# Biosynthesis of pleuromutilin congeners using an *Aspergillus oryzae* expression platform

Fabrizio Alberti<sup>∥1,2</sup>, Khairunisa Khairudin<sup>∥1</sup>, Jonathan A. Davies<sup>3</sup>, Suphattra Sangmalee<sup>1</sup>, Christine L. Willis<sup>3</sup>, Gary D. Foster<sup>1</sup> & Andy M. Bailey<sup>1</sup>

<sup>1</sup>School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.

<sup>2</sup>Present address: School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.

<sup>3</sup>School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK. <sup>4</sup>Authors contributed equally

Authors for correspondence: F.Alberti@warwick.ac.uk; Andy.Bailey@bristol.ac.uk

## **Supplementary Information**

| 1.   | Supplementary Data                                                                    | 3  |
|------|---------------------------------------------------------------------------------------|----|
| Supp | blementary Figure 1. Mass spectra in positive (a) and negative (b) ion mode of 7      | 3  |
| NMI  | R data assignment for 7 in CDCl <sub>3</sub>                                          | 4  |
| Supp | blementary Figure 2. <sup>1</sup> H-NMR spectrum of 7 in CDCl <sub>3</sub> (500 MHz)  | 5  |
| Supp | plementary Figure 3. <sup>13</sup> C-NMR spectrum of 7 in CDCl <sub>3</sub> (125 MHz) | 5  |
| Supp | plementary Figure 4. COSY spectrum of 7 in CDCl <sub>3</sub> (500 MHz)                | 6  |
| Supp | plementary Figure 5. HSQC spectrum of 7 in CDCl <sub>3</sub> (500 MHz)                | 6  |
| Supp | plementary Figure 6. HMBC spectrum of 7 in CDCl <sub>3</sub> (500 MHz)                | 7  |
| Supp | plementary Figure 7. Mass spectra in positive (a) and negative (b) ion mode of 8      | 8  |
| NMI  | R data assignment of 8 in CDCl <sub>3</sub>                                           | 9  |
| Supp | plementary Figure 8. <sup>1</sup> H-NMR spectrum of 8 in CDCl <sub>3</sub> (500 MHz)  | 10 |
| Supp | plementary Figure 9. <sup>13</sup> C-NMR spectrum of 8 in CDCl <sub>3</sub> (125 MHz) | 10 |
| Supp | plementary Figure 10. COSY spectrum of 8 in CDCl <sub>3</sub> (500 MHz)               | 11 |
| Supp | plementary Figure 11. HSQC spectrum of 8 in CDCl <sub>3</sub> (500 MHz)               | 11 |
| Supp | plementary Figure 12. HMBC spectrum of 8 in CDCl <sub>3</sub> (500 MHz)               | 12 |
| Supp | blementary Figure 13. Mass spectra in positive (a) and negative (b) ion mode of 9     | 13 |

