Supporting Information

Palladium-Catalyzed Enantioselective Rearrangement of Dienyl Cyclopropanes

Qi Xu,[‡] Chuan-Jun Lu,[‡] Chang-Qiu Guo, Jia Feng, and Ren-Rong Liu*

College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China. E-mail: renrongliu@qdu.edu.cn

Table of Contents

1	General information	S 1
2	Synthesis of substrates 1, 4, 9 and 15	S 1
3	Characterization and NMR spectra of products 1, 4, 9 and 15	S3
4	Procedures for the dienyl cyclopropanes synthesis	S70
5	Characterization and NMR spectra of products 2, 3, 5 and 10	S70
6	HPLC analysis of 2 , <mark>3, 5</mark> and 10	S136
7	Gram scale reaction	S157
8	Synthetic transformations	S158
9	Crystallographic data for 2d	S168
10	References	S175

1. General Information

Unless stated otherwise, all reagents were purchased from commercial sources and used without further purification. Solvents were dried and distilled before use by standard procedures. Reactions were monitored by thin layer chromatography (TLC) using silica gel plates. Flash column chromatography was performed over silica gel (200-300 mesh). NMR spectra were recorded on a Bruker Avance operating at for ¹H NMR at 400 MHz, ¹³C NMR at 100 MHz, ¹⁹F NMR at 376 MHz and chemical shifts (δ) are reported in ppm relative to those of residual solvent signals: CDCl₃ (¹H NMR δ 7.26, ¹³C NMR δ 77.00). All coupling constants (*J*) are reported in Hz. The following abbreviations were used to describe peak splitting patterns when appropriate: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. HRMS were recorded on Waters Xevo G2-XS QT of mass spectrometer. The enantiomeric excesses of the products were determined by HPLC analysis on Shimadzu LC-20AT, using Chiralpak AD-H (4.6 mm $\Phi \times 250$ mmL), OJ-H (4.6 mm $\Phi \times 250$ mmL), AS-H (4.6 mm $\Phi \times 250$ mmL), and IC (4.6 mm $\Phi \times 250$ mmL)

2. Synthesis of substrates 1, 4, 9 and 15

2.1 Procedure A:

(1) To a solution of freshly distilled acrolein (1.2 equiv.) in DMF was added the bromomalonate (1.0 equiv.) followed by K_2CO_3 (2.0 equiv.). The heterogeneous mixture was allowed to stir vigorously until the reaction was completed by TLC analysis (ca. 5 hours). To the resultant mixture was added H₂O and extracted with ethyl acetate. After removal of solvent under reduced pressure, the resulting residue was purified by silica gel flash chromatography (PE/EA = 3:1) to obtain I.

$$\begin{array}{cccc} R & & PPh_3 & & R & & PPh_3 & Br \\ \hline R^2 & toluene & & R^2 \\ II & & III \end{array}$$

(2) II used in this study were prepared according to literature procedures.¹⁻² To a solution of bromide II (5 mmol) in toluene was added triphenylphosphine (4.4 mmol) in one portion and the mixture was heated to 80 °C with vigorous stirring overnight before the reaction was placed in icewater. The desired product was collected on a filter and dried to give the titled compound III as a white solid.

(3) To a suspension of **III** (5 mmol) in dry THF (22 mL) was added n-BuLi (5.8 mmol) dropwise at 0 °C. After stirring for 5 min at 0 °C, a solution of **I** (5.5 mmol, 1.1 equiv.) in THF (10 mL) was introduced. The solution was stirred for 25 minutes at 0 °C, the reaction mixture was added H₂O and extracted with ethyl acetate. After removal of solvent under reduced pressure, the resulting residue was purified by silica gel flash chromatography (PE/EA = 20:1-10:1) to obtain **1**.

The synthesis of substrates **3**, **9** and **15** refers to the method of substrate **1**.

2.2 Procedure B:

(1) Ozone was vigorously bubbled through a stirred solution of IV (7 mmol) at -78 °C in DCM (30 mL) until a blue/purple color persisted. Once the addition of ozone was ceased a steady stream of argon was bubbled through the cool solution for 10 minutes and subsequently treated with Me₂S (3 mL) in one portion, then warmed to room temperature with stirring for 12 hours. The reaction was concentrated in vacuo, diluted with Et₂O (100 mL) and washed with deionized water (50 mL). The aqueous layer was back extracted with Et₂O (2 x 50 mL) and combined organics were washed with brine (50 mL), dried with MgSO₄, filtered and concentrated in vacuo. The residue was chromatographed on silica gel eluting with PE:EA=3:1 to afford the desired product **V** as a clear oil.

(2) To a suspension of III (5 mmol) in dry THF (22 mL) was added n-BuLi (5.8 mmol) dropwise at 0 °C. After stirring for 5 min at 0 °C, a solution of V (5.5 mmol, 1.1 equiv.) in THF (10 mL) was introduced. The solution was stirred for 25 minutes at 0 °C, the reaction mixture was added H₂O and extracted with ethyl acetate. After removal of solvent under reduced pressure, the resulting residue was purified by silica gel flash chromatography (PE/EA = 10:1) to obtain 1.

3. Characterization and NMR spectra of products 1, 4, 9 and 15

(*E*/*Z*)-diethyl 2-(4-phenylbuta-1,3-dien-1-yl)cyclopropane-1,1-dicarboxylate (1a) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide 1a as a yellow oil (943.1 mg, 60% yield).

¹**H NMR**(400 MHz, CDCl3) δ 7.38 – 7.27 (m, 2H), 7.24 – 7.10 (m, 3H), 6.67 – 6.39 (m, 2H), 6.39 – 6.18 (m, 1H), 5.42 – 4.84 (m, 1H), 4.21 – 4.00 (m, 4H), 2.96 – 2.52 (m, 1H), 1.69 – 1.53 (m, 2H), 1.22 – 1.15 (m, 6H).

¹³**C NMR** (100 MHz, CDCl3) δ 169.7, 169.5, 167.5, 167.4, 137.1, 134.1, 134.1, 132.7, 132.0, 128.7, 128.6, 128.5, 128.0, 127.7, 127.5, 126.5, 126.3, 126.3, 123.8, 61.7, 61.6, 61.5, 36.5, 36.4, 31.1, 26.9, 21.9, 21.1, 14.2, 14.1, 14.1, 14.0.

HRMS Exact mass calculated for $[C_{19}H_{22}O_4+Na]^+$ requires m/z = 337.1410, found m/z = 337.1413 (ESI+).

(*E*)-diethyl-2-((1E,3E)-4-phenylbuta-1,3-dien-1-yl)cyclopropane-1,1-dicarboxylat e (E-1a) was purified from 1a by normal-phase column chromatography using a gradient eluent of PE/EA (50:1-20:1) to provide *E*-1a as a yellow oil.

¹**H NMR** (400 MHz, CDCl3) δ 7.28 – 7.09 (m, 5H), 6.61 (dd, J = 15.6, 10.5 Hz, 1H), 6.47 – 6.27 (m, 2H), 5.32 (dd, J = 15.1, 8.9 Hz, 1H), 4.18 – 4.05 (m, 4H), 2.56 (td, J = 8.8, 7.4 Hz, 1H), 1.66 (dd, J = 7.5, 4.9 Hz, 1H), 1.53 (dd, J = 8.9, 4.9 Hz, 1H), 1.17 (dt, J = 8.6, 7.1 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 169.5, 167.4, 137.1, 134.1, 132.0, 128.7, 128.3, 128.0, 127.5, 126.3, 61.6, 61.5, 36.4, 31.1, 21.1, 14.2, 14.0.

(Z)-diethyl-2-((1Z,3E)-4-phenylbuta-1,3-dien-1-yl)cyclopropane-1,1-dicarboxylat e (Z-1a)

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.31 (m, 2H), 7.26 – 7.03 (m, 4H), 6.51 (d, J = 15.5 Hz, 1H), 6.29 – 6.10 (m, 1H), 4.93 (t, J = 10.2 Hz, 1H), 4.23 – 4.07 (m, 4H), 2.90 (tdd, J = 9.6, 7.0, 1.1 Hz, 1H), 1.65 – 1.56 (m, 2H), 1.24 – 1.15 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 169.7, 167.6, 137.1, 134.1, 132.7, 128.6, 127.8, 126.5, 126.4, 123.8, 61.7, 61.5, 36.4, 26.9, 21.9, 14.1, 14.1.

(*E*/*Z*)-diethyl-2-(4-(4-methoxyphenyl)buta-1,3-dien-1-yl)cyclopropane-1,1-dicarb oxylate (1b) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide 1b as a yellow oil (895.4 mg, 52% yield).

¹**H NMR** (400 MHz, CDCl3) δ 7.43 – 7.27 (m, 2H), 7.06 – 6.81 (m, 2H), 6.69 – 6.16 (m, 3H), 5.39 – 4.92 (m, 1H), 4.51 – 4.04 (m, 4H), 3.81 (d, *J* = 6.0 Hz, 3H), 3.04 – 2.59 (m, 1H), 1.79 – 1.58 (m, 2H), 1.34 – 1.20 (m, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 169.5, 169.5, 169.4, 167.6, 167.5, 167.4, 159.1, 159.1, 158.6, 134.3, 132.9, 132.9, 131.5, 130.0, 129.8, 129.4, 129.1, 127.7, 127.4, 127.3, 127.1, 126.0, 124.7, 122.2, 114.0, 113.9, 113.8, 113.6, 61.5, 61.5, 61.3, 55.1, 55.1, 36.5, 36.4, 36.1, 31.2, 31.2, 27.8, 22.4, 20.9, 14.1, 14.1, 14.0, 13.9.

HRMS Exact mass calculated for $[C_{20}H_{24}O_5+Na]^+$ requires m/z = 383.1829, found m/z = 383.1830 (ESI+).

(*E*/*Z*)-diethyl-2-(4-(4-(methylthio)phenyl)buta-1,3-dien-1-yl)cyclopropane-1,1-dic arboxylate (1c) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide 1c as a yellow solid (1.05 g, 58% yield).

¹**H** NMR (400 MHz, CDCl3) δ 7.40 – 7.26 (m, 2H), 7.22 – 7.09 (m, 2H), 6.72 – 6.43 (m, 2H), 6.43 – 6.21 (m, 1H), 5.48 – 4.91 (m, 1H), 4.21 (dddd, *J* = 17.3, 10.9, 6.9, 3.7 Hz, 4H), 3.01 – 2.60 (m, 1H), 2.48 (d, *J* = 5.8 Hz, 3H), 1.74 – 1.61 (m, 2H), 1.26 (dt, *J* = 8.6, 7.1 Hz, 6H).

¹³**C NMR** (100 MHz, CDCl3) δ 169.5, 167.5, 167.5, 138.1, 137.7, 134.1, 134.1, 134.0, 133.4, 132.7, 131.3, 128.5, 127.5, 126.9, 126.7, 126.7, 126.6, 126.5, 126.1, 123.2, 61.7, 61.6, 61.5, 36.5, 36.4, 31.2, 26.9, 21.9, 21.1, 15.7, 15.7, 15.7, 14.2, 14.1, 14.1, 14.0.

HRMS Exact mass calculated for $[C_{20}H_{24}O_4S+Na]^+$ requires m/z = 383.1288, found m/z = 383.1291 (ESI+).

(*E*/*Z*)-diethyl 2-(4-(p-tolyl)buta-1,3-dien-1-yl)cyclopropane-1,1-dicarboxylate (1d) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide 1d as a yellow solid (853.9 mg, 52% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 – 7.26 (m, 2H), 7.12 (t, J = 8.6 Hz, 2H), 6.77 – 6.53 (m, 1H), 6.53 – 6.20 (m, 2H), 5.44 – 4.90 (m, 1H), 4.49 – 3.94 (m, 4H), 3.05 – 2.59 (m, 1H), 2.34 (d, J = 6.6 Hz, 3H), 1.81 – 1.61 (m, 2H), 1.32 – 1.23 (m, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 169.5, 167.4, 137.7, 137.4, 134.3, 134.2, 134.0, 132.8, 121.0, 120.2, 120.2, 120.0, 127.1, 126.4, 126.2, 125.7, 122.0, (1.7, 61.6, 61.4, 26.4)

131.9, 129.3, 129.3, 128.0, 127.1, 126.4, 126.2, 125.7, 122.8, 61.7, 61.6, 61.4, 36.4, 36.4, 31.2, 26.9, 21.9, 21.2, 21.2, 21.1, 14.2, 14.1, 14.0, 14.0.

HRMS Exact mass calculated for $[C_{10}H_{24}O_4+Na]^+$ requires m/z = 351.1567, found m/z = 351.1563 (ESI+).

(*E*/*Z*)-diethyl-2-(4-(4-fluorophenyl)buta-1,3-dien-1-yl)cyclopropane-1,1-dicarbox ylate (1e) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide 1e as a yellow solid (830.9 mg, 50% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 7.22 (m, 2H), 6.97 – 6.88 (m, 2H), 6.56 – 6.44 (m, 1H), 6.41 – 6.15 (m, 2H), 5.39 – 4.92 (m, 1H), 4.21 – 4.09 (m, 4H), 2.91 – 2.53 (m, 1H), 1.69 – 1.55 (m, 2H), 1.22 – 1.15 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 169.7, 169.5, 167.5, 167.4, 163.4, 161.0, 133.9, 133.3, 133.3, 132.8, 132.5, 130.7, 128.8, 128.7, 128.1, 128.0, 127.8, 127.8, 127.8, 127.7, 126.4, 123.6, 123.6, 115.6, 115.6, 115.4, 115.4, 61.7, 61.6, 61.5, 36.4, 31.1, 26.8, 21.9, 21.1, 14.2, 14.1, 14.0, 14.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -114.04 (d, J = 135.7 Hz).

HRMS Exact mass calculated for $[C_{19}H_{21}FO_4+Na]^+$ requires m/z = 355.1316, found m/z = 355.1320 (ESI+).

(*E*/*Z*)-diethyl-2-(4-(4-chlorophenyl)buta-1,3-dien-1-yl)cyclopropane-1,1-dicarbox ylate (1f) was synthesized by following Procedure A. The crude material was purified

by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide **1f** as a yellow solid (959.3 mg, 55% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.28 (m, 2H), 7.27 – 7.09 (m, 2H), 6.70 – 6.24 (m, 3H), 5.47 – 5.01 (m, 1H), 4.29 – 4.15 (m, 4H), 3.00 – 2.57 (m, 1H), 1.77 – 1.62 (m, 2H), 1.30 – 1.20 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 169.6, 169.4, 167.5, 167.4, 135.6, 135.6, 133.8, 133.3, 133.0, 132.6, 132.3, 130.6, 129.4, 128.7, 128.7, 128.6, 127.7, 127.4, 127.0, 124.3, 61.6, 61.5, 36.5, 31.0, 26.8, 21.9, 21.1, 14.2, 14.1, 14.1, 14.0.

HRMS Exact mass calculated for $[C_{19}H_{21}ClO_4+Na]^+$ requires m/z = 371.1021, found m/z = 371.1024 (ESI+).

(*E*/*Z*)-diethyl-2-(4-(4-bromophenyl)buta-1,3-dien-1-yl)cyclopropane-1,1-dicarbox ylate (1g) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide 1g as a yellow solid (983.2 mg, 50% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 – 7.35 (m, 2H), 7.28 – 7.20 (m, 2H), 6.76 – 6.21 (m, 3H), 5.49 – 4.99 (m, 1H), 4.29 – 4.15 (m, 4H), 3.00 – 2.57 (m, 1H), 1.76 – 1.62 (m, 2H), 1.30 – 1.23 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 169.5, 169.4, 167.5, 167.4, 137.1, 136.1, 134.1, 133.8, 132.7, 132.3, 132.0, 131.7, 131.7, 130.6, 129.6, 128.8, 128.7, 128.6, 128.6, 128.1, 128.0, 127.8, 127.5, 127.1, 126.5, 126.3, 124.5, 123.8, 121.2, 61.8, 61.7, 61.6, 61.5, 61.5, 36.5, 31.1, 31.0, 26.8, 21.9, 21.1, 14.2, 14.1, 14.1, 14.1.

HRMS Exact mass calculated for $[C_{19}H_{21}BrO_4+Na]^+$ requires m/z = 415.0515, found m/z = 415.0517 (ESI+).

(*E*/*Z*)-diethyl-2-(4-([1,1'-biphenyl]-4-yl)buta-1,3-dien-1-yl)cyclopropane-1,1-dicar boxylate (1h) was synthesized by following Procedure A. The crude material was

purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide **1h** as a yellow solid (1.02 g, 52% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.57 – 7.29 (m, 9H), 6.97 – 5.97 (m, 3H), 5.53 – 4.70 (m, 1H), 4.13 (tddd, *J* = 17.9, 10.7, 6.2, 2.5 Hz, 4H), 2.96 – 2.48 (m, 1H), 1.73 – 1.48 (m, 2H), 1.22 – 1.14 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 169.5, 169.5, 167.5, 167.5, 140.6, 140.2, 140.2, 136.3, 136.2, 134.2, 134.1, 132.7, 132.4, 132.2, 131.5, 129.0, 128.9, 128.8, 128.8, 128.7, 128.2, 127.7, 127.3, 127.2, 127.1, 126.8, 126.8, 126.7, 61.7, 61.5, 61.5, 36.6, 36.5, 31.3, 31.2, 21.2, 21.1, 14.2, 14.1.

HRMS Exact mass calculated for $[C_{25}H_{26}O_4+H]^+$ requires m/z = 391.1904, found m/z = 391.1905 (ESI+).

