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Note S0: Data collection and reduction of time-resolved XSS and XES  

In the pump-probe experiment at SACLA, the data were recorded by scanning an optical 

delay line with a motorized stage. At each delay stage position, a shutter of the optical laser was 

operated with 15 Hz, which was half of the XFEL repetition rate (30 Hz), to collect alternating 

laser-on and laser-off shots. For laser-on shots collected at time delays ≤ 2.5 ps, the time is corrected 

by post-sorting into 30 fs time bins using the timing diagnostics based on the X-ray beam branching 

scheme1,2. The jitter correction is not applied for laser-on shots at time delays longer than 2.5 ps to 

avoid degradation of the signal-to-noise ratio (S/N) by fine time binning. Therefore, only the data 

at > 2.5 ps retain a jitter of ~300 fs in root-mean-square. The shot-to-shot intensity ratio between 

the incident and fluorescent X-rays was monitored with photodiodes, removing outlier shots due to 

jet instability in the following XES and XSS analyses. 

XSS: For each time delay, we collect single-shot outputs of a short-working-distance octal 

(SWD octal) multiport charge-coupled device (MPCCD) detector from 100 consecutive laser-on 

shots. After subtracting a dark background measured separately without XFEL pulses, these single-

shot outputs are summed up to construct a laser-on image. A laser-off image is created in the same 

manner using laser-off shots adjacent to the corresponding laser-on shots. In the construction of the 

last laser-on and laser-off images, 100–200 shots are used depending on the number of excess shots. 

This procedure produces a data set consisting of ~45 pairs of laser-on and laser-off images at each 

time delay. We mask shadowed pixels and dead areas of these images. The sample–detector 

distance and detector position are calibrated using Debye Scherrer rings of a LaB6 powder, which 

was loaded in a glass capillary (100 µm inner diameter) attached to an injection tip. After correcting 

for X-ray polarization and solid angle coverage per radial bin, the individual laser-on and laser-off 

images are scaled to the intensity integral of a corresponding simulated scattering curve over a 

range between 1.0 and 4.1 Å−1 in the length of the scattering vector 𝑞, around two isosbestic points 
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(2.0 Å−1 and 3.1 Å−1). The simulated curve is calculated as a sum of coherent and incoherent 

scattering arising from a liquid unit cell, i.e., from one solute and 191 solvent molecules, 

corresponding to the smallest stoichiometry unit of a sample consisting of 100 mM 

[Cu(dmphen)2]PF6 in acetonitrile. The coherent scattering arising from the solute is calculated 

through the Debye equation using isolated [Cu(dmphen)2]+ and PF6
− structures obtained from the 

literature3,4, while the parameters by Hajdu5 are used to calculate the incoherent scattering. For the 

solvent, reference data (up to ~8 Å−1) of neat acetonitrile measured in a separate experiment are 

used to model the coherent and incoherent scattering. After the scaling, difference scattering images 

are acquired by subtracting laser-off images from laser-on images and are azimuthally integrated 

to extract one-dimensional isotropic and anisotropic difference scattering curves (∆𝑆(𝑞, 𝑡) and 

∆𝑆*(𝑞, 𝑡)). The anisotropic difference scattering signals are calculated with 12 azimuthal bins using 

the scheme described by Lorenz et al.6 and Biasin et al.7. The difference scattering curves are 

averaged after removing outliers due to optical laser instability detected on the basis of the 

Chauvenet criterion8–10.  

XES: Laser-on and laser-off images are constructed from a single MPCCD detector with 

the same procedure employed in the XSS data collection, except that after the background 

subtraction, only pixel values over 70.0 analog-to-digital-units (ADU) in single-shot outputs are 

counted to reject the zero-photon peak, or the detector readout noise. This threshold corresponds to 

the detection of a single photon with an energy of 1.13 keV, well below actual photon energies 

detected in the experiment. From six regions of interest (ROIs) corresponding to the six crystal 

analyzers, a spectrum is constructed by summing up one-dimensional profiles after aligning the 

energy axis. The energy axis is calibrated using a static spectrum of [Cu(dmphen)2]+ measured at 

SPring-8 BL19XU. Each spectrum is normalized to the total integrated intensity. The laser-off 

spectra are averaged over the entire time range and used for the subtraction from laser-on spectra 

to yield difference spectra. The ~45 difference spectra at each time delay are averaged and then 
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used in the singular value decomposition (SVD) analysis. 

 

Note S1: SVD analysis of time-resolved Cu Ka XES difference spectra 

Figure S1 presents the results of the SVD analysis of the time-resolved Cu Ka XES 

difference spectra. In Figure S1b, the magnitudes of the singular values reveal that a single 

component dominates the transient signal. In Figure S1c, the right singular vectors (RSVs) indicate 

no trend with respect to time delay except for the first component. These observations demonstrate 

that only the first component is relevant for describing the changes in the Cu Ka XES difference 

spectrum.  

 

Figure S1. SVD components of the time-resolved XES data. (a) Left singular vectors (LSVs) of 
the 1st–6th components. (b) Singular value of each component. (c) Right singular vectors (RSVs) 
of the 1st–6th components. Dotted lines correspond to the magnitudes at 18.8 ps. 

The 1st left singular vector (LSV) is associated with the change of Cu 3d electronic 

configuration (Cu1+: d10 à Cu2+: d9), due to the metal-to-ligand-charge-transfer (MLCT) transition. 

The corresponding photoexcitation process promotes an electron from the ground state (S0) into the 

lowest singlet (S1) MLCT state and occurs within the instrumental response function (IRF). 

Therefore, the rise time of the 1st RSV reflects the overall time resolution of the pump-probe 

a cb
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experiment. Since the 1st RSV exhibits no clear decay within the measurement time window, we 

describe the temporal evolution of the 1st RSV (𝐼+,-(𝑡)) as follows: 

𝐼+,-(𝑡) = 𝐴 ∙ 𝐻(𝑡 − 𝑡.)⨂𝐼𝑅𝐹(𝜎/+0 , 𝑡)                                         (S1) 

Here 𝐴  is the magnitude, 𝑡.  is time zero, 𝐻(𝑡 − 𝑡.)  is the Heaviside step function, ⨂  is the 

convolution operator, and 𝐼𝑅𝐹(𝜎/+0 , 𝑡) is a Gaussian function with a width of 𝜎/+0 . The least-

squares fit is performed by a standard 𝜒* minimization and uncertainties are at the 68% confidence 

level. The resultant fitted curve is shown in Figure 2 of the main text and the corresponding fitting 

parameters are summarized in Table S1. The width 𝜎/+0 obtained here is used in the kinetic fitting 

of the time-dependent structural parameters extracted from the analysis of the time-resolved XSS 

data (Note S3).  