| NMR data assignment of 9 in CDCl <sub>3</sub>                                                                                                                            | 14         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Supplementary Figure 14. <sup>1</sup> H-NMR spectrum of 9 in CDCl <sub>3</sub> (500 MHz)                                                                                 | 15         |
| Supplementary Figure 15. <sup>13</sup> C-NMR spectrum of 9 in CDCl <sub>3</sub> (125 MHz)                                                                                | 15         |
| Supplementary Figure 16. COSY spectrum of 9 in CDCl <sub>3</sub> (500 MHz)                                                                                               | 16         |
| Supplementary Figure 17. HSQC spectrum of 9 in CDCl <sub>3</sub> (500 MHz)                                                                                               | 16         |
| Supplementary Figure 18. HMBC spectrum of 9 in CDCl <sub>3</sub> (500 MHz)                                                                                               | 17         |
| Supplementary Figure 19. Mass spectra in positive (a) and negative (b) ion mode of 10.                                                                                   | 18         |
| NMR data assignment of 10 in CDCl <sub>3</sub>                                                                                                                           | 19         |
| Supplementary Figure 20. <sup>1</sup> H-NMR spectrum of 10 in CDCl <sub>3</sub> (500 MHz)                                                                                | 20         |
| Supplementary Figure 21. <sup>13</sup> C-NMR spectrum of 10 in CDCl <sub>3</sub> (125 MHz)                                                                               | 20         |
| Supplementary Figure 22. COSY spectrum of 10 in CDCl <sub>3</sub> (500 MHz)                                                                                              | 21         |
| Supplementary Figure 23. HSQC spectrum of 10 in CDCl <sub>3</sub> (500 MHz)                                                                                              | 21         |
| Supplementary Figure 24. HMBC spectrum of 10 in CDCl <sub>3</sub> (500 MHz)                                                                                              | 22         |
| Supplementary Figure 25. ELSD chromatograms showing conversion of 8 to 9 in A. ory AP3.                                                                                  | zae<br>23  |
| Supplementary Figure 26. ELSD chromatograms showing conversion of 4 to 10 in A. or AP3.                                                                                  | yzae<br>23 |
| Supplementary Figure 27. <sup>1</sup> H-NMR spectrum of 5 in CDCl <sub>3</sub> (400 MHz)                                                                                 | 24         |
| Supplementary Figure 28. <sup>13</sup> C-NMR spectrum of 5 in CDCl <sub>3</sub> (100 MHz)                                                                                | 24         |
| Supplementary Figure 29. <sup>1</sup> H-NMR spectrum of 12 in CDCl <sub>3</sub> (400 MHz)                                                                                | 25         |
| Supplementary Figure 30. <sup>13</sup> C-NMR spectrum of 12 in CDCl <sub>3</sub> (100 MHz)                                                                               | 25         |
| Supplementary Figure 31. <sup>1</sup> H-NMR spectrum of 14 in CDCl <sub>3</sub> (400 MHz)                                                                                | 26         |
| Supplementary Figure 32. <sup>13</sup> C-NMR spectrum of 14 in CDCl <sub>3</sub> (100 MHz)                                                                               | 26         |
| Supplementary Figure 33. <sup>1</sup> H-NMR spectrum of 15 in CDCl <sub>3</sub> (400 MHz)                                                                                | 27         |
| Supplementary Figure 34. <sup>13</sup> C-NMR spectrum of 15 in CDCl <sub>3</sub> (100 MHz)                                                                               | 27         |
| 2. Supplementary Methods                                                                                                                                                 | 28         |
| Synthesis of mutilin 5                                                                                                                                                   | 28         |
| Synthesis of TMS-mutilin 12                                                                                                                                              | 29         |
| Synthesis of alkene 14                                                                                                                                                   | 30         |
| Supplementary Table 1. Summary of expression vectors used in this study to express ger from C. passeckerianus in A. oryzae.                                              | 1es<br>31  |
| Supplementary Table 2. List of primers used in this study.                                                                                                               | 32         |
| Supplementary Table 3. List of A. oryzae strains generated in this study and relative expression vectors used to introduce the relevant pleuromutilin biosynthetic genes | 33         |
| Supplementary Figure 35. Plasmid maps of the expression vectors used in this work                                                                                        | 34         |
| References                                                                                                                                                               | 35         |

### 1. Supplementary Data



Supplementary Figure 1. Mass spectra in positive (a) and negative (b) ion mode of 7.

NMR data assignment for 7 in CDCl<sub>3</sub>



 $\delta_{H}$  (500 MHz, CDCl<sub>3</sub>) 5.82 (1H, dd, *J* 17.8, 11.1, 19-H), 5.21 (1H, dd, *J* 17.8, 1.3, 20-*H*H), 5.12 (1H, dd, *J* 11.1, 1.3, 20-H*H*), 4.54 (1H, t, *J* 5.8, 3-H), 4.20 (1H, d, *J* 8.0, 14-H), 2.25 (1H, ddp, *J* 11.4, 7.1, 3.6, 6-H), 1.97 (1H, m, 8-*H*H), 1.90 (1H, m, 13-*H*H), 1.80 (1H, p, *J* 7.0, 10-H), 1.72 (1H, d, *J* 4.4, 2-*H*H), 1.58 (1H, m, 4-H), 1.62-1.57 (2H, m, 2-H*H*, 8-H*H*), 1.54-1.47 (3H, m, 1-*H*H, 7-*H*H, 13-H*H*), 1.40-1.33 (3H, m, 1-H*H*, 7-H*H*, 11-*H*H), 1.16 (1H, s, 11-H*H*), 1.14 (3H, s, 15-H<sub>3</sub>), 0.96 (3H, d, *J* 7.4, 16-H<sub>3</sub>), 0.94 (3H, s, 18-H<sub>3</sub>), 0.84 (3H, d, *J* 6.8, 17-H<sub>3</sub>).  $\delta_{C}$  (125 MHz, CDCl<sub>3</sub>) 147.1 (C-19), 113.1 (C-20), 78.1 (C-3), 69.0 (C-14), 52.0 (C-4), 46.5 (C-13), 46.1 (C-9), 44.2 (C-11), 42.1 (C-5), 40.6 (C-12), 37.0 (C-6), 34.2 (C-8), 33.1 (C-18), 32.6 (C-2), 32.0 (C-1), 31.3 (C-10), 28.3 (C-7), 20.9 (C-17), 18.9 (C-16), 16.5 (C-15). HRMS (ESI) calc. for C<sub>20</sub>H<sub>34</sub>O<sub>2</sub>Na<sup>+</sup> 329.2451. Found 329.2455.