(*E*/*Z*)-diethyl-2-(4-(4-(benzyloxy)phenyl)buta-1,3-dien-1-yl)cyclopropane-1,1-dica rboxylate (1i) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide 1i as a yellow solid (1.11 g, 53% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.48 – 7.19 (m, 7H), 7.13 – 6.95 (m, 2H), 6.91 – 6.77 (m, 1H), 6.72 – 6.50 (m, 1H), 6.46 – 6.25 (m, 1H), 5.48 – 4.92 (m, 3H), 4.49 – 3.99 (m, 4H), 3.02 – 2.59 (m, 1H), 1.82 – 1.58 (m, 2H), 1.34 – 1.16 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 169.5, 167.6, 167.5, 159.0, 138.6, 136.9, 134.0, 133.9, 132.6, 131.8, 129.6, 129.6, 129.0, 128.6, 128.5, 128.0, 127.5, 127.5, 126.6, 124.2, 119.6, 119.3, 114.2, 114.0, 112.9, 112.6, 77.2, 70.0, 70.0, 61.7, 61.7, 61.5, 36.5, 36.4, 31.1, 26.9, 22.0, 21.1, 14.2, 14.2, 14.1.

HRMS Exact mass calculated for $[C_{26}H_{28}O_5+Na]^+$ requires m/z = 443.1829, found m/z = 443.1834 (ESI+).

(E/Z)-diethyl-2-(4-(3-(trifluoromethoxy)phenyl)buta-1,3-dien-1-yl)cyclopropane-

1,1-dicarboxylate (1j) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1 to provide **1j** as a yellow solid (1.08 g, 54% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.26 (m, 2H), 7.23 – 7.00 (m, 2H), 6.77 – 6.46 (m, 2H), 6.45 – 6.25 (m, 1H), 5.54 – 4.99 (m, 1H), 4.49 – 3.96 (m, 4H), 3.05 – 2.52 (m, 1H), 1.78 – 1.60 (m, 2H), 1.35 – 1.12 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 169.6, 169.4, 167.5, 167.4, 149.6, 149.6, 139.3, 139.3, 133.5, 132.4, 132.1, 130.3, 129.9, 129.8, 129.7, 127.8, 125.4, 124.8, 124.7, 121.7, 119.9, 119.6, 119.2, 118.8, 118.4, 61.8, 61.7, 61.5, 36.5, 36.5, 31.0, 26.7, 21.9, 21.1, 14.2, 14.1, 14.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -57.70 (d, J = 2.6 Hz).

HRMS Exact mass calculated for $[C_{20}H_{21}F_{3}O_{5}+Na]^{+}$ requires m/z = 421.1233, found m/z = 421.1237 (ESI+).

(*E*/*Z*)-diethyl-2-(4-(3-bromophenyl)buta-1,3-dien-1-yl)cyclopropane-1,1-dicarbox ylate (1k) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide 1k as a white solid (1.02 g, 52% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.56 – 7.07 (m, 5H), 6.68 – 6.30 (m, 2H), 5.52 – 5.02 (m, 1H), 4.72 – 3.64 (m, 4H), 3.03 – 2.55 (m, 1H), 1.78 – 1.59 (m, 2H), 1.39 – 1.16 (m, 6H).

¹³**C NMR** (100 MHz, CDCl₃) δ 169.7, 169.5, 169.5, 167.6, 167.5, 143.2, 143.2, 137.1, 137.0, 134.4, 134.2, 134.1, 132.8, 132.7, 132.3, 132.2, 132.0, 128.8, 128.7, 128.6, 128.6, 128.6, 128.5, 128.5, 128.4, 128.1, 128.1, 128.0, 127.8, 127.8, 127.5, 126.6, 126.5, 126.4, 126.4, 126.3, 126.1, 125.8, 124.0, 123.8, 123.7, 123.5, 61.7, 61.6, 61.5, 36.5, 35.6, 33.6, 31.2, 31.1, 27.0, 26.9, 22.4, 22.4, 22.0, 21.1, 14.2, 14.1, 14.1, 14.6, 13.9.

HRMS Exact mass calculated for $[C_{19}H_{21}BrO_4+Na]^+$ requires m/z = 415.0515, found m/z = 415.0517 (ESI+).

(*E*/*Z*)-diethyl-2-(4-(3-chlorophenyl)buta-1,3-dien-1-yl)cyclopropane-1,1-dicarbox ylate (11) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide 11 as a white solid (994.1 mg, 57% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.30 (m, 1H), 7.26 – 7.10 (m, 3H), 6.82 – 6.09 (m, 3H), 5.50 – 5.02 (m, 1H), 4.32 – 4.10 (m, 4H), 3.01 – 2.60 (m, 1H), 1.76 – 1.62 (m, 2H), 1.35 – 1.21 (m, 6H).

¹³**C NMR** (100 MHz, CDCl₃) δ 169.6, 169.4, 167.5, 167.4, 139.0, 134.5, 134.5, 133.6, 132.5, 132.2, 130.4, 130.0, 129.8, 129.8, 129.4, 127.6, 127.5, 127.3, 126.3, 126.1, 125.1, 124.7, 124.5, 61.7, 61.5, 36.5, 31.0, 26.8, 21.9, 21.1, 14.2, 14.1, 14.1, 14.0.

HRMS Exact mass calculated for $[C_{19}H_{21}ClO_4+Na]^+$ requires m/z = 371.1021, found m/z = 371.1025 (ESI+).

(*E*/*Z*)-diethyl-2-(4-(3-fluorophenyl)buta-1,3-dien-1-yl)cyclopropane-1,1-dicarbox ylate (1m) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide 1m as a yellow solid (830.9 mg, 50% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.26 – 7.03 (m, 3H), 6.91 (qd, J = 9.7, 5.3 Hz, 1H), 6.77 – 6.53 (m, 1H), 6.52 – 6.08 (m, 2H), 5.54 – 5.01 (m, 1H), 4.30 – 4.07 (m, 4H), 3.06 – 2.48 (m, 1H), 1.78 – 1.62 (m, 2H), 1.34 – 1.18 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 169.6, 169.4, 167.5, 167.4, 164.3, 161.8, 139.5, 139.5, 139.4, 133.6, 132.8, 132.7, 132.2, 130.7, 130.6, 130.0, 130.0, 130.0, 129.9, 129.9, 129.3, 129.0, 128.2, 127.4, 125.0, 122.4, 122.4, 122.2, 122.2, 114.6, 114.4, 114.4, 114.1, 112.9, 112.7, 112.6, 112.4, 61.8, 61.7, 61.5, 36.5, 31.0, 26.8, 21.9, 21.1, 14.2, 14.1, 14.1, 14.03

¹⁹**F NMR** (376 MHz, CDCl₃) δ -113.51 (d, J = 21.9 Hz).

HRMS Exact mass calculated for $[C_{19}H_{21}FO_4+Na]^+$ requires m/z = 355.1316, found m/z = 355.1320 (ESI+).

(*E*/*Z*)-diethyl-2-(4-(2-methoxyphenyl)buta-1,3-dien-1-yl)cyclopropane-1,1-dicarb oxylate (1n) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide 1n as a white solid (981.6 mg, 57% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.54 – 7.41 (m, 1H), 7.22 – 7.17 (m, 1H), 7.05 – 6.61 (m, 4H), 6.53 – 6.30 (m, 1H), 5.55 – 4.85 (m, 1H), 4.28 – 4.15 (m, 4H), 3.84 (d, J = 4.4 Hz, 3H), 3.09 – 2.52 (m, 1H), 1.77 – 1.61 (m, 2H), 1.32 – 1.24 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 169.6, 169.4, 167.5, 167.4, 156.7, 156.6, 134.9, 133.4, 128.8, 128.7, 128.6, 128.6, 128.4, 127.9, 126.8, 126.6, 126.3, 126.0, 126.0, 125.5, 124.4, 120.6, 120.5, 110.8, 61.5, 61.5, 61.4, 61.3, 55.3, 36.4, 36.3, 31.1, 26.9, 21.8, 21.0, 14.1, 14.0, 14.0, 14.0.

HRMS Exact mass calculated for $[C_{20}H_{24}O_5+Na]^+$ requires m/z = 367.1516, found m/z = 367.1518 (ESI+).

(*E*/*Z*)-diethyl-2-(4-(2-chlorophenyl)buta-1,3-dien-1-yl)cyclopropane-1,1-dicarbox ylate (10) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide 10 as a white solid (1.01 g, 58% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.15 (m, 4H), 6.75 – 6.40 (m, 2H), 6.43 – 6.16 (m, 1H), 5.51 – 4.97 (m, 1H), 4.36 – 4.07 (m, 4H), 3.03 – 2.53 (m, 1H), 1.80 – 1.60 (m, 2H), 1.26 (dp, *J* = 10.7, 3.7 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 169.6, 169.4, 167.4, 139.0, 134.5, 133.6, 132.5, 132.2, 130.4, 130.0, 129.8, 129.8, 129.4, 127.6, 127.5, 127.3, 126.3, 126.1, 125.1, 124.7, 124.5, 61.7, 61.5, 36.5, 31.0, 26.8, 21.9, 21.1, 14.2, 14.0.

HRMS Exact mass calculated for $[C_{19}H_{21}ClO_4+Na]^+$ requires m/z = 371.1021, found m/z = 371.1025 (ESI+).

(E/Z)-diethyl-2-(4-(2-fluorophenyl)buta-1,3-dien-1-yl)cyclopropane-1,1-dicarbox

ylate (1p) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide 1p as a white solid (894.7 mg, 54% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.56 – 7.39 (m, 1H), 7.25 – 6.75 (m, 4H), 6.74 – 6.60 (m, 1H), 6.51 – 6.27 (m, 1H), 5.55 – 4.97 (m, 1H), 4.29 – 4.13 (m, 4H), 3.08 – 2.57 (m, 1H), 1.77 – 1.61 (m, 2H), 1.31 – 1.22 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 169.6, 169.4, 167.5, 167.4, 161.4, 158.9, 134.2, 132.8, 130.4, 130.3, 129.6, 128.9, 128.8, 128.6, 128.6, 127.2, 127.1, 127.0, 127.0, 126.9, 126.1, 126.1, 126.0, 125.9, 125.0, 124.9, 124.2, 124.1, 124.1, 124.1, 124.0, 124.0, 115.8, 115.6, 61.7, 61.6, 61.5, 36.4, 31.0, 26.8, 21.9, 21.1, 14.1, 14.1, 14.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -117.85 (d, J = 4.9 Hz).

HRMS Exact mass calculated for $[C_{19}H_{21}FO_4+H]^+$ requires m/z = 333.1497, found m/z = 333.1500 (ESI+).

(*E*/*Z*)-diethyl-2-(4-(3,4-difluorophenyl)buta-1,3-dien-1-yl)cyclopropane-1,1-dicar boxylate (1q) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide 1q as a white solid (981.0 mg, 56% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.20 – 7.03 (m, 3H), 6.70 – 6.20 (m, 3H), 5.52 – 5.00 (m, 1H), 4.27 – 4.13 (m, 4H), 2.98 – 2.55 (m, 1H), 1.75 – 1.62 (m, 2H), 1.26 (qd, *J* = 7.2, 2.9 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 169.6, 169.4, 167.4, 151.7, 134.5, 133.5, 132.0, 131.7, 129.9, 129.7, 129.1, 127.5, 124.8, 122.6, 122.5, 117.4, 117.2, 114.8, 114.7, 114.5, 114.3, 61.8, 61.7, 61.5, 36.5, 36.5, 31.0, 26.7, 21.9, 21.1, 14.2, 14.1, 14.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -137.84 (dd, *J* = 32.8, 21.1 Hz), -138.72 (dd, *J* = 143.7, 21.0 Hz).

HRMS Exact mass calculated for $[C_{19}H_{20}F_2O_4+Na]^+$ requires m/z = 373.1222, found m/z = 373.1225 (ESI+).

(*E*/*Z*)-diethyl-2-(4-(4-fluoro-3-(trifluoromethyl)phenyl)buta-1,3-dien-1-yl)cyclopr opane-1,1-dicarboxylate (1r) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide 1r as a white solid (1.00 g, 50% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 – 7.45 (m, 2H), 7.17 – 7.09 (m, 1H), 6.82 – 6.17 (m, 3H), 5.54 – 4.98 (m, 1H), 4.32 – 4.12 (m, 4H), 3.05 – 2.58 (m, 1H), 1.77 – 1.62 (m, 2H), 1.31 – 1.23 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 169.6, 169.4, 167.4, 167.4, 160.1, 157.5, 133.7, 133.7, 133.3, 131.9, 131.3, 131.2, 131.2, 131.1, 130.5, 129.6, 129.6, 129.1, 127.9, 126.5, 125.3, 125.3, 124.6, 124.6, 123.8, 121.1, 118.8, 118.7, 118.5, 118.3, 117.3, 117.2, 117.1, 117.0, 61.8, 61.7, 61.6, 36.5, 36.5, 31.0, 26.7, 21.9, 21.1, 14.2, 14.1, 14.0.
¹⁹F NMR (376 MHz, CDCl₃) δ -59.98 - -64.21 (m), -115.45 - -118.36 (m).

HRMS Exact mass calculated for $[C_{20}H_{20}F_4O_4+Na]^+$ requires m/z = 423.1190, found m/z = 423.1191 (ESI+).

(*E*/*Z*)-diethyl-2-(4-(benzo[d][1,3]dioxol-5-yl)buta-1,3-dien-1-yl)cyclopropane-1,1dicarboxylate (1s) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide 1s as a white solid (985.6 mg, 55% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 6.98 – 6.73 (m, 3H), 6.61 – 6.17 (m, 3H), 5.95 (d, J = 7.6 Hz, 2H), 5.39 – 4.95 (m, 1H), 4.30 – 4.15 (m, 4H), 3.00 – 2.60 (m, 1H), 1.76 – 1.62 (m, 2H), 1.30 – 1.21 (m, 6H).

¹³**C NMR** (100 MHz, CDCl₃) δ 169.7, 169.6, 167.5, 148.1, 148.0, 147.4, 147.2, 134.1, 133.7, 132.7, 131.7, 127.9, 126.5, 125.6, 122.3, 121.5, 121.3, 108.4, 105.6, 105.4, 101.1, 101.0, 61.7, 61.6, 61.5, 36.5, 36.4, 31.2, 26.9, 21.9, 21.1, 14.2, 14.1, 14.1, 14.1. **HRMS** Exact mass calculated for $[C_{20}H_{22}O_6+Na]^+$ requires m/z = 381.1309, found m/z = 381.1310 (ESI+).

(*E*/*Z*)-diethyl-2-(4-(3,4-dimethylphenyl)buta-1,3-dien-1-yl)cyclopropane-1,1-dicar boxylate (1t) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide 1t as a white solid (907.5 mg, 53% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.23 – 7.04 (m, 3H), 6.89 – 6.11 (m, 3H), 5.48 – 4.85 (m, 1H), 4.55 – 3.69 (m, 4H), 3.07 – 2.55 (m, 1H), 2.25 (t, *J* = 3.3 Hz, 6H), 1.79 – 1.62 (m, 2H), 1.27 (ddd, *J* = 9.5, 7.6, 6.6 Hz, 6H).

¹³**C NMR** (100 MHz, CDCl₃) δ 169.6, 167.5, 136.7, 136.2, 134.8, 134.4, 134.3, 132.9, 132.1, 129.9, 129.9, 127.8, 127.7, 127.6, 127.0, 125.5, 124.1, 123.8, 122.7, 61.6, 61.5, 36.5, 31.2, 27.0, 22.0, 21.1, 19.7, 19.5, 14.2, 14.1.

HRMS Exact mass calculated for $[C_{21}H_{26}O_4+H]^+$ requires m/z = 343.1904, found m/z = 343.1907 (ESI+).

(*E*/*Z*)-diethyl-2-(4-(3,4-dichlorophenyl)buta-1,3-dien-1-yl)cyclopropane-1,1-dicar boxylate (1u) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide 1u as a white solid (996.5 mg, 52% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.49 – 7.32 (m, 2H), 7.23 – 7.12 (m, 1H), 6.71 – 6.22 (m, 3H), 5.49 – 5.02 (m, 1H), 4.28 – 4.12 (m, 4H), 3.00 – 2.60 (m, 1H), 1.76 – 1.62 (m, 2H), 1.26 (q, *J* = 7.2 Hz, 6H).

¹³**C NMR** (100 MHz, CDCl₃) δ 169.6, 169.4, 167.4, 167.4, 137.3, 137.2, 133.4, 132.7, 132.7, 131.9, 131.4, 131.2, 130.9, 130.5, 130.5, 130.4, 129.9, 129.2, 128.1, 128.0, 127.8, 125.6, 125.5, 125.4, 61.8, 61.7, 61.5, 36.5, 36.5, 31.0, 26.7, 21.9, 21.1, 14.2, 14.2, 14.1, 14.1, 14.0.

HRMS Exact mass calculated for $[C_{19}H_{20}Cl_2O_4+Na]^+$ requires m/z = 405.0631, found m/z = 405.0634 (ESI+).

(E/Z)-diethyl-2-(4-(naphthalen-2-yl)buta-1,3-dien-1-yl)cyclopropane-1,1-dicarbo

xylate (1v) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide **1v** as a white solid (984.0 mg, 54% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.83 – 7.39 (m, 7H), 6.94 – 6.59 (m, 2H), 6.57 – 6.28 (m, 1H), 5.58 – 5.02 (m, 1H), 4.41 – 4.16 (m, 4H), 3.13 – 2.61 (m, 1H), 1.80 – 1.64 (m, 2H), 1.33 – 1.24 (m, 6H).

¹³**C NMR** (100 MHz, CDCl₃) δ 169.8, 169.5, 167.6, 167.5, 134.6, 134.2, 133.6, 133.1, 132.9, 132.7, 132.1, 128.9, 128.5, 128.2, 128.2, 128.0, 127.9, 127.7, 127.6, 126.7, 126.5, 126.4, 126.3, 126.3, 125.9, 125.8, 124.1, 123.5, 123.3, 61.7, 61.5, 36.52, 31.2, 27.0, 22.0, 21.2, 14.2, 14.1.

