—S21 | 134.0(3)   |

| O14—Ag23—S21 | 153.4(3)   | O18—Ag45—S35 | 76.8(3)  |
|--------------|------------|--------------|----------|
| O14—Ag23—O10 | 87.0(4)    | O31—Ag45—S21 | 127.2(4) |
| S18—Ag24—S3  | 129.82(12) | O31—Ag45—S35 | 77.4(4)  |
| O12—Ag24—S3  | 75.2(3)    | O31—Ag45—O18 | 89.4(5)  |
| O12—Ag24—S18 | 136.0(3)   | 018—Ag46—011 | 89.3(4)  |
| O27—Ag24—S3  | 77.4(3)    | O18—Ag46—O31 | 89.9(5)  |
| O27—Ag24—S18 | 128.1(3)   | O18—Ag46—N6  | 103.5(6) |
| O27—Ag24—O12 | 88.7(4)    | O29—Ag46—O11 | 86.4(4)  |
| S8—Ag25—Cl6  | 94.72(14)  | O29—Ag46—O18 | 158.8(4) |
| S8—Ag25—S24  | 149.55(13) | O29—Ag46—O31 | 86.2(5)  |
| S8—Ag25—O2   | 110.8(6)   | O29—Ag46—N6  | 97.7(6)  |
| S24—Ag25—Cl6 | 96.99(14)  | O31—Ag46—O11 | 157.4(4) |
| S24—Ag25—O2  | 98.4(6)    | N6—Ag46—O11  | 101.4(5) |
| O2—Ag25—Cl6  | 84.1(6)    | N6—Ag46—O31  | 100.7(6) |
| S6—Ag26—S29  | 119.90(13) |              |          |

# **Reference:**

- Z. Wang, H. F. Su, X. P. Wang, Q. Q. Zhao, C. H. Tung, D. Sun and L. S. Zheng, *Chem. Eur. J.*, 2018, 24, 1640-1650.
- P. Lhoták, T. Šmejkal, I. Stibor, J. Havlíček, M. Tkadlecová and H. Petříčková, *Tetrahedron Lett.*, 2003, 44, 8093-8097.
- Rigaku Oxford Diffraction. CrysAlis<sup>Pro</sup> Software system, version 1.171.40.25a, Rigaku Corporation: Oxford, UK, 2018.
- 4. L. Palatinus and G. Chapuis, J. Appl. Crystallogr., 2007, 40, 786-790.
- 5. G. M. Sheldrick, Acta Crystallogr., 2015, C71, 3-8.
- O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H.Puschmann, *J. Appl. Crystallogr.*, 2009, 42, 339-341.
- 7. A. L. Spek, Acta Crystallogr., 2009, D65, 148-155.
- 8. T. Lu and F. W. Chen, J. Comput. Chem., 2012, 33, 580-592.
- Y. M. Su, Z. Wang, G. L. Zhuang, Q. Q. Zhao, X. P. Wang, C. H. Tung and D. Sun, *Chem. Sci.*, 2019, **10**, 564-568.
- N. K. Chaki, S. Mandal, A. C. Reber, M. Qian, H. M. Saavedra, P. S. Weiss, S. N. Khanna and A. Sen, *ACS Nano* 2010, 4, 5813-5818.
- K. Sheng, R. Wang, X. D. Tang, M. Jagodič, Z. Jaglicič, L. X. Pang, J. M. Dou, Z. Y. Gao,
   H. Y. Feng, C. H. Tung and D. Sun, *Inorg. Chem.*, 2021, 60, 14866-14871.