Supplementary Figure 2. <sup>1</sup>H-NMR spectrum of 7 in CDCl<sub>3</sub> (500 MHz).



Supplementary Figure 3. <sup>13</sup>C-NMR spectrum of 7 in CDCl<sub>3</sub> (125 MHz).



Supplementary Figure 4. COSY spectrum of 7 in CDCl<sub>3</sub> (500 MHz).



Supplementary Figure 5. HSQC spectrum of 7 in CDCl<sub>3</sub> (500 MHz).



Supplementary Figure 6. HMBC spectrum of 7 in CDCl<sub>3</sub> (500 MHz).



Supplementary Figure 7. Mass spectra in positive (a) and negative (b) ion mode of 8.

NMR data assignment of 8 in CDCl<sub>3</sub>



 $δ_{\rm H}$  (500 MHz, CDCl<sub>3</sub>) 5.84 (1H, dd, *J* 17.8, 11.0, 19-H), 5.25 (1H, d, *J* 17.8, 20-*H*H), 5.15 (1H, d, *J* 11.0, 20-H*H*), 4.25 (1H, d, *J* 7.2, 14-H), 2.20 (2H, m, 2-H<sub>2</sub>), 2.10 (1H, s, 4-H), 1.97 (1H, m, 10-H), 1.86 (1H, dd, *J* 15.4, 7.3, 13-*H*H), 1.67 (1H, m, 6-H), 1.64 (1H, m, 8-*H*H), 1.61-1.47 (4H, m, 1-*H*H, 7-*H*H, 11-*H*H, 13-H*H*), 1.40 (1H, m, 1-H*H*), 1.38 (1H, m, 7-H*H*), 1.37 (3H, s, 15-H<sub>3</sub>), 1.29 (1H, m, 11-H*H*), 1.12 (1H, m, 8-H*H*), 0.96 (6H, m, 16-H<sub>3</sub>, 18-H<sub>3</sub>), 0.90 (3H, d, *J* 6.9, 17-H<sub>3</sub>).  $δ_{\rm C}$  (125 MHz, CDCl<sub>3</sub>) 218.7 (C-3),146.1 (C-19), 113.4 (C-20), 67.6 (C-14), 59.5 (C-4), 46.5 (C-13), 45.5 (C-12), 43.4 (C-11), 42.2 (C-5), 39.9 (C-9), 37.1 (C-6), 34.5 (C-2), 32.7 (C-18), 31.5 (C-10), 30.1 (C-8), 27.2 (C-7), 25.1 (C-1), 19.7 (C-17), 18.2 (C-16), 13.5 (C-15). HRMS (ESI) calc. for C<sub>20</sub>H<sub>32</sub>O<sub>2</sub>Na<sup>+</sup> 327.2294510. Found 327.228310.



Supplementary Figure 8. <sup>1</sup>H-NMR spectrum of 8 in CDCl<sub>3</sub> (500 MHz).



Supplementary Figure 9. <sup>13</sup>C-NMR spectrum of 8 in CDCl<sub>3</sub> (125 MHz).



Supplementary Figure 10. COSY spectrum of 8 in CDCl<sub>3</sub> (500 MHz).



Supplementary Figure 11. HSQC spectrum of 8 in CDCl<sub>3</sub> (500 MHz).



Supplementary Figure 12. HMBC spectrum of 8 in CDCl<sub>3</sub> (500 MHz).



Mass-to-charge ratio (m/z)

Supplementary Figure 13. Mass spectra in positive (a) and negative (b) ion mode of 9.