HRMS Exact mass calculated for $[C_{23}H_{24}O_4+Na]^+$ requires m/z = 387.1567, found m/z = 387.1570 (ESI+).

(*E*/*Z*)-diethyl-2-(4-(thiophen-2-yl)buta-1,3-dien-1-yl)cyclopropane-1,1-dicarboxyl ate (1w) was synthesized by following Procedure A. The crude material was purified

by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide **1w** as a white solid (849.1 mg, 53% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.19 – 6.94 (m, 3H), 6.77 – 6.16 (m, 3H), 5.44 – 4.94 (m, 1H), 4.27 – 4.12 (m, 4H), 3.00 – 2.54 (m, 1H), 1.80 – 1.62 (m, 2H), 1.30 – 1.23 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 169.5, 169.4, 167.5, 167.4, 142.5, 142.4, 133.5, 132.1, 128.5, 127.8, 127.5, 127.5, 127.2, 126.8, 126.2, 125.9, 124.8, 124.7, 124.3, 123.5, 61.6, 61.6, 61.4, 61.4, 36.4, 36.4, 31.1, 26.9, 21.9, 21.1, 14.1, 14.1, 14.0, 14.0, 13.9.
HDMS Exact mass calculated for [C], H. O. S. No.][±] requires m/z = 242.0075, found

HRMS Exact mass calculated for $[C_{17}H_{20}O_4S+Na]^+$ requires m/z = 343.0975, found m/z = 343.0980 (ESI+).

(*E*/*Z*)-diethyl 2-(4-(furan-2-yl)buta-1,3-dien-1-yl)cyclopropane-1,1-dicarboxylate (1x) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide 1x as a white solid (791.3 mg, 52% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.36 (dd, J = 15.2, 1.8 Hz, 1H), 7.10 – 6.58 (m, 1H), 6.40 – 6.37 (m, 1H), 6.36 – 6.08 (m, 3H), 5.41 – 4.96 (m, 1H), 4.26 – 4.15 (m, 4H), 3.00 – 2.62 (m, 1H), 1.74 – 1.60 (m, 2H), 1.26 (d, J = 7.5 Hz, 6H).

¹³**C NMR** (100 MHz, CDCl₃) δ 169.5, 167.4, 153.0, 142.4, 142.1, 133.7, 132.2, 128.9, 126.7, 126.6, 122.5, 121.4, 119.6, 111.6, 109.0, 108.5, 61.7, 61.5, 36.5, 31.2, 27.0, 21.1, 14.2, 14.1.

HRMS Exact mass calculated for $[C_{17}H_{20}O_5+Na]^+$ requires m/z = 327.1203, found m/z = 327.1203 (ESI+).

(*E*/*Z*)-diethyl-2-(5-ethoxy-5-oxopenta-1,3-dien-1-yl)cyclopropane-1,1-dicarboxyla te (1y) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide 1y as a white solid (806.9 mg, 52% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.70 – 7.14 (m, 1H), 6.49 – 6.18 (m, 1H), 5.99 – 5.75 (m, 1H), 5.70 – 5.22 (m, 1H), 4.28 – 4.10 (m, 6H), 3.04 – 2.55 (m, 1H), 1.77 – 1.61 (m, 2H), 1.32 – 1.20 (m, 9H).

¹³**C NMR** (100 MHz, CDCl₃) δ 169.1, 169.0, 167.3, 167.1, 166.9, 166.8, 143.3, 138.5, 137.6, 134.7, 131.4, 129.7, 123.1, 120.9, 61.8, 61.8, 61.7, 61.6, 60.4, 60.3, 36.7, 30.6, 26.5, 21.9, 21.2, 14.2, 14.2, 14.1, 14.1, 13.9.

HRMS Exact mass calculated for $[C_{16}H_{22}O_6+Na]^+$ requires m/z = 333.1309, found m/z = 333.1314 (ESI+).

(*E*/*Z*)-diethyl-2-(5-ethoxy-3-methyl-5-oxopenta-1,3-dien-1-yl)cyclopropane-1,1-di carboxylate (1z) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide 1z as a white solid (837.9 mg, 54% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.02 – 6.17 (m, 1H), 5.75 – 5.13 (m, 2H), 4.30 – 4.10 (m, 4H), 3.69 (d, *J* = 9.9 Hz, 3H), 2.88 – 2.61 (m, 1H), 2.17 (dd, *J* = 17.4, 1.3 Hz, 2H), 1.78 – 1.59 (m, 3H), 1.29 – 1.23 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 169.3, 169.2, 167.4, 167.3, 151.7, 151.3, 136.9, 135.8, 133.1, 131.6, 131.4, 130.8, 129.6, 129.6, 119.1, 118.9, 118.7, 116.7, 61.8, 61.7, 61.6, 61.6, 61.6, 51.1, 36.7, 36.66, 31.4, 30.8, 27.7, 24.8, 22.4, 21.3, 20.8, 14.2, 14.2, 14.2, 14.0, 14.0, 13.6.

HRMS Exact mass calculated for $[C_{16}H_{22}O_6+Na]^+$ requires m/z = 333.1309, found m/z = 333.1310 (ESI+).

(*E*)-Diethyl-2-(3-methyl-4-phenylbuta-1,3-dien-1-yl)cyclopropane-1,1-dicarboxyl ate (1aa) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide 1aa as a white solid (853.9 mg, 52% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.36 – 7.26 (m, 4H), 7.24 – 7.18 (m, 1H), 6.59 – 6.39 (m, 2H), 5.41 – 5.29 (m, 1H), 4.32 – 4.10 (m, 4H), 2.69 (q, *J* = 8.6 Hz, 1H), 1.91 (d, *J* = 1.2 Hz, 3H), 1.77 (dd, *J* = 7.6, 4.9 Hz, 1H), 1.65 (dd, *J* = 8.9, 4.9 Hz, 1H), 1.27 (dt, *J* = 9.3, 7.1 Hz, 6H).

¹³**C NMR** (100 MHz, CDCl₃) δ 169.6, 167.6, 138.9, 137.6, 134.8, 131.1, 129.2, 128.1, 126.6, 123.9, 61.6, 61.4, 36.4, 31.4, 21.2, 14.2, 14.1, 13.7.

HRMS Exact mass calculated for $[C_{20}H_{24}O_4+Na]^+$ requires m/z = 351.1567, found m/z = 351.1570 (ESI+).

(*E*/*Z*)-diethyl 2-(3-phenylbuta-1,3-dien-1-yl)cyclopropane-1,1-dicarboxylate (1ab) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide 1ab as a white solid (880.3 mg, 56% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 – 7.09 (m, 5H), 6.53 – 6.20 (m, 1H), 5.53 – 5.01 (m, 3H), 4.26 – 3.85 (m, 4H), 2.67 – 2.46 (m, 1H), 1.59 – 1.50 (m, 2H), 1.23 – 1.15 (m, 3H), 1.14 – 1.05 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.6, 169.2, 167.7, 167.3, 147.2, 144.1, 140.2, 139.9, 135.1, 133.2, 128.7, 128.3, 128.3, 128.1, 128.1, 127.7, 127.5, 126.7, 116.6, 116.4, 61.7, 61.5, 61.4, 36.2, 31.1, 28.4, 22.2, 20.9, 14.2, 14.0, 14.0.

HRMS Exact mass calculated for $[C_{19}H_{22}O_4+Na]^+$ requires m/z = 337.1410, found m/z = 337.1411 (ESI+).

(*E*/*Z*)-diethyl-2-methyl-2-(4-phenylbuta-1,3-dien-1-yl)cyclopropane-1,1-dicarbox ylate (1ac) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide 3ac as a yellow solid (919.5 mg, 56% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.54 – 7.27 (m, 5H), 6.79 – 6.49 (m, 1H), 6.40 – 6.14 (m, 1H), 5.90 – 5.60 (m, 1H), 4.41 – 3.99 (m, 4H), 1.86 – 1.72 (m, 1H), 1.72 – 1.49 (m, 2H), 1.45 – 1.37 (m, 3H), 1.36 – 1.08 (m, 6H).

¹³**C NMR** (100 MHz, CDCl₃) δ 168.3, 168.1, 137.4, 134.4, 133.5, 132.2, 131.8, 131.2, 130.9, 128.6, 128.6, 128.5, 127.6, 127.4, 126.6, 126.3, 124.7, 61.5, 61.4, 41.5, 40.8, 33.7, 31.5, 26.8, 26.3, 22.9, 18.6, 14.3, 14.1, 13.9.

HRMS Exact mass calculated for $[C_{20}H_{24}O_4+Na]^+$ requires m/z = 351.1567, found m/z = 351.1569 (ESI+).

(*E*/*Z*)-diethyl 2-(5-methylhexa-1,3-dien-1-yl)cyclopropane-1,1-dicarboxylate (1ad) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide 1ad as a white solid (759.1 mg, 57% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 6.56 – 6.22 (m, 1H), 6.21 – 5.62 (m, 1H), 5.16 – 4.71 (m, 1H), 4.30 – 4.10 (m, 4H), 2.93 – 2.54 (m, 1H), 1.85 – 1.70 (m, 6H), 1.69 – 1.55 (m, 2H), 1.25 (dtd, *J* = 8.0, 7.2, 3.2 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 169.7, 167.5, 137.5, 135.3, 130.6, 128.8, 124.8, 124.3, 122.8, 120.1, 61.6, 61.5, 61.3, 36.2, 36.1, 31.5, 26.8, 26.3, 25.9, 21.9, 21.1, 18.3, 18.1, 14.2, 14.1, 14.1, 14.0.

HRMS Exact mass calculated for $[C_{15}H_{22}O_4+Na]^+$ requires m/z = 289.1410, found m/z = 289.1411 (ESI+).

(*E*/*Z*)-diisopropyl 2-(4-phenylbuta-1,3-dien-1-yl)cyclopropane-1,1-dicarboxylate (1ae) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide 1ae as a white solid (856.1 mg, 50% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.26 (m, 2H), 7.24 – 7.07 (m, 3H), 6.66 – 6.40 (m, 2H), 6.39 – 6.17 (m, 1H), 5.38 – 4.89 (m, 3H), 2.93 – 2.49 (m, 1H), 1.64 – 1.48 (m, 2H), 1.22 – 1.16 (m, 9H), 1.11 (d, *J* = 6.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.1, 167.1, 137.2, 137.1, 133.9, 133.8, 132.5, 131.8, 129.0, 128.6, 128.5, 128.1, 127.7, 127.5, 126.6, 126.5, 126.3, 124.0, 69.2, 69.2, 68.9, 68.9, 36.8, 30.6, 26.4, 21.9, 21.7, 21.7, 21.6, 21.6, 21.5, 20.8.

HRMS Exact mass calculated for $[C_{21}H_{26}O_4+Na]^+$ requires m/z = 365.1723, found m/z = 365.1725 (ESI+).

(*E*/*Z*)-ethyl-2-(4-phenylbuta-1,3-dien-1-yl)-1-(phenylsulfonyl)cyclopropane-1-car boxylate (1af) was synthesized by following Procedure B. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE:EA=10:1 to provide 1af as a white oil (1.09 g, 57% yield).

¹**H NMR** (600 MHz, CDCl₃) δ 8.01 – 7.95 (m, 2H), 7.65 – 7.58 (m, 1H), 7.57 – 7.50 (m, 2H), 7.39 – 7.29 (m, 4H), 7.23 – 7.13 (m, 1H), 6.71 – 6.59 (m, 1H), 6.56 – 6.31 (m, 2H), 5.58 – 5.20 (m, 1H), 4.15 – 4.05 (m, 2H), 3.37 – 2.94 (m, 1H), 2.41 – 2.33 (m, 1H), 2.05 – 2.03 (m, 1H), 1.14 – 1.11 (m, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 164.6, 140.0, 136.8, 135.7, 135.2, 134.4, 133.6, 133.6, 133.0, 128.9, 128.8, 128.7, 128.6, 128.1, 127.8, 127.6, 126.7, 126.4, 126.1, 123.4, 123.1, 62.3, 62.3, 51.2, 32.3, 27.4, 21.0, 20.4, 13.8, 13.8.

HRMS Exact mass calculated for $[C_{22}H_{22}O_4S+Na]^+$ requires m/z = 405.1136, found m/z = 405.1135 (ESI+).

(*E*/*Z*)-methyl 1-cyano-2-(4-phenylbuta-1,3-dien-1-yl)cyclopropane-1-carboxylate (1ag) was synthesized by following Procedure B. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE:EA=10:1 to provide 1ag as a white oil (620.6 mg, 49% yield).

¹**H NMR** (600 MHz, CDCl₃) δ 7.43 – 7.37 (m, 2H), 7.32 – 7.21 (m, 3H), 7.08 – 6.73 (m, 1H), 6.68 – 6.55 (m, 1H), 6.55 – 6.43 (m, 1H), 5.62 – 5.18 (m, 1H), 3.85 – 3.79 (m, 3H), 3.03 – 2.53 (m, 1H), 2.10 – 2.03 (m, 1H), 1.70 – 1.60 (m, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 167.6, 136.7, 136.2, 135.9, 134.5, 133.8, 128.7, 128.6, 128.3, 127.9, 127.3, 126.7, 126.6, 126.5, 124.4, 122.8, 116.8, 60.3, 53.6, 34.4, 30.0, 25.4, 24.6, 21.5, 14.2.

HRMS Exact mass calculated for $[C_{16}H_{15}NO_2+Na]^+$ requires m/z = 276.1000, found m/z = 276.0998 (ESI+).

(*E*/*Z*)-ethyl 1-acetyl-2-(4-phenylbuta-1,3-dien-1-yl)cyclopropane-1-carboxylate (1ah) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE:EA=10:1 to provide 1ah as a white oil (839.0 mg, 59% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.29 (m, 4H), 7.24 – 7.10 (m, 1H), 6.75 – 6.56 (m, 1H), 6.53 – 6.27 (m, 2H), 5.54 – 5.25 (m, 1H), 4.25 (p, *J* = 7.1 Hz, 2H), 3.08 – 2.65 (m, 1H), 2.44 (d, *J* = 16.3 Hz, 3H), 1.84 (dd, *J* = 7.7, 4.4 Hz, 1H), 1.68 (dd, *J* = 8.9, 4.4 Hz, 1H), 1.30 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 201.8, 168.8, 137.0, 134.5, 132.1, 128.6, 128.5, 128.0, 127.5, 126.3, 126.3, 61.5, 61.4, 43.8, 34.7, 34.7, 29.6, 23.8, 14.2, 14.2.

HRMS Exact mass calculated for $[C_{18}H_{20}O_3+Na]^+$ requires m/z = 307.1310, found m/z = 307.1312 (ESI+).

(*E*/*Z*)-diethyl-2-((5E)-6-phenylhexa-1,3,5-trien-1-yl)cyclopropane-1,1-dicarboxyla te (4a) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide 4a as a white solid (936.2 mg, 55% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.29 (m, 4H), 7.24 – 7.18 (m, 1H), 6.91 – 6.75 (m, 1H), 6.62 – 6.19 (m, 4H), 5.41 – 4.95 (m, 1H), 4.27 – 4.14 (m, 4H), 2.96 – 2.61 (m, 1H), 1.74 – 1.62 (m, 2H), 1.27 (q, *J* = 7.3 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 169.7, 169.5, 167.5, 167.4, 137.2, 137.2, 134.6, 134.0, 133.2, 132.7, 132.7, 132.6, 132.3, 128.9, 128.8, 128.6, 128.6, 128.6, 128.1, 127.6, 127.5, 126.4, 126.3, 61.7, 61.6, 61.5, 36.5, 36.4, 31.3, 26.9, 22.0, 21.2, 14.2, 14.1, 14.0.

HRMS Exact mass calculated for $[C_{21}H_{24}O_4+Na]^+$ requires m/z = 363.1567, found m/z = 363.1570 (ESI+).

(*E*/*Z*)-diethyl 2-((5E)-hepta-1,3,5-trien-1-yl)cyclopropane-1,1-dicarboxylate (4b) was synthesized by following Procedure A . The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide 4b as a white solid (779.4 mg, 56% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 6.66 – 5.91 (m, 4H), 5.72 (ddq, *J* = 16.4, 13.8, 6.9 Hz, 1H), 5.33 – 4.79 (m, 1H), 4.29 – 4.10 (m, 4H), 2.91 – 2.52 (m, 1H), 1.77 (ddd, *J* = 8.4, 6.8, 1.5 Hz, 3H), 1.70 – 1.56 (m, 2H), 1.28 – 1.19 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 169.6, 167.5, 134.7, 134.2, 132.8, 132.7, 131.7, 131.5, 130.9, 130.3, 129.3, 127.1, 125.1, 124.9, 61.4, 36.4, 31.2, 26.9, 21.9, 21.0, 18.3, 18.3, 14.2, 14.1, 14.0.

HRMS Exact mass calculated for $[C_{16}H_{22}O_4+Na]^+$ requires m/z = 301.1410, found m/z = 301.1411 (ESI+).

(*E*/*Z*)-diethyl-(2R,3R)-2-methyl-3-((1E,3E)-4-phenylbuta-1,3-dien-1-yl)cycloprop ane-1,1-dicarboxylate (9) was synthesized by following Procedure B. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide 9 as a white solid (75.9 mg, 77% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.54 – 7.28 (m, 5H), 6.90 – 6.26 (m, 3H), 5.60 – 5.16 (m, 1H), 4.40 – 4.17 (m, 4H), 2.91 – 2.48 (m, 1H), 2.20 (dt, *J* = 7.6, 6.4 Hz, 1H), 1.39 – 1.18 (m, 9H).

¹³**C NMR** (100 MHz, CDCl₃) δ 168.0, 167.6, 137.2, 137.2, 133.6, 133.6, 132.2, 131.4, 129.0, 128.5, 128.5, 128.3, 127.6, 127.4, 126.5, 126.2, 124.1, 61.5, 61.4, 61.4, 61.4, 42.7, 42.6, 36.5, 32.2, 28.0, 27.5, 14.2, 14.2, 14.2, 14.1, 12.5, 12.3.