Table S1. Fitting results of 1st RSV. The digits in parentheses are uncertainties. 

𝜎/+0 / fs  𝑡. / fs 𝐴 

28.7 (7.0) −10.8 (5.0) 1.17×10−1 (1.25×10−3) 

The lack of decrease in the total MLCT population within < 20 ps is consistent with the 

estimate based on the absolute radiative rate constants reported by Iwamura et al11. The highest 

radiative constant (𝑘1) reported in this study is 3.6×107 s−1, corresponding to the decay of the singlet 

MLCT (S2) state. Assuming that all MLCT states decay with this radiative constant, the MLCT 

population decreases by < 0.1% at 20 ps. Although this estimate takes into account radiative de-

excitation only, the nonradiative decay constants (𝑘21 ) from MLCT states to the S0 state are 

comparable to the highest radiative constant12–14; thus, the MLCT population will not decrease 

significantly through nonradiative de-excitation pathways within 20 ps. Consequently, this 

assessment corroborates the validity of our approximation that the MLCT population is constant 

within the time window of < 20 ps. 
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In order to determine the absolute MLCT population, the static Cu Ka XES spectra of the 

[Cu(dmphen)2]PF6 (Cu1+: d10) and [Cu(dmphen)2](PF6)2 (Cu2+: d9) complexes in acetonitrile were 

measured in a separate experiment at the European XFEL (Figure S2). These Cu(I) and Cu(II) 

species should show Cu Ka emissions corresponding to 0% and 100% optical excitation in the 

pump-probe experiment at SACLA, respectively. After calibrating the energy axis, the Cu(I) and 

Cu(II) spectra measured at the European XFEL are interpolated and vertically offset, such that 

spacing between data points and the elastic scattering background underlying the emission signals 

are aligned to those in the pump-probe experiment at SACLA. This data correction is necessary to 

compare spectra measured with different instruments at the European XFEL and SACLA. 

Subsequently, the corrected Cu(I) and Cu(II) spectra are normalized to the total integrated intensity 

and their difference is calculated as the Cu(II) minus the Cu(I) signal. The obtained difference 

spectrum corresponds to the case where the solvated [Cu(dmphen)2]+ complex is 100% 

photoexcited in the pump-probe experiment; thus, it is scaled to the transient spectrum averaged 

over time intervals above 0.5 ps (Figure S2b), obtaining a fraction of molecules in MLCT states 

(MLCT population) in the pump-probe experiment of 0.202±2.40×10−3.

 

Figure S2. Determination of the absolute MLCT population. (a) Static Cu Ka XES spectra of 
the [Cu(dmphen)2]PF6 (Cu(I)) and [Cu(dmphen)2](PF6)2 (Cu(II)) complexes after the data 
correction and normalization. (b) Red line is the scaled difference spectrum calculated using the 
static spectra in (a), while the black line is the transient spectrum averaged over time intervals above 
0.5 ps. 

a b
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Note S2: Structural analysis of time-resolved XSS difference signals 

2-1.  Simulations of ∆𝑺𝒔𝒐𝒍𝒖𝒕𝒆'𝒔𝒐𝒍𝒖𝒕𝒆, ∆𝑺𝒔𝒐𝒍𝒖𝒕𝒆'𝒔𝒐𝒍𝒗𝒆𝒏𝒕, and ∆𝑺𝒔𝒐𝒍𝒗𝒆𝒏𝒕'𝒔𝒐𝒍𝒗𝒆𝒏𝒕 

∆𝑺𝒔𝒐𝒍𝒖𝒕𝒆'𝒔𝒐𝒍𝒖𝒕𝒆: The scattering signal arising from structural changes of the solute used in 

the fitting of the time-resolved XSS data is simulated as the difference between the scattering 

signals from putative ground and excited state structures. These are derived from the S0 and the 

lowest triplet (T1) MLCT state structures optimized with density functional theory (DFT) and time-

dependent DFT (TD-DFT), respectively. The DFT and TD-DFT calculations are performed with 

the ORCA 5.0.1 program package using the PBE0 functional and the def2-SVP and def2-TZVP 

basis sets for C, N, H atoms and for the Cu atom, respectively. In the XSS fitting, the ground state 

is constrained to the DFT-optimized S0 geometry, while the excited MLCT states have intermediate 

S0–T1 structures covering a wide range of the NNCuNN dihedral angles 𝜃  and Cu–N average 

distance r. Here, 𝜃 is defined as the angle between two planes, each of which consists of three 

atoms (two are the N atoms on one phenanthroline ligand and the last one is the central Cu atom). 

The excited state structures are generated according to the following procedure. First, 99 structures 

are generated through the image dependent pair potential (idpp) method15 with a maximum force 

of 0.001 Å/fs on each atom using the S0 and T1 optimized geometries as initial and final structures. 

Then, the Cartesian coordinates of the nearest idpp structures are linearly interpolated. In this way, 

the atomic distance between atoms i and j of an intermediate structure is approximately a linearly 

interpolated distance between the S0 and T1 structures: 

𝑑3432561(𝑡) ≈ 𝑑34
,! + ∆𝑃𝐽𝑇(𝑡)(𝑑34

7" − 𝑑34
,!)             (S2) 

∆𝑃𝐽𝑇(𝑡) in equation S2 is a scalar parameter that can take any value between 0 and 1, and can be 
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defined as a flattening coordinate representing the progress of the pseudo-Jahn–Teller (PJT) 

distortion. Finally, in order to account for the breathing motion dominating the coherent nuclear 

wave packet16,17, for an intermediate structure with a given value of ∆𝑃𝐽𝑇(𝑡), the atoms of each 

phenanthroline ligand are displaced by a scalar parameter ∆𝑅(𝑡) along the vector from the central 

Cu atom to the center of mass of the ligand. The excited state structures generated according to this 

procedure span any dihedral angle 𝜃 between the S0 and T1 structures and a large range of the Cu–

N average distance r.  