NMR data assignment of 9 in CDCl<sub>3</sub>



 $δ_{\rm H}$  (500 MHz, CDCl<sub>3</sub>) 6.21 (1H, dd, *J* 11.0, 17.6, 19-H), 5.57 (1H, d, *J* 8.0, 14-H), 5.17 (1H, d, *J* 11.0, 20-*H*H), 5.08 (1H, d, *J* 17.6, 20-H*H*), 2.29-2.16 (4H, m, 2-H<sub>2</sub>, 4-H, 10-H), 2.03-1.96 (4H, m, 13-*H*H, 22-H<sub>3</sub>), 1.71-1.54 (5H, m, 1-*H*H, 6-H, 7-*H*H, 8-*H*H, 11-*H*H), 1.48 (3H, s, 15-H<sub>3</sub>), 1.41 (1H, m, 1-H*H*), 1.38-1.31 (2H, m, 7-H*H*, 11-H*H*), 1.27 (1H, m, 13-H*H*), 1.19-1.08 (1H, m, 8-H*H*), 1.00 (3H, s, 18-H<sub>3</sub>), 0.93 (3H, d, *J* 6.7, 17-H<sub>3</sub>), 0.74 (3H, d, *J* 5.9, 16-H<sub>3</sub>).  $δ_{\rm C}$  (125 MHz, CDCl<sub>3</sub>) 218.6 (C-3), 169.7 (C-21), 146.1 (C-19), 112.6 (C-20), 69.2 (C-14), 59.0 (C-4), 47.0 (C-13), 45.7 (C-9), 42.9 (C-11), 41.9 (C-12), 38.9 (C-5), 37.1 (C-6), 34.7 (C-2), 32.2 (C-18), 31.1 (C-10), 30.1 (C-8), 27.0 (C-7), 25.1 (C-1), 22.1 (C-22), 19.6 (C-16), 15.9 (C-17), 14.5 (C-15). HRMS (ESI) calc. for C<sub>22</sub>H<sub>35</sub>O<sub>3</sub><sup>+</sup>: 347.2586. Found 347.2581.



Supplementary Figure 14. <sup>1</sup>H-NMR spectrum of 9 in CDCl<sub>3</sub> (500 MHz).



Supplementary Figure 15. <sup>13</sup>C-NMR spectrum of 9 in CDCl<sub>3</sub> (125 MHz).



Supplementary Figure 16. COSY spectrum of 9 in CDCl<sub>3</sub> (500 MHz).



Supplementary Figure 17. HSQC spectrum of 9 in CDCl<sub>3</sub> (500 MHz).



Supplementary Figure 18. HMBC spectrum of 9 in CDCl<sub>3</sub> (500 MHz).



Supplementary Figure 19. Mass spectra in positive (a) and negative (b) ion mode of 10.

NMR data assignment of 10 in CDCl<sub>3</sub>



 $δ_{\rm H}$  (500 MHz, CDCl<sub>3</sub>) 6.57 (1H, dd, *J* 11.0, 17.4, 19-H), 5.57 (1H, d, *J* 9.4, 14-H), 5.34 (1H, dd, *J* 1.7, 11.0, 20-*H*H), 5.18 (1H, dd, *J* 1.7, 17.4, 20-*H*H), 4.56 (1H, t, *J* 5.35, 3-H), 3.18 (1H, s, 11-H), 2.27-2.15 (2H, m, 6-H, 10-H), 2.10-2.03 (1H, m, 13-*H*H), 1.98 (3H, s, 22-H<sub>3</sub>), 1.96-1.81 (2H, m, 2-*H*H, 8-*H*H), 1.76-1.70 (1H, m, 2-H*H*), 1.69-1.61 (2H, m, 8-H*H*, 1-*H*H), 1.54-1.34 (4H, m, 4-H, 7-*H*H, 1-H*H*, 7-H*H*), 1.26 (1H, s, 13-H*H*), 1.23 (3H, s, 16-H<sub>3</sub>), 1.16 (3H, s 18-H<sub>3</sub>), 0.81 (3H, d, *J* 7.1, 17-H<sub>3</sub>), 0.73 (3H, d, *J* 7.2,15-H<sub>3</sub>).  $δ_{\rm C}$  (125 MHz, CDCl<sub>3</sub>) 170.0 (C-21), 139.7 (C-19), 116.5 (C-20), 77.3 (C-3), 74.9 (C-11), 69.8 (C-14), 51.0 (C-4), 46.0 (C-9), 45.4 (C-13), 44.9 (C-12), 41.1 (C-5), 36.6 (C-6), 35.6 (C-10), 34.3 (C-8), 32.7 (C-2), 31.8 (C-1), 27.7 (C-7), 26.1 (C-18), 21.9 (C-22), 17.6 (C-16), 16.9 (C-15), 12.2 (C-17). HRMS (ESI) calc. for C<sub>22</sub>H<sub>37</sub>O<sub>4</sub><sup>+</sup> 365.2692. Found 365.2684.