HRMS Exact mass calculated for $[C_{20}H_{21}O_4+Na]^+$ requires m/z = 351.1567, found m/z = 351.1570 (ESI+).

(E/Z)-diethyl 2-styrylcyclopropane-1,1-dicarboxylate (15) was synthesized by following Procedure A. The crude material was purified by normal-phase column chromatography using a gradient eluent of PE/EA (20:1-10:1) to provide 15 as a white solid (749.7 mg, 52% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.31 – 7.12 (m, 5H), 6.55 (dd, *J* = 15.8, 0.8 Hz, 1H), 5.88 – 5.00 (m, 1H), 4.24 – 3.99 (m, 4H), 2.93 – 2.60 (m, 1H), 1.75 – 1.56 (m, 2H), 1.20 (t, *J* = 7.2 Hz, 3H), 1.14 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.5, 167.5, 136.6, 136.5, 133.5, 133.3, 128.8, 128.5, 128.2, 1275.46, 127.1, 126.6, 126.0, 124.7, 61.6, 61.5, 36.5, 36.2, 31.1, 27.7, 22.4, 20.9, 14.2, 14.0.

HRMS Exact mass calculated for $[C_{17}H_{20}O_4+Na]^+$ requires m/z = 311.1254, found m/z = 311.1252 (ESI+).

EtO₂C Ph EtO₂C

E-1a ¹H NMR, 400MHz, CDCl₃

-65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 f1 (ppm)

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

1.48 1.48 1.48 1.48 1.44 1

4. Procedures for the dienyl cyclopropanes synthesis

Procedure C:

Under anhydrous and oxygen-free conditions, to a dried tube equipped with a magnetic stir bar was added 1 (0.1 mmol), $[Pd(\eta-C_3H_5)Cl]_2$ (1.8 mg, 5.0 mol%), and L2 (7.0 mg, 12 mol%) or L5 (7.3 mg, 12 mol%), and toluene (1.0 mL), stirring the reaction mixture for 3 h at 80 °C. The solvent was removed in vacuo and the crude product was purified directly by column chromatography to afford the desired 2.

5. Characterization and NMR spectra of products 2, 3, 5 and 10

Diethyl (S,E)-2-styrylcyclopent-3-ene-1,1-dicarboxylate (2a) was synthesized by following Procedure C from **1a**, after a flash column chromatography (PE: EA = 20:1) afforded the product **2a** as a white solid (29.9 mg, 95% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.26 – 7.10 (m, 5H), 6.44 (d, *J* = 15.8 Hz, 1H), 5.93 (dd, *J* = 15.8, 9.0 Hz, 1H), 5.78 – 5.49 (m, 2H), 4.33 – 4.26 (m, 1H), 4.24 – 3.91 (m, 4H), 3.35 (dq, *J* = 17.4, 2.3 Hz, 1H), 2.73 (dt, *J* = 17.3, 2.2 Hz, 1H), 1.21 (t, *J* = 7.1 Hz, 3H), 1.04 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.9, 169.8, 137.0, 132.2, 131.4, 128.5, 128.4, 127.4, 127.3, 126.2, 64.0, 61.6, 61.4, 54.0, 39.9, 14.1, 14.0.

HRMS Exact mass calculated for $[C_{19}H_{22}O_4+Na]^+$ requires m/z = 337.1410, found m/z = 337.1411 (ESI+).

Optical: $[\alpha]^{25}_{D} = -278.3 \circ (c = 0.35, CH_2Cl_2, 94 \% e.e.)$

HPLC (Chiralpak AD-H, 10% ^{*i*}PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 9.6$ min, minor enantiomer $t_{\rm R} = 9.2$ min.

Diethyl (S,E)-2-(4-methoxystyryl)cyclopent-3-ene-1,1-dicarboxylate (2b) was synthesized by following Procedure C from 1b, after a flash column chromatography (PE: EA = 20:1) afforded the product 2b as a yellow solid (32.0 mg, 93% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.26 – 7.15 (m, 2H), 6.87 – 6.70 (m, 2H), 6.43 (d, J = 15.8 Hz, 1H), 5.82 (dd, J = 15.8, 9.1 Hz, 1H), 5.76 – 5.59 (m, 2H), 4.33 – 4.00 (m, 5H), 3.79 (s, 3H), 3.40 (dd, J = 17.4, 2.3 Hz, 1H), 2.82 – 2.63 (m, 1H), 1.25 (t, J = 7.1 Hz, 3H), 1.09 (t, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.0, 169.9, 159.0, 131.7, 129.8, 128.2, 127.4, 125.0, 113.9, 64.0, 61.5, 61.3, 55.2, 54.0, 39.9, 14.1, 14.0.

HRMS Exact mass calculated for $[C_{20}H_{24}O_5+Na]^+$ requires m/z = 367.1516, found m/z = 357.1521 (ESI+).

Optical: $[\alpha]^{25}_{D} = -294.8 \circ (c = 0.55, CH_2Cl_2, 92 \% e.e.)$

HPLC (Chiralpak OJ-H, 5% ^{*i*}PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 26.4$ min, minor enantiomer $t_{\rm R} = 40.1$ min.

Diethyl (S,E)-2-(4-(methylthio)styryl)cyclopent-3-ene-1,1-dicarboxylate (2c) was synthesized by following Procedure C from **1c**, after a flash column chromatography (PE: EA = 20:1) afforded the product **2c** as a yellow solid (32.1 mg, 89% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.26 – 7.13 (m, 4H), 6.43 (d, J = 15.8 Hz, 1H), 5.93 (dd, J = 15.8, 9.0 Hz, 1H), 5.77 – 5.56 (m, 2H), 4.34 – 3.97 (m, 5H), 3.39 (dd, J = 17.5, 2.3 Hz, 1H), 2.77 (dt, J = 17.5, 2.1 Hz, 1H), 2.46 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H), 1.09 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.8, 169.8, 137.5, 133.9, 131.6, 131.4, 128.4, 126.7, 126.6, 126.5, 63.9, 61.5, 61.3, 54.0, 39.9, 15.8, 14.1, 14.0.

HRMS Exact mass calculated for $[C_{20}H_{24}O_4S+Na]^+$ requires m/z = 383.1288, found m/z = 383.1289 (ESI+).

Optical: $[\alpha]^{25}_{D} = -420.8 \circ (c = 0.30, CH_2Cl_2, 94 \% e.e.)$

HPLC (Chiralpak OJ-H, 5% ^{*i*}PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 28.3$ min, minor enantiomer $t_{\rm R} = 36.4$ min.

Diethyl (S,E)-2-(4-methylstyryl)cyclopent-3-ene-1,1-dicarboxylate (2d) was synthesized by following Procedure C from 1d, after a flash column chromatography (PE: EA = 20:1) afforded the product 2d as a white solid (27.9 mg, 85% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.23 – 7.05 (m, 4H), 6.46 (d, J = 15.8 Hz, 1H), 5.92 (dd, J = 15.8, 9.1 Hz, 1H), 5.76 – 5.55 (m, 2H), 4.34 – 3.99 (m, 5H), 3.40 (dd, J = 17.4, 2.3 Hz, 1H), 2.82 – 2.65 (m, 1H), 2.31 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H), 1.09 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.9, 169.9, 137.2, 134.2, 132.1, 131.6, 129.2, 128.2, 126.1, 63.9, 61.5, 61.3, 54.0, 40.0, 21.1, 14.1, 14.0.

HRMS Exact mass calculated for $[C_{20}H_{24}O_4+Na]^+$ requires m/z = 351.1567, found m/z = 351.1570 (ESI+).

Optical: $[\alpha]^{25}_{D} = -406.5 \circ (c = 0.35, CH_2Cl_2, 93 \% e.e.)$

HPLC (Chiralpak OJ-H, 5% ^{*i*}PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 16.2$ min, minor enantiomer $t_{\rm R} = 24.5$ min.

Diethyl (S,E)-2-(4-fluorostyryl)cyclopent-3-ene-1,1-dicarboxylate (2e) was synthesized by following Procedure C from 1e, after a flash column chromatography (PE: EA = 20:1) afforded the product 2e as a white solid (29.3 mg, 88% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.27 (d, *J* = 7.8 Hz, 2H), 6.96 (t, *J* = 8.7 Hz, 2H), 6.45 (d, *J* = 15.8 Hz, 1H), 5.89 (dd, *J* = 15.8, 9.0 Hz, 1H), 5.78 – 5.57 (m, 2H), 4.34 – 3.99 (m, 5H), 3.39 (dd, *J* = 17.5, 2.3 Hz, 1H), 2.78 (dt, *J* = 17.4, 2.3 Hz, 1H), 1.26 (t, *J* = 7.2 Hz, 3H), 1.09 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.8, 169.8, 162.2 (d, *J* = 246.5 Hz), 133.1 (d, *J* = 3.3 Hz), 131.3, 131.0, 128.5, 127.7 (d, *J* = 8.0 Hz), 127.1 (d, *J* = 2.2 Hz), 115.4 (d, *J* = 21.6 Hz), 63.9, 61.6, 61.3, 54.0, 39.9, 14.1, 14.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -114.72.

HRMS Exact mass calculated for $[C_{19}H_{21}FO_4+Na]^+$ requires m/z = 355.1316, found m/z = 355.1319 (ESI+).

Optical: $[\alpha]^{25}_{D} = -338.7 \circ (c = 0.50, CH_2Cl_2, 94 \% e.e.)$

HPLC (Chiralpak AD-H, 5% 'PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 13.2$ min, minor enantiomer $t_{\rm R} = 11.6$ min.

Diethyl (S,E)-2-(4-chlorostyryl)cyclopent-3-ene-1,1-dicarboxylate (2f) was synthesized by following Procedure C from 1f, after a flash column chromatography (PE: EA = 10:1) afforded the product 2f as a white solid (33.5 mg, 96% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.23 (s, 4H), 6.44 (d, J = 15.8 Hz, 1H), 5.96 (dd, J = 15.8, 9.0 Hz, 1H), 5.79 – 5.56 (m, 2H), 4.34 – 3.99 (m, 5H), 3.39 (dd, J = 17.5, 2.3 Hz, 1H), 2.78 (dt, J = 17.3, 2.3 Hz, 1H), 1.25 (t, J = 7.1 Hz, 3H), 1.08 (t, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.7, 169.8, 135.5, 133.0, 131.1, 130.9, 128.7, 128.6, 128.1, 127.4, 63.9, 61.6, 61.3, 53.9, 39.9, 14.1, 14.0.

HRMS Exact mass calculated for $[C_{19}H_{21}ClO_4+Na]^+$ requires m/z = 371.1021, found m/z = 371.1025 (ESI+).

Optical: $[\alpha]^{25}_{D} = -317.5 \circ (c = 0.40, CH_2Cl_2, 92 \% e.e.)$

HPLC (Chiralpak AD-H, 5% ^{*i*}PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 12.8$ min, minor enantiomer $t_{\rm R} = 11.9$ min.

Diethyl (S,E)-2-(4-bromostyryl)cyclopent-3-ene-1,1-dicarboxylate (2g) was synthesized by following Procedure C from 1g, after a flash column chromatography (PE: EA = 20:1) afforded the product 2g as a white solid (33.8 mg, 86% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.11 (m, 4H), 6.50 – 6.34 (m, 1H), 5.93 (dd, J = 15.8, 9.0 Hz, 1H), 5.78 – 5.47 (m, 2H), 4.28 – 3.93 (m, 5H), 3.34 (dt, J = 17.5, 2.6 Hz, 1H), 2.73 (dt, J = 17.5, 2.2 Hz, 1H), 1.21 (t, J = 7.1 Hz, 3H), 1.07 – 0.93 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 169.8, 131.6, 131.1, 131.0, 128.7, 128.5, 128.3, 127.7, 126.2, 63.9, 61.6, 61.4, 53.9, 40.0, 14.1, 14.0.

HRMS Exact mass calculated for $[C_{19}H_{21}BrO_4+Na]^+$ requires m/z = 415.0515, found m/z = 415.0516 (ESI+).

Optical: $[\alpha]^{25}_{D} = -341.7 \circ (c = 0.44, CH_2Cl_2, 94 \% e.e.)$

HPLC (Chiralpak AD-H, 5% ^{*i*}PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 12.1$ min, minor enantiomer $t_{\rm R} = 10.8$ min.

Diethyl (S,E)-2-(2-([1,1'-biphenyl]-4-yl)vinyl)cyclopent-3-ene-1,1-dicarboxylate (2h) was synthesized by following Procedure C from 1h, after a flash column chromatography (PE: EA = 20:1) afforded the product 2h as a white solid (33.9 mg, 87% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.60 – 7.31 (m, 9H), 6.53 (d, J = 15.7 Hz, 1H), 6.03 (dd, J = 15.8, 9.0 Hz, 1H), 5.83 – 5.60 (m, 2H), 4.38 – 4.02 (m, 5H), 3.42 (dd, J = 17.5, 2.3 Hz, 1H), 2.79 (dt, J = 17.3, 2.2 Hz, 1H), 1.27 (s, 3H), 1.12 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.9, 169.9, 140.6, 140.1, 136.0, 131.8, 131.4, 128.8, 128.7, 128.5, 127.4, 127.2, 127.2, 126.9, 126.7, 61.6, 61.4, 54.0, 39.9, 14.2, 14.0.

HRMS Exact mass calculated for $[C_{25}H_{26}O_4+Na]^+$ requires m/z = 413.1723, found m/z = 413.1725 (ESI+).

Optical: $[\alpha]^{25}_{D} = -290.3 \circ (c = 0.50, CH_2Cl_2, 93 \% e.e.)$

HPLC (Chiralpak AD-H, 5% ^{*i*}PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 15.0$ min, minor enantiomer $t_{\rm R} = 15.5$ min.

Diethyl (S,E)-2-(3-(benzyloxy)styryl)cyclopent-3-ene-1,1-dicarboxylate (2i) was synthesized by following Procedure C from **1i**, after a flash column chromatography (PE:EA = 20:1) afforded the product **2i** as a yellow oil (40.4 mg, 96% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.36 – 7.07 (m, 6H), 6.87 – 6.72 (m, 3H), 6.38 (d, *J* = 15.8 Hz, 1H), 5.90 (dd, *J* = 15.7, 9.0 Hz, 1H), 5.71 – 5.50 (m, 2H), 4.97 (s, 2H), 4.28 – 3.91 (m, 5H), 3.40 – 3.27 (m, 1H), 2.71 (dt, *J* = 17.5, 2.3 Hz, 1H), 1.18 (t, *J* = 7.1 Hz, 3H), 1.01 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.8, 169.8, 158.9, 138.5, 136.9, 132.1, 131.4, 129.5, 128.5, 128.5, 127.9, 127.7, 127.4, 119.2, 113.9, 112.5, 69.9, 63.9, 61.6, 61.4, 53.9, 39.9, 14.1, 14.0.

HRMS Exact mass calculated for $[C_{26}H_{28}O_5+Na]^+$ requires m/z = 443.1829, found m/z = 443.1829 (ESI+).

Optical: $[\alpha]^{25}_{D} = -269.2 \circ (c = 0.35, CH_2Cl_2, 90 \% e.e.)$

HPLC (Chiralpak AD-H, 5% ^{*i*}PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 22.0$ min, minor enantiomer $t_{\rm R} = 19.8$ min.

Diethyl (S,E)-2-(3-(trifluoromethoxy)styryl)cyclopent-3-ene-1,1-dicarboxylate (2j) was synthesized by following Procedure C from 1j, after a flash column chromatography (PE:EA = 20:1) afforded the product 2j as a white solid (35.1 mg, 88% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.29 (t, J = 7.9 Hz, 1H), 7.26 – 6.99 (m, 3H), 6.47 (d, J = 15.8 Hz, 1H), 6.04 (dd, J = 15.8, 8.9 Hz, 1H), 5.90 – 5.36 (m, 2H), 4.39 – 3.88 (m, 5H), 3.51 – 3.23 (m, 1H), 2.87 – 2.73 (m, 1H), 1.26 (t, J = 7.1 Hz, 3H), 1.10 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.7, 169.8, 149.5 (d, *J* = 1.8 Hz), 139.1, 130.9, 130.8, 129.8, 129.4, 128.9, 124.6, 120.4 (q, *J* = 257.0 Hz), 119.7, 118.5, 63.6, 61.6, 61.4, 53.8, 40.0, 14.0, 13.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -57.77.

HRMS Exact mass calculated for $[C_{20}H_{21}F_{3}O_{5}+Na]^{+}$ requires m/z = 421.1233, found m/z = 421.1234 (ESI+).

Optical: $[\alpha]^{25}_{D} = -90.2 \circ (c = 0.35, CH_2Cl_2, 98 \% e.e.)$

HPLC (Chiralpak OJ-H, 2% ^{*i*}PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 12.3$ min, minor enantiomer $t_{\rm R} = 13.9$ min.

Diethyl (S,E)-2-(3-bromostyryl)cyclopent-3-ene-1,1-dicarboxylate (2k) was synthesized by following Procedure C from 1k, after a flash column chromatography (PE: EA = 20:1) afforded the product 2k as a white solid (37.8 mg, 96% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.16 – 6.90 (m, 4H), 6.23 (d, *J* = 15.8 Hz, 1H), 5.81 (dd, *J* = 15.9, 8.7 Hz, 1H), 5.62 – 5.33 (m, 2H), 4.16 – 3.81 (m, 5H), 3.21 (dt, *J* = 17.5, 2.3 Hz, 1H), 2.60 (dt, *J* = 17.4, 2.4 Hz, 1H), 1.07 (t, *J* = 7.1 Hz, 3H), 0.92 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.7, 169.7, 139.1, 131.1, 130.7, 130.3, 130.0, 129.1, 128.8, 126.2, 124.9, 122.7, 63.9, 61.6, 61.4, 53.8, 39.9, 14.1, 14.0.