The scattering signals from the S0 and putative MLCT state structures used in the structural 

fitting are calculated through the Debye equation: 

𝑆8398:;<56–8:;<56(𝑞) = ∑ 𝑓3*(𝑞)>
3 +∑ ∑ 𝑓3(𝑞) ∙ 𝑓4(𝑞) ∙

832(@∙B#$)
@∙B#$

>
4C3

>
3              (S3) 

𝑁 is the number of atoms of [Cu(dmphen)2]+, 𝑓3(𝑞) is the atomic form factor of atom 𝑖, and 𝑑34 are 

the atom pair distances of the solute in the ground or an intermediate excited state geometry (see 

eq. S2). After the fitting, at each time delay, the change in the average Cu–N bond length ∆𝑟(𝑡) 

and the change in the dihedral angle between the two phenanthroline ligands ∆𝜃(𝑡) are extracted 

from the S0 and the intermediate MLCT structures and used in Figure 4 of the main text.  

∆𝑺𝒔𝒐𝒍𝒗𝒆𝒏𝒕'𝒔𝒐𝒍𝒗𝒆𝒏𝒕 : The bulk solvent signal arises from the changes in solvent–solvent 

atomic pair distances and is typically approximated as follows: 

∆𝑆8:;D625'8:;D625(𝑞, 𝑡) = ∆𝑇(𝑡) ∙
EFG,&'(

)*+,'-.(@)I

E7
+ ∆𝜌(𝑡) ∙

EFG,&'(
)*+,'-.(@)I

EJ
           (S4) 

Here, 
EFG,&'(

)*+,'-.(@)I

E7
 and 

EFG,&'(
)*+,'-.(@)I

EJ
 are the scattering signal differentials arising from a 

temperature change at a constant density and from a density change at a constant temperature, 

respectively. Since thermal expansion is expected to occur on a much longer timescale (>> 100 
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ps)18 than the time window of the present pump-probe experiment, ∆𝑆8:;D625'8:;D625  can be 

reduced to the impulsive heating as follows: 

∆𝑆8:;D625'8:;D625(𝑞, 𝑡) ≅ ∆𝑇(𝑡) ∙
EFG,&'(

)*+,'-.(@)I

E7
             (S5) 

We measure  
EFG,&'(

)*+,'-.(@)I

E7
 separately using a 5 mM acetonitrile solution of a dye (4-(N,N-

diethylamino)-2-methoxy-4’-nitro-azobenzene; CAS 6373-95-1) at 100 ps after photoexcitation by 

550 nm optical pulses, when most dye molecules decay into the ground state and the structural 

signal relevant to the solute can be neglected as described elsewhere19. The impulsive heating signal 

obtained in the reference measurements (Figure S3) agrees well with the literature19 and is 

employed in the structural fitting analysis. 

 

Figure S3. Impulsive heating signal  
𝝏F𝚫𝑺𝒓𝒆𝒇

𝒔𝒐𝒍𝒗𝒆𝒏𝒕(𝒒)I

𝝏𝑻
 of bulk liquid acetonitrile at ∆𝑻 = 1 K. 

∆𝑺𝒔𝒐𝒍𝒖𝒕𝒆'𝒔𝒐𝒍𝒗𝒆𝒏𝒕 : The difference scattering signal arising from changes in the solute–

solvent atom pair distances is extracted from quantum mechanics/molecular mechanics (QM/MM) 

molecular dynamics (MD) simulations of [Cu(dmphen)2]+ after photoexcitation to the S1 MLCT 

state in acetonitrile (details of the simulations reported elsewhere3). Figure S4a shows a difference 

scattering signal Δ𝑆PQRS8:;<56–8:;D625  calculated using the time-dependent solute–solvent radial 

∂(ΔS         (q))solvent
ref
∂T
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distribution functions (RDFs) averaged over the MLCT QM/MM MD trajectories at each time step 

and the RDFs of equilibrium ground state trajectories. Δ𝑆PQRS8:;<56–8:;D625 shows no significant time 

dependence after 3 ps, indicating that the solute–solvent RDFs in the MLCT QM/MM MD 

trajectories are equilibrated after this time.  

 

Figure S4. 𝚫𝑺𝑩𝑶𝑴𝑫𝒔𝒐𝒍𝒖𝒕𝒆–𝒔𝒐𝒍𝒗𝒆𝒏𝒕  signal. (a) Difference scattering signal Δ𝑆PQRS8:;<56–8:;D625  calculated 
using time-dependent solute–solvent radial distribution functions (RDFs) from the QM/MM MD 
simulations. The white dashed line at 0.94 Å−1 indicates the position of the negative peak, which 
stabilizes after equilibration of the QM/MM MD trajectories. (b) 1st–5th LSVs of the SVD of 
Δ𝑆PQRS8:;<56–8:;D625. (c) 1st–5th RSVs of the SVD. (d) Singular value of each SVD component. (e) 
Δ𝑆8398:;<56–8:;D625  (black) calculated using the RDFs of equilibrated ground and excited state 
QM/MM MD trajectories and the scaled 1st LSV (green) of the SVD of Δ𝑆PQRS8:;<56–8:;D625. 

We employ the scattering signal calculated from the RDFs of the ground state equilibrated 

trajectories and the excited state trajectories considering only time delays over 3 ps as a fitting 

component Δ𝑆8398:;<56–8:;D625. To assess the approach of using Δ𝑆8398:;<56–8:;D625 as a single solute–

solvent component at all time delays in the structural fitting, we performed an SVD analysis of 

Δ𝑆PQRS8:;<56–8:;D625 (Figure S4b–d). First of all, the 1st LSV has a similar shape as Δ𝑆8398:;<56–8:;D625 

a b c

d e
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(Figure S4e), therefore, Δ𝑆8398:;<56–8:;D625 can account for the changes in the signal associated with 

this SVD component. Furthermore, only incorporation of Δ𝑆8398:;<56–8:;D625 in the model leads to a 

significant improvement of the structural fitting, while any extra solute–solvent signal (i.e., one of 

the 2nd–5th LSVs shown in Figure S4b) is found to negligibly improve the quality of the fitting 

(see next section and Figure S6). These observations corroborate the validity of choosing 

Δ𝑆8398:;<56–8:;D625 as the only solute–solvent fitting component.  