Supplementary Figure 20. <sup>1</sup>H-NMR spectrum of 10 in CDCl<sub>3</sub> (500 MHz).



Supplementary Figure 21. <sup>13</sup>C-NMR spectrum of 10 in CDCl<sub>3</sub> (125 MHz).



Supplementary Figure 22. COSY spectrum of 10 in CDCl<sub>3</sub> (500 MHz).



Supplementary Figure 23. HSQC spectrum of 10 in CDCl<sub>3</sub> (500 MHz).



Supplementary Figure 24. HMBC spectrum of 10 in CDCl<sub>3</sub> (500 MHz).



**Supplementary Figure 25.** ELSD chromatograms showing conversion of **8** to **9** in *A. oryzae* AP3. A) Feeding of *A. oryzae* AP3 with **8** gave successful production of acetylated **9**, but no 22-OH product was observed. Compounds with (\*) were not related to pleuromutilin based on their m/z values; B) Purified metabolite **9**; C) *A. oryzae* NSAR1.



**Supplementary Figure 26.** ELSD chromatograms showing conversion of **4** to **10** in *A. oryzae* AP3. A) Feeding of *A. oryzae* AP3 with **4** gave successful production of acetylated **10**, but no 22-OH product was observed. B) Purified metabolite **10**; C) *A. oryzae* NSAR1.



Supplementary Figure 27. <sup>1</sup>H-NMR spectrum of 5 in CDCl<sub>3</sub> (400 MHz).



Supplementary Figure 28. <sup>13</sup>C-NMR spectrum of 5 in CDCl<sub>3</sub> (100 MHz).



Supplementary Figure 29. <sup>1</sup>H-NMR spectrum of 12 in CDCl<sub>3</sub> (400 MHz).



Supplementary Figure 30. <sup>13</sup>C-NMR spectrum of 12 in CDCl<sub>3</sub> (100 MHz).



Supplementary Figure 31. <sup>1</sup>H-NMR spectrum of 14 in CDCl<sub>3</sub> (400 MHz).



Supplementary Figure 32. <sup>13</sup>C-NMR spectrum of 14 in CDCl<sub>3</sub> (100 MHz).



Supplementary Figure 33. <sup>1</sup>H-NMR spectrum of 15 in CDCl<sub>3</sub> (400 MHz).



Supplementary Figure 34. <sup>13</sup>C-NMR spectrum of 15 in CDCl<sub>3</sub> (100 MHz). 27

#### 2. Supplementary Methods

#### Synthesis of mutilin 5



Potassium hydroxide (7.50 g, 134 mmol) was added to a solution of tiamulin hydrogen fumarate (3.45 g, 5.65 mmol) in methanol (100 mL). The reaction was heated to reflux (65 °C) for 18 hours, before cooling to room temperature and pouring into water (50 mL). The resulting solution was extracted with dichloromethane ( $3 \times 50$  mL) and the combined organic layers were washed with a saturated aqueous solution of NaHCO<sub>3</sub> (50 mL), dried over MgSO<sub>4</sub>, filtered, and concentrated *in vacuo*. The crude material was purified by column chromatography (20% EtOAc in petrol) to give mutilin **5** (1.22 g, 68%) as a white solid.

 $δ_{\rm H}$  (400 MHz, CDCl<sub>3</sub>) 6.15 (1H, ddd, *J* 18.0, 11.0, 0.5, 19-H), 5.36 (1H, dd, *J* 18.0, 1.5, 20-*H*H), 5.29 (1H, dd, *J* 11.0, 1.5, 20-H*H*), 4.35 (1H, dd, *J* 8.0, 6.0, 14-H), 3.41 (1H, dd, *J* 7.5, 5.5, 11-H), 2.29-2.10 (3H, m, 2-H<sub>2</sub>, 10-H), 2.05 (1H, d, *J* 3.0, 4-H), 1.91 (1H, dd, *J* 16.0, 8.0, 13-*H*H), 1.74 (1H, dq, *J* 14.5, 3.0, 8-*H*H), 1.67 (1H, m, 6-H), 1.63-1.42 (5H, m, 1-H<sub>2</sub>, 7-*H*H, 13-H*H*, O*H*), 1.39 (1H, m, 7-H*H*), 1.36 (3H, s, 15-H<sub>3</sub>), 1.26 (1H, d, *J* 5.5, O*H*), 1.12 (1H, m, 8-H*H*), 1.15 (3H, s, 18-H<sub>3</sub>), 0.96 (3H, d, *J* 7.0, 16-H<sub>3</sub>), 0.92 (3H, d, *J* 7.0, 17-H<sub>3</sub>).  $δ_{\rm C}$  (101 MHz, CDCl<sub>3</sub>) 217.7 (C-3), 139.5 (C-19), 116.0 (C-20), 75.3 (C-11), 66.9 (C-14), 59.2 (C-4), 45.5 (C-9), 45.4 (C-12), 45.2 (C-13), 42.5 (C-5),