HRMS Exact mass calculated for $[C_{19}H_{21}BrO_4+Na]^+$ requires m/z = 415.0515, found m/z = 415.0517 (ESI+).

Optical: $[\alpha]^{25}_{D} = -280.0 \circ (c = 0.50, CH_2Cl_2, 94 \% e.e.)$

HPLC (Chiralpak AD-H, 5% 'PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 12.0$ min, minor enantiomer $t_{\rm R} = 10.4$ min.

Diethyl (S,E)-2-(3-chlorostyryl)cyclopent-3-ene-1,1-dicarboxylate (21) was synthesized by following Procedure C from 11, after a flash column chromatography (PE: EA = 20:1) afforded the product 21 as a white oil (31.0 mg, 89% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.28 – 7.15 (m, 4H), 6.43 (d, *J* = 15.8 Hz, 1H), 6.00 (dd, *J* = 15.8, 9.0 Hz, 1H), 5.78 – 5.57 (m, 2H), 4.33 – 3.99 (m, 5H), 3.48 – 3.33 (m, 1H), 2.78 (dt, *J* = 17.4, 2.3 Hz, 1H), 1.26 (t, *J* = 7.1 Hz, 3H), 1.10 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.7, 169.8, 138.8, 134.4, 131.1, 130.8, 129.7, 129.0, 128.8, 127.4, 126.1, 124.4, 63.9, 61.6, 61.4, 53.8, 39.9, 14.1, 14.0.

HRMS Exact mass calculated for $[C_{19}H_{21}ClO_4+Na]^+$ requires m/z = 371.1021, found m/z = 371.1028 (ESI+).

Optical: $[\alpha]^{25}_{D} = -393.0 \circ (c = 0.35, CH_2Cl_2, 94 \% e.e.)$

HPLC (Chiralpak AD-H, 5% ^{*i*}PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 11.9$ min, minor enantiomer $t_{\rm R} = 10.6$ min.

Diethyl (S,E)-2-(3-fluorostyryl)cyclopent-3-ene-1,1-dicarboxylate (2m) was synthesized by following Procedure C from 1m, after a flash column chromatography (PE: EA = 20:1) afforded the product 2m as a white oil (28.3 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.23 (td, J = 7.9, 5.9 Hz, 1H), 7.09 – 6.96 (m, 2H), 6.89 (td, J = 8.4, 2.5 Hz, 1H), 6.45 (d, J = 15.8 Hz, 1H), 6.00 (dd, J = 15.8, 9.0 Hz, 1H), 5.80 – 5.58 (m, 2H), 4.34 – 3.99 (m, 5H), 3.39 (dd, J = 17.5, 2.3 Hz, 1H), 2.79 (dd, J = 17.5, 2.4 Hz, 1H), 1.26 (t, J = 7.1 Hz, 3H), 1.10 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.7, 169.7, 163.0 (d, *J* = 245.1 Hz), 139.3 (d, *J* = 7.6 Hz), 131.1, 129.9 (d, *J* = 8.4 Hz), 128.8, 128.8, 122.1 (d, *J* = 2.9 Hz), 114.3, 114.1, 112.6 (d, *J* = 21.8 Hz), 63.9, 61.6, 61.4, 53.8, 39.9, 14.1, 14.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -113.63.

HRMS Exact mass calculated for $[C_{19}H_{21}FO_4+Na]^+$ requires m/z = 355.1316, found m/z = 355.1314 (ESI+).

Optical: $[\alpha]^{25}_{D} = -340.5 \circ (c = 0.40, CH_2Cl_2, 94 \% e.e.)$

HPLC (Chiralpak AD-H, 5% ^{*i*}PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 12.0$ min, minor enantiomer $t_{\rm R} = 10.8$ min.

Diethyl (S,E)-2-(2-methoxystyryl)cyclopent-3-ene-1,1-dicarboxylate (2n) was synthesized by following Procedure C from 1n, after a flash column chromatography (PE: EA = 20:1) afforded the product 2n as a yellow solid (29.6 mg, 86% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.34 (dd, J = 7.7, 1.7 Hz, 1H), 7.18 (td, J = 7.8, 1.7 Hz, 1H), 6.96 – 6.73 (m, 3H), 5.94 (dd, J = 15.9, 9.2 Hz, 1H), 5.83 – 5.54 (m, 2H), 4.37 – 3.98 (m, 5H), 3.82 (s, 3H), 3.41 (dq, J = 17.5, 2.3 Hz, 1H), 2.77 (dt, J = 17.4, 2.3 Hz, 1H), 1.26 (t, J = 7.1 Hz, 3H), 1.12 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 169.9, 156.5, 131.8, 128.4, 128.1, 127.7, 127.1, 126.6, 126.0, 120.5, 110.7, 64.0, 61.5, 61.3, 55.3, 54.4, 39.8, 14.0.

HRMS Exact mass calculated for $[C_{20}H_{24}O_5+Na]^+$ requires m/z = 367.1516, found m/z = 367.1520 (ESI+).

Optical: $[\alpha]^{25}_{D} = -382.9 \circ (c = 0.25, CH_2Cl_2, 87 \% e.e.)$

HPLC (Chiralpak AD-H, 5% ^{*i*}PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 13.6$ min, minor enantiomer $t_{\rm R} = 12.1$ min.

Diethyl (S,E)-2-(2-chlorostyryl)cyclopent-3-ene-1,1-dicarboxylate (20) was synthesized by following Procedure C from 10, after a flash column chromatography (PE: EA = 20:1) afforded the product 20 as a white solid (26.9mg, 77% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.26 – 7.11 (m, 4H), 6.40 (d, J = 15.8 Hz, 1H), 5.98 (dd, J = 15.8, 9.0 Hz, 1H), 5.80 – 5.54 (m, 2H), 4.33 – 3.97 (m, 5H), 3.37 (dq, J = 17.5, 2.3 Hz, 1H), 2.76 (dt, J = 17.5, 2.3 Hz, 1H), 1.24 (t, J = 7.1 Hz, 3H), 1.08 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.7, 169.7, 138.8, 134.4, 131.1, 130.8, 129.7, 129.0, 128.8, 127.3, 126.1, 124.4, 63.9, 61.6, 61.4, 53.8, 39.9, 14.1, 14.0.

HRMS Exact mass calculated for $[C_{19}H_{21}ClO_4+Na]^+$ requires m/z = 371.1021, found m/z = 371.1025 (ESI+).

Optical: $[\alpha]^{25}_{D} = -97.1 \circ (c = 0.45, CH_2Cl_2, 94 \% e.e.)$

HPLC (Chiralpak AD-H, 5% 'PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 11.9$ min, minor enantiomer $t_{\rm R} = 10.6$ min.

Diethyl (S,E)-2-(2-fluorostyryl)cyclopent-3-ene-1,1-dicarboxylate (2p) was synthesized by following Procedure C from 1p, after a flash column chromatography (PE: EA = 20:1) afforded the product 2p as a white solid (26.9 mg, 81% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 (td, *J* = 7.7, 1.8 Hz, 1H), 7.16 (ddd, *J* = 7.4, 5.3, 1.9 Hz, 1H), 7.08 – 6.95 (m, 2H), 6.65 (d, *J* = 15.9 Hz, 1H), 6.05 (dd, *J* = 16.0, 9.0 Hz, 1H), 5.79 – 5.60 (m, 2H), 4.36 – 3.97 (m, 5H), 3.40 (dq, *J* = 17.4, 2.3 Hz, 1H), 2.84 – 2.73 (m, 1H), 1.26 (t, *J* = 7.1 Hz, 3H), 1.12 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.8, 169.8, 160.1 (d, J = 249.1 Hz), 131.2, 130.0 (d, J = 4.6 Hz), 128.7, 128.6, 127.3 (d, J = 3.9 Hz), 124.8 (d, J = 3.8 Hz), 124.3, 124.0 (d, J = 3.6 Hz), 115.6, 64.0, 61.4, 61.4, 54.3, 39.8, 14.0, 13.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -118.30.

HRMS Exact mass calculated for $[C_{19}H_{21}FO_4+Na]^+$ requires m/z = 355.1316, found m/z = 355.1317 (ESI+).

Optical: $[\alpha]^{25}_{D} = -361.7 \circ (c = 0.23, CH_2Cl_2, 90 \% e.e.)$

HPLC (Chiralpak AD-H, 5% 'PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 11.8$ min, minor enantiomer $t_{\rm R} = 10.7$ min.

Diethyl (S,E)-2-(3,4-difluorostyryl)cyclopent-3-ene-1,1-dicarboxylate (2q) was synthesized by following Procedure C from 1q, after a flash column chromatography (PE: EA = 20:1) afforded the product 2q as a white oil (30.5 mg, 87% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.17 – 6.91 (m, 3H), 6.39 (d, J = 15.8 Hz, 1H), 5.91 (dd, J = 15.8, 8.9 Hz, 1H), 5.81 – 5.50 (m, 2H), 4.33 – 3.98 (m, 5H), 3.38 (dd, J = 17.5, 2.3 Hz, 1H), 2.88 – 2.69 (m, 1H), 1.25 (t, J = 7.1 Hz, 3H), 1.09 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.7, 169.8, 150.4 (dd, J = 247.4, 10.9 Hz), 149.7 (dd, J = 248.4, 12.9 Hz), 134.2 (d, J = 5.7, 4.2 Hz), 131.0, 130.1, 128.9, 128.6 (d, J = 2.5 Hz), 122.4 (dd, J = 6.1, 3.5 Hz), 117.2 (d, J = 17.3 Hz), 114.5 (d, J = 17.5 Hz), 63.9, 61.7, 61.4, 53.7, 39.9, 14.1, 14.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -137.96 (d, J = 21.0 Hz), -139.27 (d, J = 21.2 Hz).

HRMS Exact mass calculated for $[C_{19}H_{20}F_2O_4+Na]^+$ requires m/z = 377.1222, found m/z = 377.1223 (ESI+).

Optical: $[\alpha]^{25}_{D} = -312.3 \circ (c = 0.40, CH_2Cl_2, 94 \% e.e.)$

HPLC (Chiralpak AD-H, 5% ^{*i*}PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 13.0$ min, minor enantiomer $t_{\rm R} = 11.5$ min.

Diethyl

(S,E)-2-(3-fluoro-4-(trifluoromethyl)styryl)cyclopent-3-ene-1,1-dicarboxylate (2r) was synthesized by following Procedure C from 1r, after a flash column chromatography (PE: EA = 20:1) afforded the product 2r as a white oil (36.8 mg, 92% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.61 – 7.37 (m, 2H), 7.10 (t, J = 9.3 Hz, 1H), 6.46 (d, J = 15.9 Hz, 1H), 5.99 (dd, J = 15.8, 8.8 Hz, 1H), 5.82 – 5.51 (m, 2H), 4.35 – 3.83 (m, 5H), 3.38 (dd, J = 17.6, 2.3 Hz, 1H), 2.87 – 2.65 (m, 1H), 1.26 (t, J = 7.1 Hz, 3H), 1.10 (t, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.7, 169.8, 158.8 (d, J = 257.8 Hz), 133.4 (d, J = 4.0 Hz), 131.1 (d, J = 8.2 Hz), 130.8, 129.7, 129.3 (d, J = 2.2 Hz), 129.1, 124.6 (d, J = 3.3 Hz), 122.5 (d, J = 272.2 Hz), 117.2, 117.0, 63.9, 61.7, 61.4, 53.7, 40.0, 14.1, 14.0.
¹⁹F NMR (376 MHz, CDCl₃) δ -61.56 (d, J = 12.4 Hz), -116.43 (d, J = 12.7 Hz).

HRMS Exact mass calculated for $[C_{20}H_{20}F_4O_4+H]^+$ requires m/z = 401.1370, found m/z = 401.1375 (ESI+).

Optical: $[\alpha]^{25}_{D} = -207.0 \circ (c = 0.40, CH_2Cl_2, 95 \% e.e.)$

HPLC (Chiralpak OJ-H, 5% 'PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 12.3$ min, minor enantiomer $t_{\rm R} = 14.3$ min.

Diethyl

(S,E)-2-(2-(benzo[d][1,3]dioxol-5-yl)vinyl)cyclopent-3-ene-1,1-dicarboxylate (2s) was synthesized by following Procedure C from 1s, after a flash column chromatography (PE: EA = 20:1) afforded the product 2s as a yellow oil (30.1 mg, 84% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 6.84 (d, J = 1.5 Hz, 1H), 6.78 – 6.65 (m, 2H), 6.39 (d, J = 15.7 Hz, 1H), 5.93 (s, 2H), 5.87 – 5.53 (m, 3H), 4.34 – 3.99 (m, 5H), 3.39 (dd, J = 17.4, 2.3 Hz, 1H), 2.76 (ddd, J = 17.3, 2.5, 1.4 Hz, 1H), 1.25 (t, J = 7.1 Hz, 3H), 1.10 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.9, 169.8, 147.9, 147.0, 131.8, 131.5, 131.5, 128.3, 125.4, 120.8, 108.1, 105.5, 101.0, 63.9, 61.5, 61.3, 53.9, 39.9, 14.1, 14.0.

HRMS Exact mass calculated for $[C_{20}H_{22}O_6+Na]^+$ requires m/z = 381.1309, found m/z = 381.1313 (ESI+).

Optical: $[\alpha]^{25}_{D} = -320.7 \circ (c = 0.50, CH_2Cl_2, 92 \% e.e.)$

HPLC (Chiralpak IC, 5% ^{*i*}PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 18.1$ min, minor enantiomer $t_{\rm R} = 19.7$ min.

Diethyl (S,E)-2-(3,4-dimethylstyryl)cyclopent-3-ene-1,1-dicarboxylate (2t) was synthesized by following Procedure C from **1t**, after a flash column chromatography (PE: EA = 20:1) afforded the product **2t** as a yellow solid (29.1 mg, 85% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.14 – 7.00 (m, 3H), 6.43 (d, J = 15.8 Hz, 1H), 5.90 (dd, J = 15.7, 9.1 Hz, 1H), 5.76 – 5.59 (m, 2H), 4.30 – 3.98 (m, 5H), 3.40 (dd, J = 17.4, 2.3 Hz, 1H), 2.80 – 2.68 (m, 1H), 2.22 (s, 6H), 1.26 (t, J = 7.1 Hz, 3H), 1.10 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.9, 169.9, 136.5, 135.9, 134.6, 132.2, 131.7, 129.7, 128.2, 127.4, 125.9, 123.7, 63.9, 61.5, 61.3, 54.1, 39.9, 19.7, 19.5, 14.1, 14.0.

HRMS Exact mass calculated for $[C_{21}H_{26}O_4+H]^+$ requires m/z = 343.1904, found m/z = 343.1906 (ESI+).

Optical: $[\alpha]^{25}_{D} = -341.0 \circ (c = 0.51, CH_2Cl_2, 92 \% e.e.)$

HPLC (Chiralpak OJ-H, 5% 'PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 16.3$ min, minor enantiomer $t_{\rm R} = 25.0$ min.

Diethyl (S,E)-2-(3,4-dichlorostyryl)cyclopent-3-ene-1,1-dicarboxylate (2u) was synthesized by following Procedure C from 1u, after a flash column chromatography (PE: EA = 20:1) afforded the product 2u as a white oil (34.5 mg, 90% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.31 – 7.18 (m, 2H), 7.06 (dd, J = 8.3, 2.1 Hz, 1H), 6.33 (d, J = 15.8 Hz, 1H), 5.94 (dd, J = 15.8, 9.0 Hz, 1H), 5.77 – 5.47 (m, 2H), 4.29 – 3.87 (m, 5H), 3.41 – 3.26 (m, 1H), 2.73 (dt, J = 17.4, 2.4 Hz, 1H), 1.20 (t, J = 7.1 Hz, 3H), 1.04 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.6, 169.7, 137.1, 132.6, 131.0, 130.9, 130.4, 129.8, 129.6, 129.0, 127.9, 125.4, 63.9, 61.7, 61.4, 53.8, 40.0, 14.1, 14.0.

HRMS Exact mass calculated for $[C_{19}H_{20}Cl_2O_4+Na]^+$ requires m/z = 405.0631, found m/z = 405.0634 (ESI+).

Optical: $[\alpha]^{25}_{D} = -294.0^{\circ} (c = 0.43, CH_2Cl_2, 92 \% e.e.)$

HPLC (Chiralpak AD-H, 5% 'PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 13.7$ min, minor enantiomer $t_{\rm R} = 11.8$ min.

Diethyl (S,E)-2-(2-(naphthalen-2-yl)vinyl)cyclopent-3-ene-1,1-dicarboxylate (2v) was synthesized by following Procedure C from 1v, after a flash column chromatography (PE: EA = 20:1) afforded the product 2v as a yellow solid (30.6 mg, 84% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.81 – 7.65 (m, 4H), 7.55 – 7.37 (m, 3H), 6.67 (d, J = 15.8 Hz, 1H), 6.13 (dd, J = 15.8, 9.0 Hz, 1H), 5.88 – 5.58 (m, 2H), 4.48 – 4.36 (m, 1H), 4.32 – 4.00 (m, 4H), 3.45 (dt, J = 17.5, 2.3 Hz, 1H), 2.81 (dt, J = 17.6, 2.3 Hz, 1H), 1.27 (d, J = 5.3 Hz, 3H), 1.08 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.9, 169.9, 134.4, 133.5, 132.9, 132.3, 131.4, 128.5, 128.1, 127.9, 127.7, 127.6, 126.2, 126.1, 125.7, 123.4, 64.0, 61.6, 61.4, 54.1, 40.0, 14.1, 14.0.

HRMS Exact mass calculated for $[C_{23}H_{24}O_4+Na]^+$ requires m/z = 387.1567, found m/z = 387.1567 (ESI+).

Optical: $[\alpha]^{25}_{D} = -359.4 \circ (c = 0.35, CH_2Cl_2, 94 \% e.e.)$

HPLC (Chiralpak AD-H, 5% ^{*i*}PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 15.2$ min, minor enantiomer $t_{\rm R} = 14.6$ min.