2-2.  Sensitivity of XSS to structural degrees of freedom 

The scattering signals arising from different structural degrees of freedom should be 

sufficiently different to enable a robust structural determination. To confirm this prerequisite, we 

have calculated the difference scattering signals from a set of structures obtained by displacing the 

ligands of the S0 DFT-optimized geometry to mimic the flattening (∆𝜃) or breathing (∆𝑅) motions 

while keeping the other degrees of freedom fixed (Figure S5). The difference scattering patterns 

associated with ∆𝑅 and ∆𝜃 exhibit clear differences, and are both different from the scattering 

signal associated with the solvent response, corroborating the robustness of the structural fitting 

illustrated in the following section. 
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Figure S5. XSS sensitivity to ligand flattening, breathing and changes in the solvation 
structure. (a) The colored curves are the difference scattering signals calculated as the atoms of 
each phenanthroline ligand are moved by ∆𝑅(𝑡) along the vector from the central Cu atom to the 
center of mass of the ligand with the dihedral angle fixed to the value of the S0 optimized geometry. 
(b) The colored curves are the difference scattering signals calculated as the dihedral angle is 
decreased by ∆𝜃 with the distance between Cu and ligand atoms fixed to the values of the S0 
optimized geometry. (a–b) The calculated signals are multiplied by the MLCT excited population, 
0.202. The overlaid black solid and dotted curves correspond to the measured difference scattering 
signal at 18.8 ps and the fitted Δ𝑆8398:;<56–8:;D625component, respectively. 

2-3.  Structural fitting 

The structural fitting is performed by minimizing for each time delay the discrepancy 

between ∆𝑆9:B6;(𝑞, 𝑡), consisting of the sum of the three components described above (see also 

equation 2 in the main text), and the experimental data ∆𝑆(𝑞, 𝑡) using a maximum likelihood 

estimation with the 𝜒* estimator: 

𝜒* = X
>8'Y'X

∑ (∆,9*:'+(@,5)'∆,(@,5));

\;
>8
@              (S6) 

Here, 𝑁@ is the number of data points at each time delay t, 𝑝 is the number of free parameters, and 

a

b
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𝜎 is the standard deviation of the data. Prior to performing the structural fitting at each time delay, 

we investigate the contribution of the three components to the scattering signal at selected time 

delays as described in the following steps (i) and (ii).  

(i) Identifying the presence of the solute–solvent signal Δ𝑆8398:;<56–8:;D625 

In order to corroborate the importance of the solute–solvent contribution, we fit the 

difference scattering signal measured at the longest time delay (18.8 ps), when the structural 

evolution of the solute is completed, to two different models. One is composed of solute–solute, 

solute–solvent, and solvent–solvent terms (model_1), while the other excludes the solute–solvent 

term (model_2). Figure S6 clearly shows that the fitting quality is significantly improved when the 

model includes the solute–solvent term. This is further corroborated by the Akaike’s Information 

Criterion (AIC)20. The AIC score is given as follows: 

𝐴𝐼𝐶 = −2 ∙ ln(𝐿) + 2𝑝           (S7) 

Here, 𝐿 is the likelihood of the fitting with a parameter set. Using the converged parameter sets 

obtained by fitting the data with model_1 and model_2, we calculate the AIC difference (∆𝐴𝐼𝐶 =

𝐴𝐼𝐶9:B6;_* − 𝐴𝐼𝐶9:B6;_X) as 2.9×104. Since the model with the lower AIC score offers the better 

fit, the positive AIC difference indicates that model_1 is superior to model_2, demonstrating the 

necessity of the solute–solvent term to adequately reproduce the measured data. 
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Figure S6. Fitting of the difference scattering signal measured at 18.8 ps. (a) Fitting model 
includes solute–solute and solvent–solvent terms (model_2). (b) Fitting model includes solute–
solute, solute–solvent, and solvent–solvent terms (model_1). (top, a–b) Black circles and the red 
line are the difference scattering signal and the fitted curves, respectively. (bottom, a–b) Residual 
of the fitting and the scaled simulated solute–solvent signal (Δ𝑆8398:;<56–8:;D625 × 0.05) are shown as 
black and blue lines, respectively.  

(ii) Contributions from 2nd–6th LSVs of the SVD of Δ𝑆PQRS8:;<56–8:;D625 

The data measured at several time delays are fitted using a model assuming two different 

solute–solvent terms (model_3), as described below: 

∆𝑆9:B6;_^(𝑞) = 𝐴R_`7 ∙ PΔ𝑆8398:;<56–8:;<56(Δ𝜃, Δ𝑟) + 𝛼 ∙ Δ𝑆8398:;<56–8:;D625(𝑞) + 𝛽 ∙

Δ𝑆8396a51b'8:;<56–8:;D625(𝑞)S + ∆𝑇 ∙
EF∆,&'(

)*+,'-.(@)I

E7
                                             (S8) 

Here, Δ𝑆8398:;<56–8:;D625 corresponds to the black line in Figure S4e, i.e. the solute–solvent scattering 

signal calculated using equilibrium solute–solvent RDFs from the QM/MM MD simulations, while 

Δ𝑆8396a51b'8:;<56–8:;D625 is one of the 2nd–5th LSVs of the SVD of Δ𝑆PQRS8:;<56–8:;D625, obtained from 

the time-dependent RDFs. 𝛼 and 𝛽 are scaling factors, which are positively constrained. The fitting 

results (Figure S7a–d) clearly show that the magnitudes of the fitted 2nd–5th LSVs are negligibly 

small at 0.3 ps. Figure S7e shows the AIC difference (∆𝐴𝐼𝐶 = 𝐴𝐼𝐶9:B6;_^ − 𝐴𝐼𝐶9:B6;_X) as a 

a b
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function of time delays. Since the AIC differences are mostly positive through 2nd–5th LSVs, the 

extra solute–solvent component in model_3 is redundant, supporting the conclusion that the solute–

solvent contribution is well characterized by the sole Δ𝑆8398:;<56–8:;D625 component. 