Diethyl (S,E)-2-(2-(thiophen-2-yl)vinyl)cyclopent-3-ene-1,1-dicarboxylate (2w) was synthesized by following Procedure C from 1w, after a flash column chromatography (PE: EA = 20:1) afforded the product 2w as a white oil (28.2 mg, 88% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.10 (dt, J = 5.2, 1.0 Hz, 1H), 6.94 – 6.83 (m, 2H), 6.60 (d, J = 15.6 Hz, 1H), 5.84 (dd, J = 15.6, 8.7 Hz, 1H), 5.76 – 5.57 (m, 2H), 4.32 – 4.04 (m, 5H), 3.38 (dd, J = 17.5, 2.3 Hz, 1H), 2.76 (dd, J = 17.5, 1.6 Hz, 1H), 1.26 (t, J = 7.1 Hz, 3H), 1.14 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.8, 169.8, 142.1, 131.1, 128.7, 127.2, 127.0, 125.4, 124.0, 63.9, 61.6, 61.5, 53.7, 40.0, 14.1, 14.0.

HRMS Exact mass calculated for $[C_{17}H_{20}O_4S+Na]^+$ requires m/z = 343.0975, found m/z = 343.0977 (ESI+).

Optical: $[\alpha]^{25}_{D} = -391.7 \circ (c = 0.47, CH_2Cl_2, 95 \% e.e.)$

HPLC (Chiralpak AD-H, 5% ^{*i*}PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 13.9$ min, minor enantiomer $t_{\rm R} = 13.1$ min.

Diethyl (S,E)-2-(2-(furan-2-yl)vinyl)cyclopent-3-ene-1,1-dicarboxylate (2x) was synthesized by following Procedure C from 1x, after a flash column chromatography (PE: EA = 20:1) afforded the product 2x as a yellow oil (24.3 mg, 80% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.28 (d, J = 1.9 Hz, 1H), 6.42 – 6.25 (m, 2H), 6.16 (d, J = 3.3 Hz, 1H), 5.95 (dd, J = 15.8, 8.9 Hz, 1H), 5.81 – 5.49 (m, 2H), 4.31 – 4.05 (m, 5H), 3.37 (dq, J = 17.4, 2.4 Hz, 1H), 2.84 – 2.65 (m, 1H), 1.26 (d, J = 7.2 Hz, 3H), 1.13 (t, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.8, 169.8, 152.6, 141.8, 131.2, 128.7, 126.0, 120.6, 111.1, 107.5, 64.0, 61.6, 61.4, 53.6, 39.9, 14.0, 13.9.

HRMS Exact mass calculated for $[C_{17}H_{20}O_5+Na]^+$ requires m/z = 327.1203, found m/z = 327.1205 (ESI+).

Optical: $[\alpha]^{25}_{D} = -59.4 \circ (c = 0.35, CH_2Cl_2, 93 \% e.e.)$

HPLC (Chiralpak OJ-H, 5% ^{*i*}PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 17.5$ min, minor enantiomer $t_{\rm R} = 24.6$ min.

Diethyl (S,E)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)cyclopent-3-ene-1,1-dicarboxylate (2y) was synthesized by following Procedure C from 1y, after a flash column chromatography (PE: EA = 20:1) afforded the product 2y as a white oil (27.3 mg, 88% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 6.75 (dd, J = 15.6, 8.4 Hz, 1H), 5.87 (dd, J = 15.6, 1.2 Hz, 1H), 5.84 – 5.73 (m, 1H), 5.57 – 5.47 (m, 1H), 4.31 – 4.10 (m, 7H), 3.32 (dd, J = 17.5, 2.2 Hz, 1H), 2.81 – 2.71 (m, 1H), 1.27 – 1.17 (m, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 171.3, 169.3, 166.0, 145.3, 130.0, 129.5, 123.2, 63.6, 61.8, 61.6, 60.3, 52.6, 40.0, 14.2, 14.0, 13.9.

HRMS Exact mass calculated for $[C_{16}H_{22}O_6+Na]^+$ requires m/z = 333.1309, found m/z = 333.1310 (ESI+).

Optical: $[\alpha]^{25}_{D} = -258.3 \circ (c = 0.35, CH_2Cl_2, 94 \% e.e.)$

HPLC (Chiralpak AD-H, 5% ^{*i*}PrOH/Hx eluent, 0.5 mL/min, 220 nm): major enantiomer $t_{\rm R} = 18.2$ min, minor enantiomer $t_{\rm R} = 14.0$ min.

Diethyl (S,Z)-2-(4-methoxy-4-oxobut-2-en-2-yl)cyclopent-3-ene-1,1-dicarboxylate (2z) was synthesized by following Procedure C from 1z, after a flash column

chromatography (PE: EA = 20:1) afforded the product 2z as a white oil (29.8 mg, 96% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 5.87 – 5.44 (m, 3H), 4.33 – 3.99 (m, 5H), 3.66 (s, 3H), 3.39 (dd, *J* = 17.5, 2.4 Hz, 1H), 2.73 (dt, *J* = 17.6, 1.9 Hz, 1H), 2.12 (d, *J* = 1.4 Hz, 3H), 1.24 (t, *J* = 7.1 Hz, 3H), 1.17 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.7, 169.5, 166.8, 157.8, 130.7, 129.8, 118.5, 64.1, 61.8, 61.6, 59.9, 50.9, 41.2, 18.8, 14.0, 13.8.

HRMS Exact mass calculated for $[C_{17}H_{24}O_6+Na]^+$ requires m/z = 347.1465, found m/z = 347.1466 (ESI+).

Optical: $[\alpha]^{25}_{D} = -269.5 \circ (c = 0.28, CH_2Cl_2, 93 \% e.e.)$

HPLC (Chiralpak AS-H, 2% ^{*i*}PrOH/Hx eluent, 0.5 mL/min, 214 nm): major enantiomer $t_{\rm R} = 12.4$ min, minor enantiomer $t_{\rm R} = 13.2$ min.

Diethyl (S,Z)-2-(1-phenylprop-1-en-2-yl)cyclopent-3-ene-1,1-dicarboxylate (2aa) was synthesized by following Procedure C from **1aa**, after a flash column chromatography (PE: EA = 20:1) afforded the product **2aa** as a yellow solid (30.5 mg, 93% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.33 – 7.27 (m, 2H), 7.20 (dd, J = 7.9, 3.4 Hz, 3H), 6.37 (s, 1H), 5.84 – 5.57 (m, 2H), 4.41 (d, J = 3.0 Hz, 1H), 4.32 – 4.08 (m, 3H), 3.95 (ddd, J = 10.8, 7.2, 1.0 Hz, 1H), 3.44 (dd, J = 17.5, 2.4 Hz, 1H), 2.88 – 2.65 (m, 1H), 1.83 (t, J = 1.2 Hz, 3H), 1.29 – 1.24 (m, 3H), 1.16 – 1.02 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.3, 170.1, 137.9, 136.9, 132.0, 128.9, 128.8, 128.5, 128.0, 126.2, 64.2, 61.5, 61.2, 60.0, 41.1, 17.3, 14.0, 13.9.

HRMS Exact mass calculated for $[C_{20}H_{24}O_4+Na]^+$ requires m/z = 351.1567, found m/z = 351.1570 (ESI+).

Optical: $[\alpha]^{25}_{D} = -314.9 \circ (c = 0.40, CH_2Cl_2, 93 \% e.e.)$

HPLC (Chiralpak AD-H, 5% 'PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 10.6$ min, minor enantiomer $t_{\rm R} = 9.7$ min.

Diethyl (S)-2-(1-phenylvinyl)cyclopent-3-ene-1,1-dicarboxylate (2ab) was synthesized by following Procedure C from 1ab, after a flash column chromatography (PE: EA = 20:1) afforded the product 2ab as a yellow oil (28.3 mg, 90% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.43 (dd, J = 7.4, 1.9 Hz, 2H), 7.26 – 7.14 (m, 3H), 5.82 – 5.55 (m, 2H), 5.42 (d, J = 0.9 Hz, 1H), 4.98 (s, 1H), 4.87 (q, J = 2.3 Hz, 1H), 4.22 – 4.02 (m, 2H), 3.82 (dq, J = 10.7, 7.1 Hz, 1H), 3.44 – 3.18 (m, 2H), 2.80 – 2.64 (m, 1H), 1.15 (t, J = 7.1 Hz, 3H), 0.74 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.2, 169.6, 146.4, 141.4, 132.9, 128.0, 127.9, 127.3, 126.5, 116.5, 64.2, 61.6, 60.9, 53.8, 40.4, 13.9, 13.3.

HRMS Exact mass calculated for $[C_{19}H_{22}O_4+Na]^+$ requires m/z = 337.1410, found m/z = 337.1412 (ESI+).

Optical: $[\alpha]^{25}_{D} = -134.0 \circ (c = 0.40, CH_2Cl_2, 51 \% e.e.)$

HPLC (Chiralpak AD-H, 5% ^{*i*}PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 9.4$ min, minor enantiomer $t_{\rm R} = 10.5$ min.

Diethyl (**R**,**E**)-4-methyl-2-styrylcyclopent-3-ene-1,1-dicarboxylate (2ac) was synthesized by following Procedure C from 1ac, after a flash column chromatography (PE: EA = 20:1) afforded the product **2ac** as a white oil (29.6 mg, 90% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.31 – 7.17 (m, 5H), 6.46 (d, J = 15.8 Hz, 1H), 5.99 (dd, J = 15.8, 8.9 Hz, 1H), 5.23 (q, J = 1.9 Hz, 1H), 4.38 – 4.11 (m, 3H), 4.11 – 3.93 (m, 2H), 3.35 (ddt, J = 16.3, 2.4, 1.3 Hz, 1H), 2.70 – 2.55 (m, 1H), 1.82 – 1.72 (m, 3H), 1.26 (t, J = 7.1 Hz, 3H), 1.08 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.0, 169.9, 138.3, 137.1, 131.7, 128.4, 128.1, 127., 126.2, 125.0, 64.4, 61.5, 61.3, 54.0, 43.7, 16.2, 14.1, 14.0.

HRMS Exact mass calculated for $[C_{20}H_{24}O_4+Na]^+$ requires m/z = 351.1567, found m/z = 351.1571 (ESI+).

Optical: $[\alpha]^{25}_{D} = -127.8 \circ (c = 0.30, CH_2Cl_2, 86 \% e.e.)$

HPLC (Chiralpak OJ-H, 5% ^{*i*}PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 12.4$ min, minor enantiomer $t_{\rm R} = 15.5$ min.

Diisopropyl (S,E)-2-styrylcyclopent-3-ene-1,1-dicarboxylate (2ae) was synthesized by following Procedure C from **1ae**, after a flash column chromatography (PE: EA = 20:1) afforded the product **2ae** as a white oil (32.2 mg, 94% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.30 – 7.16 (m, 5H), 6.43 (d, *J* = 15.8 Hz, 1H), 5.91 (dd, *J* = 15.8, 9.2 Hz, 1H), 5.73 – 5.51 (m, 2H), 5.05 – 4.81 (m, 2H), 4.31 – 4.21 (m, 1H), 3.35 (dd, *J* = 17.5, 2.3 Hz, 1H), 2.72 – 2.61 (m, 1H), 1.19 (dd, *J* = 6.2, 1.0 Hz, 6H), 1.10 (d, *J* = 6.3 Hz, 3H), 0.95 (d, *J* = 6.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.4, 169.4, 137.0, 132.2, 131.6, 128., 128.3, 127.3, 127.3, 126.2, 68.9, 68.9, 63.7, 53.9, 40.1, 21.8, 21.6, 21.5.

HRMS Exact mass calculated for $[C_{21}H_{26}O_4+Na]^+$ requires m/z = 365.1723, found m/z = 365.1725 (ESI+).

Optical: $[\alpha]^{25}_{D} = -336.6 \circ (c = 0.37, CH_2Cl_2, 90 \% e.e.)$

HPLC (Chiralpak OJ-H, 2% ^{*i*}PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 9.6$ min, minor enantiomer $t_{\rm R} = 14.9$ min.

Ethyl (2S)-1-(phenylsulfonyl)-2-((E)-styryl)cyclopent-3-ene-1-carboxylate (2af) was synthesized by following Procedure C from 1af, after a flash column chromatography (PE: EA = 10:1) afforded the product 2af as a white oil (33.3 mg, 87% yield, 12:1 dr).

¹**H NMR** (600 MHz, CDCl₃) δ 8.01 – 7.85 (m, 2H), 7.79 – 7.64 (m, 1H), 7.62 – 7.50 (m, 2H), 7.42 – 7.19 (m, 5H), 6.43 – 6.32 (m, 1H), 5.90 (dd, *J* = 15.9, 8.2 Hz, 1H), 5.75 (dq, *J* = 6.3, 2.2 Hz, 1H), 5.57 (dq, *J* = 5.8, 2.2 Hz, 1H), 4.45 (ddt, *J* = 8.2, 2.1, 1.1 Hz, 1H), 4.15 – 3.88 (m, 2H), 3.46 – 3.21 (m, 2H), 1.06 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 166.6, 137.3, 136.4, 134.0, 132.9, 130.6, 130.1, 129.3, 128.6, 128.5, 127.7, 126.2, 126.1, 82.1, 62.3, 53.8, 38.4, 13.9.

HRMS Exact mass calculated for $[C_{22}H_{22}O_4S+Na]^+$ requires m/z = 405.1136, found m/z = 405.1129 (ESI+).

Optical: $[\alpha]^{25}_{D} = -165.3 \circ (c = 0.41, CH_2Cl_2, 96\% e.e., dr = 12:1)$

HPLC (Chiralpak OD-H, 10% ^{*i*}PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 26.8$ min, minor enantiomer $t_{\rm R} = 30.5$ min.

Methyl (2S)-1-cyano-2-((E)-styryl)cyclopent-3-ene-1-carboxylate (2ag) was synthesized by following Procedure C from 1ag, after a flash column chromatography (PE: EA = 10:1) afforded the product 2ag as a white oil (22.8 mg, 90% yield, 4:1 dr). For the major isomer: ¹H NMR (600 MHz, CDCl₃) δ 7.31 – 7.25 (m, 4H), 7.23 – 7.21 (m, 1H), 6.52 (dd, J = 15.8, 2.5 Hz, 1H), 5.96 – 5.78 (m, 2H), 5.64 (dq, J = 6.0, 2.2 Hz, 1H), 4.20 – 4.06 (m, 1H), 3.65 (d, J = 2.6 Hz, 3H), 3.37 (dt, J = 17.1, 2.3 Hz, 1H), 2.92 (dd, J = 17.1, 2.5 Hz, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 167.1, 136.1, 134.2, 130.1, 129.1, 128.6, 128.1, 126.5, 124.5, 121.2, 59.6, 53.5, 51.2, 41.2.

HRMS Exact mass calculated for $[C_{16}H_{15}NO_2+Na]^+$ requires m/z = 276.1000, found m/z = 276.0997 (ESI+).

Optical: $[\alpha]^{25}_{D} = -287.5 \circ (c = 0.44, CH_2Cl_2, 96 \% e.e.)$

HPLC (Chiralpak AD-H, 2% ^{*i*}PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 23.1$ min, minor enantiomer $t_{\rm R} = 21.7$ min.

Ethyl (2S)-1-acetyl-2-((E)-styryl)cyclopent-3-ene-1-carboxylate (2ah) was synthesized by following Procedure C from 1ah, after a flash column chromatography (PE: EA = 10:1) afforded the product 2ah as a white oil (4.8 mg, 17% yield, 6:1 dr).

For the major isomer: ¹**H NMR** (600 MHz, CDCl₃) δ 7.29 – 7.25 (m, 4H), 7.22 – 7.15 (m, 1H), 6.45 (d, *J* = 15.8 Hz, 1H), 5.95 (dd, *J* = 15.8, 9.1 Hz, 1H), 5.69 – 5.55 (m, 2H), 4.31 (ddt, *J* = 9.1, 1.7, 0.8 Hz, 1H), 4.09 – 3.99 (m, 2H), 3.40 (dq, *J* = 17.4, 2.3 Hz, 1H), 2.58 (dddd, *J* = 17.4, 2.7, 1.8, 0.9 Hz, 1H), 2.21 (s, 3H), 1.09 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 202.0, 170.5, 137.0, 132.2, 132.1, 128.5 127.6, 127.4, 127.3, 126.2, 70.1, 61.5, 52.3, 38.6, 26.3, 14.1.

HRMS Exact mass calculated for $[C_{18}H_{20}O_3+Na]^+$ requires m/z = 307.1310, found m/z = 307.1313 (ESI+).

Optical: $[\alpha]^{25}_{D} = +40.2 \circ (c = 0.38, CH_2Cl_2, 87 \% e.e., dr = 6:1)$

HPLC (Chiralpak AD-H, 10% ^{*i*}PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 10.2$ min, minor enantiomer $t_{\rm R} = 9.5$ min.

Ethyl-(R)-2-methyl-5-((1E,3E)-4-phenylbuta-1,3-dien-1-yl)-4,5-dihydrofuran-3-c arboxylate (3) was synthesized by following Procedure C from 1ah, after a flash column chromatography (PE: EA = 10:1) afforded the product 3 as a white oil (16.2 mg, 57% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.23 (m, 5H), 6.84 – 6.62 (m, 1H), 6.59 (dd, J = 15.6, 6.1 Hz, 1H), 6.41 (dd, J = 15.5, 10.3 Hz, 1H), 5.85 (dd, J = 14.9, 7.2 Hz, 1H), 5.29 – 4.91 (m, 1H), 4.24 – 4.05 (m, 2H), 3.21 – 2.97 (m, 1H), 2.70 (dd, J = 14.4, 7.9 Hz, 1H), 2.29 – 2.08 (m, 3H), 1.30 – 1.24 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.49, 166.11, 136.82, 134.03, 132.61, 131.60, 128.62, 127.84, 127.55, 126.46, 101.76, 82.30, 59.49, 35.93, 14.44, 14.13.