 

Figure S7. Contributions from 2nd–5th LSVs of the SVD of 𝚫𝑺𝑩𝑶𝑴𝑫𝒔𝒐𝒍𝒖𝒕𝒆–𝒔𝒐𝒍𝒗𝒆𝒏𝒕. (a–d) Fitting of 
the difference scattering signal at 0.3 ps with model_3. The magnitudes of Δ𝑆8396a51b'8:;<56–8:;D625 
after the fit (blue solid lines) are smaller than Δ𝑆8398:;<56–8:;D625 (red solid lines). (e) Colored circles 
are the AIC differences (∆𝐴𝐼𝐶 = 𝐴𝐼𝐶9:B6;_^ − 𝐴𝐼𝐶9:B6;_X) as a function of time delays. Except a 
few points, most of the ∆𝐴𝐼𝐶 values are positive. 

a b

c d

e
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Steps (i) and (ii) are finally followed by the structural fitting at each time delay (model_1). 

The resulting fitted curves are shown in Figure 3 of the main text. Figure S8 shows the contributions 

of the three components of the model for the fitting at selected time delays and the contours of the 

likelihood distribution function enclosing 68% of the probability distribution, which show the 

correlation between the different parameters. The correlation between ∆𝑃𝐽𝑇(𝑡) and ∆𝑅(𝑡) is strong 

because both parameters change the Cu–N bond lengths. 
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Figure S8. Results of the structural fitting. (a) Contributions to the fitting of the three 
components of the model at selected time delays. (b) Contours of the likelihood distribution 
function enclosing 68% of the probability distribution, showing the correlation between the 
parameters at 18.8 ps. 

To test the use of a solute–solvent component calculated from the equilibrated parts of the 

excited state QM/MM MD trajectories (Δ𝑆8398:;<56–8:;D625) for fitting the data at short time delays, 

t = 0.12 ps t = 0.24 ps t = 0.36 ps

t = 0.60 ps t = 0.90 ps t = 18.8 ps

a

b Pearson correlation coefficient: 0.574 Pearson correlation coefficient: 0.858 Pearson correlation coefficient: 0.173

Pearson correlation coefficient: 0.446 Pearson correlation coefficient: 0.380 Pearson correlation coefficient: 0.114
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when the system is in nonequilibrium states, we conducted another fitting using the 1st LSV of the 

SVD analysis of Δ𝑆PQRS8:;<56–8:;D625 instead of Δ𝑆8398:;<56–8:;D625 as the solute–solvent component. The 

results of the fit are shown in Figure S9a.  

 

Figure S9. Fitting using the 1st LSV of the SVD analysis of 𝚫𝑺𝑩𝑶𝑴𝑫𝒔𝒐𝒍𝒖𝒕𝒆–𝒔𝒐𝒍𝒗𝒆𝒏𝒕 as the solute–
solvent component. (a) Colored lines are the experimental data (vertically offset for clarity), while 
the overlaid black lines correspond to the fitted curves. (b) Optimized structural parameters as a 
function of time delays. The black and red circles are extracted from the fittings using 
Δ𝑆8398:;<56–8:;D625  and the 1st LSV of the SVD analysis of Δ𝑆PQRS8:;<56–8:;D625  as the solute–solvent 
component, respectively. Dotted lines correspond to the values at 18.8 ps. 

Very little difference is observed in the evolution of the optimized structural parameters (Figure 

S9b), indicating that the structural fitting is largely insensitive to the small difference (especially at 

𝑞 > 1.5 Å-1) between the 1st LSV of the SVD analysis of Δ𝑆PQRS8:;<56–8:;D625 and Δ𝑆8398:;<56–8:;D625 

(Figure S4e). Moreover, the fitting quality using Δ𝑆8398:;<56–8:;D625 (Figure 3 in the main text) is 

a

b
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better at long time delays than when using the 1st LSV of the SVD analysis of Δ𝑆PQRS8:;<56–8:;D625 

(Figure S9a), which shows that Δ𝑆8398:;<56–8:;D625  can explain the experimental data more 

adequately. 

2-4.  Fitting summary 

 

Figure S10. Two-dimensional scattering signals. (a) Measured data. (b) Fitted curves. (c) 
Residuals. 

a

b

c
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Table S2 presents the Cartesian coordinates of the equilibrated MLCT state, corresponding 

to the excited state structure that best fits the data at 18.8 ps. 

Table S2. Cartesian coordinate of the MLCT state at 18.8 ps.  

Element X / Å Y / Å Z / Å 
Cu -2.71969 0.60191 -0.39621 
N -1.52237 1.12511 -0.75207 
N -1.52248 -1.09419 0.79401 
C -3.88075 2.28254 -1.66453 
C -3.88097 -2.24983 1.70852 
C -2.71969 0.60191 -0.39621 
C -2.71972 -0.56997 0.43936 
C -1.46266 2.18208 -1.55647 
C -1.46283 -2.15118 1.59839 
C -3.94808 1.15741 -0.81310 
C -3.94817 -1.12435 0.85755 
C -2.65275 2.79580 -2.01530 
C -2.65302 -2.76389 2.05830 
C -5.17871 0.55801 -0.39234 
C -5.17874 -0.52450 0.43724 
H -2.58501 -3.64588 2.69808 
H -4.80085 -2.65783 2.13610 
H -6.11690 -0.94569 0.80657 
H -6.11683 0.97924 -0.76169 
H -4.80076 2.69186 -2.09057 
H -2.58448 3.67776 -2.65508 
C -0.12855 2.71803 -1.95278 
H 0.25697 3.40571 -1.18385 
H 0.60769 1.91331 -2.08026 
H -0.18244 3.27772 -2.89656 
C -0.12887 -2.68808 1.99370 
H 0.25696 -3.37396 1.22338 
H 0.60743 -1.88378 2.12347 
H -0.18249 -3.24990 2.93623 
N 1.53851 1.04746 0.86996 
N 1.53645 -1.01871 -0.83140 
C 3.90476 2.14111 1.87485 
C 3.90038 -2.11538 -1.83844 
C 2.75198 0.56003 0.47165 
C 2.75089 -0.53256 -0.43452 
C 1.48245 2.04664 1.76468 
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C 1.47830 -2.01782 -1.72606 
C 3.97823 1.09997 0.93990 
C 3.97603 -1.07380 -0.90415 
C 2.65595 2.61661 2.27478 
C 2.65059 -2.58903 -2.23754 
C 5.20633 0.52218 0.46969 
C 5.20528 -0.49721 -0.43546 
H 6.14686 0.90757 0.87162 
H 6.14494 -0.88343 -0.83862 
H 4.81404 -2.49422 -2.30311 
H 2.56948 -3.38076 -2.98426 
H 2.57654 3.40831 3.02171 
H 4.81928 2.51813 2.33930 
C 0.12622 -2.48494 -2.16079 
H -0.40041 -2.98703 -1.33426 
H -0.49587 -1.62970 -2.46811 
H 0.19849 -3.19026 -2.99828 
C 0.13138 2.51531 2.20087 
H -0.39544 3.01816 1.37492 
H -0.49145 1.66083 2.50882 
H 0.20530 3.22046 3.03837 