HRMS Exact mass calculated for $[C_{18}H_{20}O_3+Na]^+$ requires m/z = 307.1310, found m/z = 307.1310 (ESI+).

Optical: $[\alpha]^{25}_{D} = +35.4 \circ (c = 0.35, CH_2Cl_2, 29 \% e.e.)$

HPLC (Chiralpak AD-H, 10% ^{*i*}PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 16.6$ min, minor enantiomer $t_{\rm R} = 14.7$ min.

Diethyl-(S)-2-((1E,3E)-4-phenylbuta-1,3-dien-1-yl)cyclopent-3-ene-1,1-dicarboxyl ate (5a) was synthesized by following Procedure C from 4a, after a flash column chromatography (PE: EA = 10:1) afforded the product 5a as a white solid (26.9 mg, 79% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.27 (m, 4H), 7.24 – 7.18 (m, 1H), 6.69 (dd, J = 15.6, 10.4 Hz, 1H), 6.49 (d, J = 15.7 Hz, 1H), 6.30 (dd, J = 15.1, 10.4 Hz, 1H), 5.80 – 5.49 (m, 3H), 4.30 – 4.03 (m, 5H), 3.36 (dd, J = 17.5, 2.3 Hz, 1H), 2.76 (d, J = 17.4 Hz, 1H), 1.25 (d, J = 7.1 Hz, 3H), 1.18 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.9, 169.8, 137.2, 132.9, 132.0, 131.4, 131.4, 128.6, 128.4, 128.3, 127.5, 126.3, 64.0, 61.6, 61.4, 53.9, 39.8, 14.2, 14.0.

HRMS Exact mass calculated for $[C_{21}H_{24}O_4+Na]^+$ requires m/z = 363,1567, found m/z = 363.1572 (ESI+).

Optical: $[\alpha]^{25}_{D} = -330.6 \circ (c = 0.40, CH_2Cl_2, 98 \% e.e.)$

HPLC (Chiralpak OJ-H, 3% ^{*i*}PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 44.0$ min, minor enantiomer $t_{\rm R} = 51.4$ min.

Diethyl (S)-2-((1E,3E)-penta-1,3-dien-1-yl)cyclopent-3-ene-1,1-dicarboxylate (5b) was synthesized by following Procedure C from **4b**, after a flash column chromatography (PE: EA = 10:1) afforded the product **5b** as a yellow oil (22.8 mg, 82% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 6.08 (dd, J = 15.1, 10.4 Hz, 1H), 5.94 (ddd, J = 15.0, 10.4, 1.7 Hz, 1H), 5.70 – 5.47 (m, 3H), 5.29 (dd, J = 15.1, 9.0 Hz, 1H), 4.26 – 4.06 (m, 5H), 3.32 (dd, J = 17.4, 2.3 Hz, 1H), 2.76 – 2.63 (m, 1H), 1.71 (dd, J = 6.8, 1.6 Hz, 3H), 1.24 (t, J = 7.1 Hz, 3H), 1.18 (t, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.9, 169.8, 132.9, 131.7, 131.0, 129.1, 127.9, 127.8, 63.9, 61.5, 61.2, 53.6, 39.7, 18.0, 14.1, 14.0.

HRMS Exact mass calculated for $[C_{16}H_{22}O_4+Na]^+$ requires m/z = 301.1410, found m/z = 301.1414 (ESI+).

Optical: $[\alpha]^{25}_{D} = +70.6 \circ (c = 0.25, CH_2Cl_2, 86 \% e.e.)$

HPLC (Chiralpak IC, 2% ^{*i*}PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 15.2$ min, minor enantiomer $t_{\rm R} = 13.0$ min.

Diethyl (2R,5S)-2-methyl-5-((E)-styryl)cyclopent-3-ene-1,1-dicarboxylate (10) was synthesized by following Procedure C from 9, after a flash column chromatography (PE: EA = 20:1) afforded the product 10 as a white oil (27.6 mg, 84% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.28 – 7.11 (m, 5H), 6.45 (d, *J* = 16.0 Hz, 1H), 6.27 (dd, *J* = 15.9, 7.7 Hz, 1H), 5.59 (s, 2H), 4.18 (p, *J* = 7.2 Hz, 2H), 4.08 – 3.88 (m, 3H), 3.32 (dd, *J* = 7.3, 2.3 Hz, 1H), 1.24 – 1.18 (m, 6H), 1.06 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.9, 168.4, 137.3, 134.7, 131.9, 129.7, 128.8, 128.5, 127.2, 126.2, 68.4, 61.3, 60.6, 54.9, 46.8, 16.0, 14.1, 14.1.

HRMS Exact mass calculated for $[C_{20}H_{24}O_4+Na]^+$ requires m/z = 351.1567, found m/z = 351.1570 (ESI+).

Optical: $[\alpha]^{25}_{D} = +96.76 \circ (c = 0.25, CH_2Cl_2, \ge 20:1 dr.)$

EtO₂C CO₂Et Br

¹H NMR, 400 MHz, CDCl₃

f1 (ppm)

¹H NMR, 400 MHz, CDCl₃

2j ¹H NMR, 400 MHz, CDCI₃

 $EtO_2C_CO_2Et$ Br

2k ¹H NMR, 400 MHz, CDCI₃

¹H NMR, 400 MHz, CDCI₃

EtO₂C_CCO₂Et

2m ¹H NMR, 400 MHz, CDCI₃

¹H NMR, 400 MHz, CDCl₃

¹H NMR, 400 MHz, CDCl₃

1,000 1,

A

EtO₂C CO₂Et S

2w ¹H NMR, 400 MHz, CDCl₃

EtO₂C CO₂Et O 2x

¹H NMR, 400 MHz, CDCl₃

¹H NMR, 400 MHz, CDCl₃

ⁱPrO₂C CO₂ⁱPr

2ae ¹H NMR, 400 MHz, CDCI₃

NC CO₂Me

2ag ¹H NMR, 600MHz, CDCI₃

¹³C NMR, 151MHz, CDCl₃

6. HPLC analysis of 2, 3 and 5

HPLC conditions: Chiralpak AD-H, 10% ⁱPrOH/Hx eluent, 0.5 mL/min, 254 nm

mV 检测器A 254nm 100- 50- 0- 2.5 5		15.0 17.5 20.0	22.5 25.0 min
Peak#	Ret. Time	Height	Area%
1	16.183	133841	49.828
2	23.917	121997	50.172

2	13.192	349425	96.822	
---	--------	--------	--------	--

mV 检测器A 254nm] 250 0	2.5 5.0	7.5 10	.0 min
Peak#	Ret. Time	Height	Area%
1	10.772	12506	2.724
2	12.141	373080	97.276

测器A 254nm

mV 200-检测器A 254nm		Δ	
-			Λ
100-			
-			
0.0 2.5	5.0 7.5 10.0 12.5	5 15.0 17.5 20.0	22.5 25.0 min
Peak#	Ret. Time	Height	Area%
1	19.787	202023	49.851
2	22.259	176985	50.149

2	13.865	2685	0.716
---	--------	------	-------

HPLC conditions: Chiralpak AD-H, 5% ⁱPrOH/Hx eluent, 0.5 mL/min, 254 nm

100 50-0-5.0 2.5 7.5 12.5 10.0 min Height Peak# Ret. Time Area% 10.617 125546 49.744 1 2 11.894 122410 50.256

wV 检测器A 254nm 300 200 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 50	7.5 10.0	12.5 min
Peak#	Ret. Time	Height	Area%
1	10.617	13362	3.266
2	11.862	380089	96.734

2m

HPLC conditions: Chiralpak AD-H, 5% ⁱPrOH/Hx eluent, 0.5 mL/min, 254 nm

2 11.8'	430182	96.896
---------	--------	--------

HPLC conditions: Chiralpak AD-H, 5% ⁱPrOH/Hx eluent, 0.5 mL/min, 254 nm

HPLC conditions: Chiralpak AD-H, 5% ⁱPrOH/Hx eluent, 0.5 mL/min, 254 nm

mV 捡测器A 254nm 750 500 250			
0.0 2.5	5 5.0	7.5 10.0	12.5 min
Peak#	Ret. Time	Height	Area%
1	11.516	23159	2.973
2	13.032	917073	97.027

HPLC conditions: Chiralpak OJ-H, 5% ⁱPrOH/Hx eluent, 0.5 mL/min, 254 nm

HPLC conditions: Chiralpak IC, 5% ⁱPrOH/Hx eluent, 0.5 mL/min, 254 nm

HPLC conditions: Chiralpak OJ-H, 5% ⁱPrOH/Hx eluent, 0.5 mL/min, 254 nm

2	25.046	15928	3.808	
---	--------	-------	-------	--

HPLC conditions: Chiralpak AD-H, 5% ⁱPrOH/Hx eluent, 0.5 mL/min, 254 nm

HPLC conditions: Chiralpak AD-H, 5% ⁱPrOH/Hx eluent, 0.5 mL/min, 254 nm

mV 检测器A 254nm 100- 0- 25		10.0 12.5	150 min
Peak#	Ret. Time	Height	Area%
1	14.558	6838	3.116
2	15.220	185907	96.884

HPLC conditions: Chiralpak AD-H, 5% ⁱPrOH/Hx eluent, 0.5 mL/min, 254 nm

HPLC conditions: Chiralpak OJ-H, 5% ⁱPrOH/Hx eluent, 0.5 mL/min, 254 nm

HPLC conditions: Chiralpak AD-H, 5% ⁱPrOH/Hx eluent, 0.5 mL/min, 220 nm

2	18.166	2356163	96.917
---	--------	---------	--------

HPLC conditions: Chiralpak AS-H, 2% ⁱPrOH/Hx eluent, 0.5 mL/min, 214 nm

HPLC conditions: Chiralpak AD-H, 5% ⁱPrOH/Hx eluent, 0.5 mL/min, 254 nm

2	10.554	53734	49.763
mV			
<u>_检测器A 254nm</u>		\wedge	
200-			
100-			
0 -			
8.0	8.5 9.0 9	.5 10.0 10.5	11.0 11.5 min
Peak#	Ret. Time	Height	Area%
1	9.730	10853	3.737
2	10.576	289365	96.263

HPLC conditions: Chiralpak AD-H, 5% ⁱPrOH/Hx eluent, 0.5 mL/min, 254 nm

E E Ph

HPLC conditions: Chiralpak OJ-H, 5% ⁱPrOH/Hx eluent, 0.5 mL/min, 254 nm

mV 2000 1000 0 2.5	5.0 7.5	10.0 12.5	5 15.0 min
Peak#	Ret. Time	Height	Area%
1	9.626	2256407	95.094
2	14.911	16729	4.906

HPLC conditions: Chiralpak OD-H, 10% ⁱPrOH/Hx eluent, 0.5 mL/min, 254 nm

2af

HPLC conditions: Chiralpak AD-H, 2% ⁱPrOH/Hx eluent, 0.5 mL/min, 254 nm

2ag

HPLC conditions: Chiralpak AD-H, 10% ⁱPrOH/Hx eluent, 0.5 mL/min, 254 nm

2ah

HPLC conditions: Chiralpak AD-H, 10% ⁱPrOH/Hx eluent, 0.5 mL/min, 254 nm

HPLC conditions: Chiralpak OJ-H, 3% ⁱPrOH/Hx eluent, 0.5 mL/min, 254 nm

mV 200—检测器A 254nm 100—			
0.0 5.0 1	0.0 15.0 20.0 25.0	30.0 35.0 40.0	45.0 50.0 min
Peak#	Ret. Time	Height	Area%
1	44.004	210332	98.804
2	51.351	2332	1.196

HPLC conditions: Chiralpak IC, 2% ⁱPrOH/Hx eluent, 0.5 mL/min, 254 nm

7. Gram scale reaction

Under anhydrous and oxygen-free conditions, to a dried tube equipped with a magnetic stir bar was added **1a** (4 mmol), $[Pd(\eta-C_3H_5)Cl]_2$ (36 mg, 2.5 mol%) and **L5** (140 mg, 6 mol%), and toluene (40 mL), stirring the reaction mixture for 3 h at 80 °C. The solvent was removed in vacuo and the crude product was purified directly by column chromatography to afford the desired **2a** (1.03 g, 83% yield, 94% ee).

HPLC conditions: Chiralpak AD-H, 10% ⁱPrOH/Hx eluent, 0.5 mL/min, 254 nm

Peak#	Ret. Time	Height	Area%
1	9.220	39726	2.647
2	9.638	2373505	97.353

8. Synthetic transformations

Under balloon pressure of H_2 conditions, to a dried tube equipped with a magnetic stir bar was added **2a** (31.3 mg, 0.1 mmol), Pd/C (2.1 mg, 20 mol%) and MeOH (1.0 mL), stirring the reaction mixture for 20 h at 25 °C. The residue was purified directly by column chromatography to afford the desired **11** as a yellow oil (28.7 mg, 90% yield).

To a stirred solution of 2a (31.4 mg, 0.1 mmol) in DCM (1.0 mL) was added m-CPBA (34.5 mg, 0.2 mmol) portionwise over 10 min at 0 °C. The resulting reaction mixture was allowed to warm to room temperature and stirred for 24 h. The precipitate was filtered and the filtrate was diluted with dichloromethane, washed with saturated aqueous NaHCO₃ solution and water. The organic layer was dried over Na₂SO₄ and the solvent was evaporated under reduced pressure. The residue was purified directly by column chromatography to afford the desired **12** as a white soild (13.2 mg, 40% yield).

To a suspension of LiAlH₄ (10.6 mg, 0.28 mmol) in dry THF (0.5 mL) was added a solution of **2a** (31.4 mg, 0.1 mmol) in dry THF (0.5 mL) dropwise at 0 °C. The resulting suspension was stirred overnight at 0°C. The suspension was quenched with water, 15% sodium hydroxide, and water at the same temperature. The white gel suspension was filtered through a pad of Celite and concentrated in vacuo. The residue was purified directly by column chromatography to afford the desired **13** as a white oil (16.1 mg, 70% yield).

To a stirred solution of **2a** (31.4 mg, 0.1 mmol) in HMPA (0.2 mL) was added NaI (2.1 mg, 0.14 mmol), stirring the reaction mixture for 24 h at 110 °C. The residue was purified directly by column chromatography to afford the desired **14** as a yellow oil (19.3 mg, 80% yield).

Diethyl (S)-2-phenethylcyclopentane-1,1-dicarboxylate (11)

¹**H NMR** (400 MHz, CDCl₃) δ 7.28 – 7.12 (m, 5H), 4.26 – 4.01 (m, 4H), 2.69 (ddd, *J* = 13.9, 10.5, 5.0 Hz, 1H), 2.60 – 2.46 (m, 2H), 2.38 (ddd, *J* = 13.8, 8.7, 7.3 Hz, 1H), 2.11 – 1.72 (m, 4H), 1.59 – 1.36 (m, 3H), 1.20 (td, *J* = 7.2, 4.9 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 172.5, 171.6, 142.2, 128.3, 128.2, 125.7, 63.4, 61.0, 60.9, 45.9, 34.8, 34.5, 33.0, 30.8, 22.9, 14.1, 14.0.

HRMS Exact mass calculated for $[C_{19}H_{26}O_4+Na]^+$ requires m/z = 341.1723, found m/z = 341.1725 (ESI+).

Optical: $[\alpha]^{25}_{D} = +46.1 \circ (c = 0.25, CH_2Cl_2, 93 \% e.e.)$

HPLC (Chiralpak IC-H, 2% 'PrOH/Hx eluent, 0.5 mL/min, 220 nm): major enantiomer $t_{\rm R} = 14.7$ min, minor enantiomer $t_{\rm R} = 13.6$ min.

Diethyl (1R,2S,5S)-2-((E)-styryl)-6-oxabicyclo[3.1.0]hexane-3,3-dicarboxylate (12)

¹**H** NMR (400 MHz, CDCl₃) δ 7.35 – 7.26 (m, 5H), 6.64 (d, J = 15.8 Hz, 1H), 5.79 (dd, J = 15.8, 10.2 Hz, 1H), 4.23 (dq, J = 7.1, 3.7 Hz, 2H), 4.11 – 3.99 (m, 3H), 3.60 – 3.40 (m, 2H), 2.89 (d, J = 15.0 Hz, 1H), 2.65 (dd, J = 15.0, 1.1 Hz, 1H), 1.27 (d, J = 7.1 Hz, 3H), 1.09 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 170.4, 168.43 136.4, 135.1, 128.6, 128.0, 126.4, 122.9, 61.9, 61.8, 60.5, 57.9, 55.2, 48.4, 33.7, 14.1, 14.0.

HRMS Exact mass calculated for $[C_{19}H_{22}O_5+Na]^+$ requires m/z = 353.1359, found m/z = 353.1360 (ESI+).

Optical: $[\alpha]^{25}_{D} = -200.4 \circ (c = 0.32, CH_2Cl_2, 94 \% e.e.)$

HPLC (Chiralpak AD-H, 5% ^{*i*}PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 24.3$ min, minor enantiomer $t_{\rm R} = 22.3$ min.

(S,E)-(2-styrylcyclopent-3-ene-1,1-diyl)dimethanol (13)

¹**H NMR** (400 MHz, CDCl₃) δ 7.31 – 7.12 (m, 5H), 6.38 (d, *J* = 15.8 Hz, 1H), 6.12 (dd, *J* = 15.9, 8.8 Hz, 1H), 5.68 (dt, *J* = 6.1, 2.1 Hz, 1H), 5.54 (dt, *J* = 5.6, 2.2 Hz, 1H), 3.75 (d, *J* = 11.1 Hz, 1H), 3.67 – 3.52 (m, 3H), 3.28 (dt, *J* = 8.8, 2.2 Hz, 1H), 2.41 (s, 2H), 2.16 – 2.08 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 137.0, 132.3, 131.1, 129.7, 129.5, 128.6, 127.4, 126.2, 69.8, 67.5, 52.3, 51.2, 38.1.

HRMS Exact mass calculated for $[C_{15}H_{18}O_2+H]^+$ requires m/z = 231.1380, found m/z = 231.1382 (ESI+).

Optical: $[\alpha]^{25}_{D} = +183.6 \circ (c = 0.45, CH_2Cl_2, 94 \% e.e.)$

HPLC (Chiralpak OD-H, 10% ^{*i*}PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 23.4$ min, minor enantiomer $t_{\rm R} = 20.1$ min.

Ethyl-2-((E)-styryl)cyclopent-3-ene-1-carboxylate (14)

¹**H NMR** (400 MHz, CDCl₃) δ 7.31 – 7.09 (m, 5H), 6.36 (t, *J* = 15.2 Hz, 1H), 6.19 – 5.89 (m, 1H), 5.83 – 5.49 (m, 2H), 4.18 – 3.89 (m, 2H), 3.80 – 3.53 (m, 1H), 3.40 – 2.38 (m, 3H), 1.21 – 1.05 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 175.3, 173.4, 137.2, 132.2, 132.2, 131.6, 131.1, 130.60, 19.9, 129.7, 128.7, 128.6, 128.5, 128.4, 127.2, 126.6, 126.2, 126.2, 60.6, 60.3, 52.7, 51.4, 49.4, 47.5, 36.3, 33.9, 14.3.

HRMS Exact mass calculated for $[C_{16}H_{18}O_2+Na]^+$ requires m/z = 265.1199, found m/z = 265.1198 (ESI+).

Optical: $[\alpha]^{25}_{D} = +117.4 \circ (c = 0.40, CH_2Cl_2, 94\% e.e. dr = 3.4:1)$

HPLC (Chiralpak OJ-H, 2% 'PrOH/Hx eluent, 0.5 mL/min, 254 nm): major enantiomer $t_{\rm R} = 18.1$ min, minor enantiomer $t_{\rm R} = 20.6$ min.

HO OH

¹H NMR, 400MHz, CDCl₃

(ppiii)

HPLC conditions: Chiralpak IC, 2% ⁱPrOH/Hx eluent, 0.5 mL/min, 220 nm

HPLC conditions: Chiralpak AD-H, 5% ⁱPrOH/Hx eluent, 0.5 mL/min, 254 nm

mV 检测器A 254nm 500- 		· · · · · · · · · · · · · · · · · · ·	
5.0	0 10.0	15.0 20.0	25.0 min
Peak#	Ret. Time	Height	Area%
1	22.338	27693	3.014
2	24.271	881708	96.986

HPLC conditions: Chiralpak OD-H, 10% ⁱPrOH/Hx eluent, 0.5 mL/min, 254 nm

13

HPLC conditions: Chiralpak OJ-H, 2% ⁱPrOH/Hx eluent, 0.5 mL/min, 254 nm

mV - 检测器A 254nm 	5.0 7.5 10.0 12		D 22.5 25.0 min
Peak#	Ret. Time	Height	Area%
1	12.278	126973	23.485
2	13.557	106660	23.848
3	18.163	154746	26.106
4	20.769	162131	26.561

9. Crystallographic data for 2d.

Table 1 Crystal data and structure refinement for 2d.

Identification code	2d
Empirical formula	$C_{20}H_{24}O_4$
Formula weight	328.39
Temperature/K	150.00(10)
Crystal system	monoclinic
Space group	P21
a/Å	7.73185(8)
b/Å	5.91229(7)
c/Å	19.8978(2)
$\alpha/^{\circ}$	90
β/°	92.4788(10)
γ/°	90
Volume/Å ³	908.734(17)
Z	2
$ ho_{calc}g/cm^3$	1.200
μ/mm^{-1}	0.667

F(000)	352.0
Crystal size/mm ³	0.15 imes 0.13 imes 0.1
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	8.896 to 142.938
Index ranges	$-9 \le h \le 9, -7 \le k \le 7, -23 \le l \le 24$
Reflections collected	6616
Independent reflections	$3229 [R_{int} = 0.0114, R_{sigma} = 0.0118]$
Data/restraints/parameters	3229/1/221
Goodness-of-fit on F ²	1.077
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0258, wR_2 = 0.0681$
Final R indexes [all data]	$R_1 = 0.0260, wR_2 = 0.0682$
Largest diff. peak/hole / e Å ⁻³	0.16/-0.13
Flack/Hooft parameter	0.12(6)/0.19(3)

Crystal structure determination of [2d]

Crystal Data for C₂₀H₂₄O₄ (M =328.39 g/mol): monoclinic, space group P2₁ (no. 4), a = 7.73185(8) Å, b = 5.91229(7) Å, c = 19.8978(2) Å, β = 92.4788(10)°, V = 908.734(17) Å³, Z = 2, T = 150.00(10) K, μ (Cu K α) = 0.667 mm⁻¹, *Dcalc* = 1.200 g/cm³, 6616 reflections measured (8.896° $\leq 2\Theta \leq 142.938°$), 3229 unique (R_{int} = 0.0114, R_{sigma} = 0.0118) which were used in all calculations. The final R_1 was 0.0258 (I > 2 σ (I)) and wR_2 was 0.0682 (all data).

Refinement model description

Table 2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displace	ment
Parameters (Å ² ×10 ³) for 2d. U_{eq} is defined as 1/3 of the trace of the orthogonalised	d U _{IJ} tensor.

Atom	x	у	z	U(eq)
01	2619.2(15)	5655(2)	477.3(6)	32.6(3)
02	4953.4(16)	3742(2)	876.5(6)	33.7(3)
03	1250.1(14)	3423(2)	1724.7(6)	25.7(3)
04	505.9(14)	6971(2)	1997.0(7)	32.8(3)
C1	3387.6(19)	6200(3)	1619.4(8)	21.7(3)
C2	3698(2)	8769(3)	1546.9(9)	26.5(4)
C3	5550(2)	9024(3)	1802.7(8)	27.0(4)
C4	6107(2)	7222(3)	2140.6(8)	26.9(4)
C5	4736.2(19)	5413(3)	2184.3(8)	23.7(3)
C6	4019(2)	5308(3)	2875.3(8)	25.5(3)
C7	4016(2)	3450(3)	3245.1(8)	27.9(4)
C8	3383(2)	3208(3)	3931.4(8)	28.9(4)
C9	3745(2)	1238(3)	4292.3(9)	36.8(4)

Atom	x	У	Z	U(eq)
C10	3253(3)	987(4)	4949.4(10)	42.3(5)
C11	2368(2)	2687(4)	5265.8(9)	41.0(5)
C12	1962(3)	4628(4)	4902.0(9)	40.7(5)
C13	2466(2)	4895(3)	4245.7(9)	35.8(4)
C14	1886(3)	2462(5)	5992.0(11)	59.3(7)
C15	1538.8(19)	5632(3)	1800.3(7)	22.4(3)
C16	-443(2)	2587(3)	1905.1(9)	28.9(4)
C17	-530(2)	2273(4)	2649.8(10)	39.5(5)
C18	3776(2)	5013(3)	958.4(8)	23.4(3)
C19	2774(3)	4645(4)	-185.8(8)	38.5(4)
C20	1719(3)	2548(4)	-251.1(10)	47.9(5)

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 2d. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Table 3 Anisotropic Displacement Parameters (Å²×10³) for 2d. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U11	U ₂₂	U33	U ₂₃	U13	U_{12}
01	32.0(6)	42.1(7)	23.7(6)	-1.2(5)	-0.2(4)	2.2(5)
02	34.0(6)	35.0(7)	32.7(6)	-5.4(5)	7.0(5)	8.9(5)
03	21.9(5)	21.3(6)	34.4(6)	-3.0(5)	7.2(4)	-1.9(4)
04	24.2(6)	25.0(7)	50.0(7)	-3.7(5)	10.4(5)	2.8(5)
C1	20.1(7)	19.8(8)	25.4(7)	-0.3(6)	3.3(6)	0.5(6)
C2	25.0(8)	19.8(8)	34.8(8)	1.5(7)	3.3(6)	0.6(6)
C3	25.0(8)	24.5(9)	32.0(8)	-6.5(6)	7.5(6)	-4.8(6)
C4	20.6(7)	32.4(9)	27.9(8)	-5.1(7)	3.5(6)	-0.6(7)
C5	21.7(7)	24.2(8)	25.4(7)	-1.0(6)	2.3(6)	3.6(6)
C6	24.5(7)	26.4(8)	25.7(8)	-1.7(6)	1.7(6)	2.6(6)
C7	26.5(8)	29.0(8)	28.3(8)	0.2(7)	0.3(6)	2.4(7)
C8	26.4(8)	32.1(9)	27.8(8)	3.9(7)	-2.0(6)	-2.3(7)
C9	39.5(10)	34.4(10)	36.0(9)	6.1(8)	-2.2(7)	0.1(8)
C10	44.6(11)	44.3(12)	37.4(10)	16.5(9)	-6.3(8)	-6.0(9)
C11	32.8(9)	60.9(13)	29.0(9)	8.9(9)	-1.1(7)	-11.5(9)
C12	36.3(10)	51.5(12)	35.0(9)	-1.3(9)	7.5(7)	0.1(9)
C13	35.3(9)	39.8(11)	32.6(9)	7.1(8)	4.9(7)	4.6(8)
C14	53.9(13)	93(2)	31.2(10)	12.6(12)	3.9(9)	-19.1(14)
C15	22.6(7)	21.5(8)	23.1(7)	-0.4(6)	1.9(6)	1.5(6)
C16	22.2(8)	27.0(8)	37.9(9)	-3.3(7)	4.3(6)	-5.4(7)
C17	35.8(10)	43.3(12)	40.1(10)	2.9(9)	8.0(8)	-9.3(9)

Table 3 Anisotropic Displacement Parameters (Å²×10³) for 2d. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C18	23.7(7)	21.6(8)	25.3(7)	0.6(6)	5.0(6)	-3.5(6)
C19	41.0(10)	53.3(12)	21.2(8)	-1.7(8)	3.6(7)	-4.8(9)
C20	51.7(12)	55.2(13)	36.8(10)	-8.4(10)	1.9(9)	-11.2(11)

Table 4 Bond Lengths for 2d.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C18	1.337(2)	C5	C6	1.506(2)
01	C19	1.458(2)	C6	C7	1.323(3)
02	C18	1.197(2)	C7	C8	1.477(2)
03	C15	1.332(2)	C8	С9	1.391(3)
03	C16	1.4586(19)	C8	C13	1.388(3)
04	C15	1.2021(19)	С9	C10	1.386(3)
C1	C2	1.545(2)	C10	C11	1.383(3)
C1	C5	1.570(2)	C11	C12	1.386(3)
C1	C15	1.526(2)	C11	C14	1.514(3)
C1	C18	1.532(2)	C12	C13	1.388(2)
C2	C3	1.506(2)	C16	C17	1.498(2)
C3	C4	1.322(3)	C19	C20	1.486(3)
C4	C5	1.511(2)			

Table 5 Bond Angles for 2d.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C18	01	C19	116.94(14)	C13	C8	C7	122.90(16)
C15	03	C16	116.88(12)	C13	C8	С9	117.69(16)
C2	C1	C5	104.89(13)	C10	С9	C8	121.29(19)
C15	C1	C2	112.88(13)	C11	C10	С9	120.90(19)
C15	C1	C5	111.46(12)	C10	C11	C12	118.00(17)
C15	C1	C18	108.78(12)	C10	C11	C14	121.2(2)
C18	C1	C2	109.45(13)	C12	C11	C14	120.8(2)
C18	C1	C5	109.29(12)	C11	C12	C13	121.29(19)
C3	C2	C1	102.46(13)	C12	C13	C8	120.79(18)
C4	C3	C2	112.07(15)	O3	C15	C1	110.06(13)
C3	C4	C5	112.66(14)	O4	C15	03	124.89(14)
C4	C5	C1	101.25(13)	O4	C15	C1	125.03(15)
C6	C5	C1	113.99(12)	O3	C16	C17	111.37(13)

Table 5 Bond Angles for 2d.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C6	C5	C4	111.63(13)	01	C18	C1	109.57(13)
C7	C6	C5	123.51(15)	02	C18	O1	124.76(14)
C6	C7	C8	127.12(17)	02	C18	C1	125.64(14)
C9	C8	C7	119.40(17)	01	C19	C20	110.77(15)

Table 6 Torsion Angles for 2d.

Α	B	С	D	Angle/°	Α	В	С	D	Angle/°
C1	C2	C3	C4	-15.51(18)	С9	C8	C13	C12	1.2(3)
C1	C5	C6	C7	121.89(17)	C9	C10	C11	C12	1.2(3)
C2	C1	C5	C4	-24.40(14)	C9	C10	C11	C14	-177.63(19)
C2	C1	C5	C6	95.60(15)	C10	C11	C12	C13	-1.7(3)
C2	C1	C15	03	167.65(13)	C11	C12	C13	C8	0.5(3)
C2	C1	C15	04	-13.9(2)	C13	C8	С9	C10	-1.8(3)
C2	C1	C18	01	-66.36(16)	C14	C11	C12	C13	177.09(19)
C2	C1	C18	02	112.08(18)	C15	03	C16	C17	-80.28(19)
C2	C3	C4	C5	-0.56(19)	C15	C1	C2	C3	145.87(13)
C3	C4	C5	C1	16.04(17)	C15	C1	C5	C4	-146.86(13)
C3	C4	C5	C6	-105.62(16)	C15	C1	C5	C6	-26.86(18)
C4	C5	C6	C7	-124.14(17)	C15	C1	C18	01	57.38(16)
C5	C1	C2	C3	24.33(15)	C15	C1	C18	O2	-124.18(17)
C5	C1	C15	03	-74.60(16)	C16	03	C15	04	-0.9(2)
C5	C1	C15	04	103.80(18)	C16	03	C15	C1	177.52(12)
C5	C1	C18	01	179.28(13)	C18	01	C19	C20	90.87(19)
C5	C1	C18	02	-2.3(2)	C18	C1	C2	C3	-92.83(15)
C5	C6	C7	C8	178.34(15)	C18	C1	C5	C4	92.87(14)
C6	C7	C8	C9	-168.95(17)	C18	C1	C5	C6	-147.13(13)
C6	C7	C8	C13	9.4(3)	C18	C1	C15	03	45.97(17)
C7	C8	C9	C10	176.71(17)	C18	C1	C15	04	-135.63(16)
C7	C8	C13	C12	-177.20(17)	C19	01	C18	02	2.8(2)
C8	C9	C10	C11	0.6(3)	C19	01	C18	C1	-178.70(14)

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Ų×10³) for 2d.

Atom	x	У	Z	U(eq)
H2A	3552.13	9245.43	1081.41	32

Atom	x	У	z	U(eq)
H2B	2919.63	9631.91	1817.72	32
H3	6221.53	10298.78	1731.21	32
H4	7222.31	7083.68	2330.82	32
H5	5218.79	3939.93	2066.79	28
H6	3554.39	6620.42	3051.4	31
H7	4460.43	2152.97	3052.07	34
H9	4330.3	65.39	4088.59	44
H10	3520.26	-343.28	5180.69	51
H12	1340.3	5774.38	5101.56	49
H13	2185.28	6219.54	4013.71	43
H14A	2853.84	2893.82	6282.32	89
H14B	1578.58	921.62	6081.36	89
H14C	919.25	3429.32	6072.73	89
H16A	-673.34	1154.98	1680.94	35
H16B	-1328.81	3652.47	1751.34	35
H17A	-1648.74	1697.09	2752.32	59
H17B	-342.66	3699.99	2871.53	59
H17C	347.24	1220.98	2803	59
H19A	3978.42	4289.35	-254.68	46
H19B	2388.54	5719.18	-528.86	46
H20A	1781.76	1960.89	-699.17	72
H20B	536.28	2887.66	-162.32	72
H20C	2157.35	1442.96	65.95	72

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Ų×10³) for 2d.

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 1-67-1

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 1-67-1

Bond precision:	C-C = 0.0024 A	Wavelength=1.54184		
Cell:	a=7.73185(8)	b=5.91229(7)	c=19.8978(2)	
	alpha=90	beta=92.4788(10)	gamma=90	
Temperature:	150 K			
	Calculated	Reported		
Volume	908.736(17)	908,734(1	908,734(17)	
Space group	P 21	P 1 21 1	P 1 21 1	
Hall group	P 2yb	P 2yb	P 2yb	
Moiety formula	C20 H24 O4	C20 H24 C	C20 H24 O4	
Sum formula	C20 H24 O4	C20 H24 C	C20 H24 O4	
Mr	328.39	328.39	328.39	
Dx,g cm-3	1.200	1.200	1.200	
Z	2	2	2	
Mu (mm-1)	0.667	0.667	0.667	
F000	352.0	352.0		
F000'	353.08			
h,k,lmax	9,7,24	9,7,24	9,7,24	
Nref	3546[1956]	3229	3229	
Tmin, Tmax	0.905,0.935	0.537,1.000		
Tmin'	0.905			
Correction metho	od= # Reported T 1	Limits: Tmin=0.537 Tm	max=1.000	
AbsCorr = MULTI-	SCAN			
Data completenes	ss= 1.65/0.91	Theta(max) = 71.46	9	

R(reflections)= 0.0258(3218) S = 1.077 Npar= 221 wR2(reflections)= 0.0682(3229)

```
Datablock 1-67-1 - ellipsoid plot
```


10. References

1. B. Li, S. Ni, F. Mao, F. Chen, Y. Liu, H. Wei, W. Chen, J. Zhu, L. Lan, and J. Li. J. Med. Chem. 2018, 61, 224–250.

2. S. Einaru, K. Shitamichi, T. Nagano, A. Matsumoto, K. Asano, and S. Matsubara, Angew. Chem. Int. Ed. 2018, 57, 13863–13867.