 

Note S3: Kinetic time constants from the XSS analysis 

3-1. Summary of fitting time constants 

The time evolutions of Δ𝑟(𝑡) , Δ𝜃(𝑡) , 𝛼(𝑡) , and Δ𝑇(𝑡)  extracted from the structural 

analysis are fitted with phenomenological kinetic models by the least-squares method using the 

standard 𝜒*  estimator. The uncertainties are at 68% confidence level. The applied models are 

described by different combinations of a step function, a damped sine function, and exponential 

functions, which are convoluted by the Gaussian IRF obtained in Note S1. The fitting equations 

are the following: 
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∆𝑟(𝑡) = T𝐴856Y + 𝐴6aYX ∙ (1 − 𝑒
' 5'5!c'<=") + 𝐴:8d ∙ 𝑒

'5'5!c> ∙ sin(
2𝜋(𝑡 − 𝑡.)

𝜏:8d
)[

∙ 𝐻(𝑡 − 𝑡.)⨂𝐼𝑅𝐹(𝜎/+0 , 𝑡) 

∆𝜃(𝑡) = T𝐴856Y + 𝐴6aYX ∙ (1 − 𝑒
' 5'5!c'<=") + 𝐴:8d ∙ 𝑒

'5'5!c> ∙ sin(
2𝜋(𝑡 − 𝑡.)

𝜏:8d
)[

∙ 𝐻(𝑡 − 𝑡.)⨂𝐼𝑅𝐹(𝜎/+0 , 𝑡) 

𝛼(𝑡) = T𝐴6aYX ∙ (1 − 𝑒
' 5'5!c'<=") + 𝐴:8d ∙ 𝑒

'5'5!c> ∙ sin(
2𝜋(𝑡 − 𝑡.)

𝜏:8d
)[ ∙ 𝐻(𝑡 − 𝑡.)⨂𝐼𝑅𝐹(𝜎/+0 , 𝑡) 

∆𝑇(𝑡) = T𝐴6aYX ∙ (1 − 𝑒
' .?.!
@'<=") + 𝐴6aY* ∙ (1 − 𝑒

' .?.!
@'<=;)[ ∙ 𝐻(𝑡 − 𝑡.)⨂𝐼𝑅𝐹(𝜎/+0 , 𝑡)           (S9) 

The kinetic time constants obtained from the fitting are summarized in Table S3. 

Table S3. Kinetic time constants. The digits in parentheses are uncertainties. 

Parameter ∆𝑟(𝑡) / Å ∆𝜃(𝑡) / Degree 𝛼(𝑡) ∆𝑇(𝑡) / K 

𝐴856Y −1.36×10−2 (6.84×10−4) −8.82 (0.573) - - 

𝐴6aYX	 −1.80×10−2 (5.95×10−4) −6.78 (0.502) 0.425 (2.91×10−2) 1.22 (4.26×10−2) 

𝜏6aYX	/ fs	 582 (40.7) 554 (66.8) 1.40×103 (169) 6.11×103 (505) 

𝐴:8d3 	 −8.96×10−3 (1.27×10−3) −3.53 (1.42) 0.199 (6.23×10−2) - 

𝜏:8d 	/	fs	 286 (4.75) 401 (28.9) 319 (30.0) - 

𝜏S	/	fs	 350 (57.4) 203 (80.7) 220 (94.4) - 

𝐴6aY*	 - - - 0.601 (1.51×10−2) 

𝜏6aY*	/	fs	 - - - 125 (15.6) 

𝑡.	/ fs	 60.3 (3.49) 10.5 (6.42) 185 (16.9) 14.4 (9.25) 

𝜎/+0 	/	fs	 28.7 (fixed) 28.7 (fixed) 28.7 (fixed) 28.7 (fixed) 

For ∆𝑟(𝑡), the measured period of coherent oscillations (286 fs) agrees with the main 

period of oscillations observed in the evolution of the mean Cu–N distance obtained from the 
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excited state QM/MM MD simulations (~282 fs, see Figure S22 further below). This period is 

further close to the period of a breathing normal mode at the T1 (301 fs) and S1 (290 fs) optimized 

structures identified in vibrational analyses carried out using TD-DFT/CPCM calculations with 

PBE0 and variational excited state calculations with BLYP in vacuum, respectively (see also Figure 

S21 below). For	∆𝜃(𝑡), the measured period (401 fs) is significantly shorter than the period of a 

flattening mode (see Figure S21) obtained in the vibrational analyses (925 fs from TD-DFT/CPCM 

calculations at the T1 optimized geometry and 926 fs from variational density functional 

calculations in vacuum). This discrepancy indicates that an accurate description of the motion along 

the flattening coordinate needs to consider the effect of surrounding solvent beyond the conductor-

like polarizable continuum model. 

∆𝜃(𝑡) and 𝛼(𝑡) obtained from the structural fitting are plotted together and overlaid in 

Figure S11. Clearly, the phase of the oscillations in 𝛼(𝑡) has a delay compared to those in ∆𝜃(𝑡), 

indicating that the fast initial flattening triggers a delayed coherent solvent response.  

 

Figure S11. Overlaid plots of ∆𝜽(𝒕) and 𝜶(𝒕) as obtained from the structural fitting. 

3-2. Comparison with simulated flattening dynamics 
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Figure S12. Comparison between the change in the NNCuNN dihedral angle ∆θ(t) from the 
experiment and from the simulations. (Black dots) Results of the structural analysis of the XSS 
data together with the kinetic fitting curve (red line). (Blue line) Biexponential fit of ∆θ(t) 
obtained as an average over nonequilibrium excited state QM/MM MD trajectories convoluted 
with the experimental IRF. The instantaneous average θ(t) is reported together with the 
parameters of the biexponential fit in ref. S3. 

 

Note S4: Radial distribution functions from the QM/MM MD simulations 

Figure S13 shows the equilibrium solute–solvent RDFs extracted from the QM/MM MD 

simulations3 and used in the calculation of Δ𝑆8398:;<56–8:;D625. The small peak at ~5 (~5.5) Å in the 

ground state Cu–N (Cu–C) RDFs indicates a low degree of ordering in the first solvation shell. In 

the MLCT state, this peak disappears while the magnitude at around < 4 Å increases. The changes 

in RDFs reflect a higher probability to find acetonitrile molecules at around < 4 Å oriented 

preferentially with the N atom towards the Cu atom after photoexcitation, which is consistent with 

the nature of the MLCT states. Indeed, the flattening distortion creates an open space that enables 

acetonitrile molecules to come closer to the Cu atom, which is confirmed by the time-dependent 

differences in the RDFs as shown in Figure S14. Accordingly, the scaling factor 𝛼(𝑡) is diagnostic 

of how close acetonitrile molecules get to the Cu atom. 
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Figure S13. Solute–solvent radial distribution functions from the QM/MM MD simulations. 

Solute Cu – Solvent N Solute Cu – Solvent C Solute Cu – Solvent methyl group Solute N – Solvent N

Solute N – Solvent C Solute N – Solvent methyl group Solute C – Solvent N Solute C – Solvent C

Solute C – Solvent methyl group Solute H – Solvent N Solute H – Solvent C Solute H – Solvent methyl group
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Figure S14. Time-dependent differences in radial distribution functions from the QM/MM 
MD simulations. 

 

 

Solute Cu–Solvent N Solute Cu–Solvent C Solute Cu–Solvent methyl group

Solute N–Solvent N Solute N–Solvent C Solute N–Solvent methyl group

Solute C–Solvent N Solute C–Solvent C Solute C–Solvent methyl group

Solute H–Solvent N Solute H–Solvent C Solute H–Solvent methyl group
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Figure S15. Convergence of simulated excited state solute–solvent radial distribution 
functions with respect to number of excited state QM/MM MD trajectories. (Left) Mean 
distance between the Cu atom and the N atom of acetonitrile molecules calculated from the Cu–N 
RDF for r(Cu–N) < 5.65 Å (includes the first peak in the RDF) at different times as a function of 
the number of excited state trajectories used to obtain the RDF. (Right) Standard deviation of the 
Cu–N distance calculated using the Cu–N RDF for r(Cu–N) < 5.65 Å as a function of the number 
of excited state trajectories. 

 

Note S5: Energetics from solvent heating 

The time evolution of ∆𝑇(𝑡) obtained from the fitting of the time-resolved XSS data is not 

discussed in the main text but is presented in Figure S16.  
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Figure S16. Temporal evolution of ∆𝑻(𝒕). (top) Black circles are the values quantified from the 
structural analysis. The black dotted line corresponds to ∆𝑇(𝑡) at 18.8 ps. The red line is the fitted 
curve. (bottom) Residuals of the kinetic fitting. 

The temperature increase of the bulk solvent can be described by the sum of two exponential 

functions (see Note S3). The slow exponential time constant, 𝜏6aYX, of 6.11 ps agrees well with the 

time constant assigned to vibrational cooling in a previous study using time-resolved X-ray 

absorption spectroscopy17. The temperature increase saturates at ~1.8 K. Given that the MLCT 

excited fraction (20.2%) decays into the relaxed T1 state within < 20 ps, the excess energy released 

to the bulk solvent through vibrational cooling within 20 ps is estimated from the energy difference 

between the pump wavelength (550 nm) and the energy of the relaxed T1 state with respect to the 

ground state (1.548 eV; the emission wavelength21,22 of 700 nm minus the S1–T1 energy separation23 

of 1800 cm−1), giving 2.286×10−20 J per liquid unit cell. Considering that the heat capacity19 of 

acetonitrile is 63.53 J·mol−1·K−1, the expected temperature increase is calculated to be 1.13 K, 

which is 0.67 K lower than the measured value. This discrepancy implies the presence of an extra 

source of solvent heating, which is discussed below.  

Firstly, we exclude the possibility of solvent heating via multiphoton absorption directly in 

the solvent, since a previous time-resolved XSS study24 reported no temperature increase in neat 
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acetonitrile even when using a higher laser peak power than in the present study. Secondly, we 

consider the two-photon absorption by [Cu(dmphen)2]+. In a power titration scan (Figure. S17), 

∆𝑇(𝑡)  increases linearly up to 15.9 µJ, the laser power that was selected in most of the 

measurements. Simultaneous two-photon absorption gives a nonlinear behavior of ∆𝑇(𝑡)  as a 

function of the laser power, and can, therefore, be excluded.  Instead, the observed linear behavior 

indicates the possibility of sequential two-photon absorption, though a stepwise process, mediated 

by the excited state absorption (ESA). In this case, the second photon must be absorbed within the 

time duration of the pump pulse (< 50 fs) and the absorption cross section of the ESA should be 

non-negligible at the photoexcitation wavelength, i.e., 550 nm. Indeed, according to the 

literature14,25, transient absorption spectra of [Cu(dmphen)2]+ are characterized by a broad ESA 

band with a central wavelength of ~560 nm, which corresponds to the absorption of a 

phenanthroline radical anion (dmp·−), yielding higher-lying MLCT (Sn or Tn) states. Excitation of 

the ligand radical anion induced by a second photon preserves the Cu2+ (d9) electronic configuration 

and, thus, gives a Cu Ka XES difference signal indistinguishable from that of the S1 and T1 MLCT 

states. The higher-lying MLCT states generated via ESA are expected to follow dynamics similar 

to the known relaxation after photoexcitation to the S2 and S3 states11, i.e., rapid nonradiative decay 

(internal conversion and intersystem crossing) to the S1 and T1 states, which is completed within 

~50 fs. Hence, we conclude that the ESA process does not significantly affect the subsequent 

structural dynamics observed in this study. The difference between the calculated and measured 

∆𝑇(𝑡) of the bulk solvent is rationalized by a ~3.7% fraction of molecules excited through ESA. 

This fraction represents an upper limit of the ESA branching, since other possible extra heat 

sources, e.g., impulsive stimulated Raman scattering, are not taken into account. 
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Figure S17. Optical power titration scan. (a) Colored lines are the difference scattering signals 
measured at 14.2 ps using different optical pulse energies. Black lines are the results of a structural 
analysis performed by constraining the Δ𝜃, Δ𝑟, and 𝛼 parameters to the values obtained at 18.8 ps. 
(b) Black circles show ∆𝑇 quantified from the fitting. The red solid line corresponds to a linear fit 
in the range up to 8.6 µJ, while the red dashed line is an extrapolation to higher optical energies. 
The black arrow indicates the data point at 15.9 µJ. 

The ESA process can also generate the oxidized species [Cu(dmphen)2]2+ and solvated 

electrons, similarly to what observed in [Fe(bpy)3]2+ and [Ru(bpy)3]2+ (bpy = 2,2’-bipyridine) 

aqueous solutions26,27. However, the Cu Ka XES difference spectra are sensitive to the generation 

of oxidized species, as supported by measurements of the time-resolved Cu Ka XES difference 

spectra at an optical pulse energy of 26.9 µJ (Figure S18). Indeed, the first RSV of an SVD of these 

spectra shows a prompt rise followed by a decay within ~2 ps, in contrast to the lack of a decay in 

the first RSV for the measurements with 15.9 µJ photoexcitation (Figure 2 of the main text). The 

features observed with 26.9 µJ excitation are interpreted as a fingerprint of the generation and 

ultrafast geminate recombination of oxidized species [Cu(dmphen)2]2+ and solvated electrons. 

Since these features are not observed in the XES spectra at the selected optical pulse energy of 15.9 

µJ, contamination due to generation of oxidized species and solvated electrons can be excluded for 

the measurements presented and discussed in the main text. 

a

b
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Figure S18. Time-resolved Cu Ka XES difference spectra measured at 26.9 µJ. (a) Transient 
Cu Ka XES spectra and (b)–(d) results of an SVD analysis. (b) 1st LSV (black line) and static 
spectrum (blue line). (c) Singular values of the 1st–6th components. (d) Black circles are the 1st 
RSV. The dotted line corresponds to the amplitude of the 1st RSV at 18.8 ps. 

 

Note S6: SVD analysis of isotropic and anisotropic scattering data 

SVD provides information on how many components are required to describe the measured 

data, albeit the extracted singular vectors do not necessarily correspond to physically meaningful 

signals. Figure S19 shows the isotropic (∆𝑆(𝑞, 𝑡)) and anisotropic (∆𝑆*(𝑞, 𝑡)) X-ray scattering data 

and the results of SVD analyses. For both isotropic and anisotropic signals, there are four 

components exhibiting a clear temporal dependence, as deduced from the corresponding RSVs. 

This is evidence that the quantitative structural analysis using four time-dependent parameters does 

not overfit the measured data. In the anisotropic X-ray scattering, the first and second components 

dominate the signal. These components are associated with motions of acetonitrile molecules (the 

dynamics of libration and orientational diffusion), according to the time-resolved XSS study24 on 

the optical Kerr effect. 

a

b

c

d
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Figure S19. Isotropic and anisotropic scattering data and corresponding SVD analyses. (a–d) 
Isotropic signal and the SVD analysis. (e–f) Anisotropic signal and the SVD analysis. (a, e) 
Difference scattering signal as a function of time delay. (b, f) Singular values of the 1st–9th SVD 
components. (c, g) 1st–6th LSVs. (d, h) 1st–6th RSVs.  

Figure S20 shows the normalized 1st RSVs of the SVD analyses of the time-resolved XSS 

and XES data. The onset of the initial rise in the 1st RSVs of isotropic ∆𝑆(𝑞, 𝑡) is slightly delayed 

(~30 fs) with respect to the 1st RSVs of anisotropic ∆𝑆*(𝑞, 𝑡) and Cu Ka XES difference spectra. 

This means that the MLCT transition and the optical Kerr effect are instantaneously fast compared 

to the experimental IRF, while the solute structural changes start after the MLCT transition. 

 

Figure S20. Normalized 1st RSVs of the SVD analyses of ∆𝑺(𝒒, 𝒕) (blue), ∆𝑺𝟐(𝒒, 𝒕) (green), 
and the time-resolved Cu Ka XES difference spectra (red).  

Isotropic scattering ∆S(q,t) Anisotropic scattering ∆S2(q,t) 
a b

c d

e f

g h

2
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Note S7: Vibrational analysis of excited state simulations 

 

Figure S21. Normal modes from vibrational analysis in the S1 excited state in vacuum. 
Displacement vectors of the flattening and breathing modes obtained from a vibrational analysis 
at the S1 optimized geometry using time-independent variational density functional calculations 
with BLYP (DSCF approach employed in the QM/MM MD simulations3). The vibrational 
analysis is performed in the harmonic approximation using central finite difference calculation of 
the Hessian matrix as implemented in the Atomic Simulation Environment with analytical atomic 
forces converged to 10-4 eV/Å. The periods and frequencies of the modes are also indicated.  

 

 

Figure S22. Evolution of the mean Cu–N distance from the QM/MM MD simulations in the 
S1 excited state. (Left) The instantaneous change in mean Cu-N distance computed as average 
over the nonequilibrium excited state QM/MM MD trajectories. (Right) Fourier transform of the 
simulated instantaneous change in the mean Cu–N distance with a main peak at ~282 fs. 
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