37.0 (C-6), 36.6 (C-10), 34.6 (C-2), 30.5 (C-8), 28.7 (C-18), 27.3 (C-7), 25.2 (C-1), 18.3 (C-16), 13.6 (C-15), 11.4 (C-17). HRMS (ESI) calc. for  $C_{20}H_{32}O_3Na$  [M+Na]<sup>+</sup> 343.2244. Found 343.2245. M.p. 190-191 °C (from EtOH) [Lit. 192 °C].<sup>153</sup>  $[\alpha]_D^{21} = +31.0$  (*c* 1.00, CHCl<sub>3</sub>) [Lit. +69 (*c* 0.07, CHCl<sub>3</sub>)].<sup>242</sup> IR ( $\nu_{max}$ /cm<sup>-1</sup>) (neat): 3471 (alcohol O–H), 2929 (alkane C–H), 1727 (ketone C=O).

Spectroscopic data in accordance with the literature data.<sup>1</sup>

X-ray crystal structure obtained following recrystallisation from dichloromethane. Space Group: P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub> (orthorhombic).

#### Synthesis of TMS-mutilin 12



Mutilin **5** (500 mg, 1.56 mmol) and Trimethylsilyl chloride (0.99 mL, 7.80 mmol) were dissolved in dichloromethane (10 mL). Triethylamine (1.08 mL, 7.80 mmol) was added dropwise and the solution stirred for 16 hours at room temperature. A saturated aqueous solution of NaHCO<sub>3</sub> (10 mL) was added to the reaction mixture and the layers were separated. The aqueous phase was extracted with dichloromethane ( $3 \times 10$  mL) and the combined organic layers were dried over MgSO<sub>4</sub>, filtered, and concentrated *in vacuo*. The crude material was purified by column chromatography (5% EtOAc in petrol) to give TMS-mutilin **12** (668 mg, 92%) as a colourless oil.

 $δ_{\rm H}$  (400 MHz, CDCl<sub>3</sub>) 6.16 (1H, dd, *J* 17.5, 11.0, 19-H), 5.26 (1H, dd, *J* 17.5, 1.5, 20-*H*H), 5.22 (1H, dd, *J* 11.0, 1.5, 20-H*H*), 4.44 (1H, d, *J* 8.0, 14-H), 3.48 (1H, d, *J* 6.0, 11-H), 2.33 (1H, app. pent, *J* 7.0, 10-H), 2.25-2.12 (2H, m, 2-H<sub>2</sub>), 2.04 (1H, d, *J* 3.0, 4-H), 1.88 (1H, dd, *J* 16.0, 8.0, 13-*H*H), 1.75 (1H, dq, *J* 14.5, 3.0, 8-*H*H), 1.57 (1H, m, 6-H), 1.55-1.39 (2H, m, 1-H<sub>2</sub>, 7-*H*H), 1.42 (1H, d, *J* 16.0, 13-H*H*), 1.35 (1H, m, 7-H*H*), 1.34 (3H, s, 15-H<sub>3</sub>), 1.12 (1H, td, *J* 14.0, 4.5, 8-H*H*), 1.07 (3H, s, 18-H<sub>3</sub>), 0.85 (3H, d, *J* 7.0, 16-H<sub>3</sub>), 0.85 (3H, d, *J* 7.0, 17-H<sub>3</sub>), 0.13 (9H, s, (SiC*H*<sub>3</sub>)<sub>3</sub>), 0.11 (9H, s, (SiC*H*<sub>3</sub>)<sub>3</sub>).  $δ_{\rm C}$  (101 MHz, CDCl<sub>3</sub>) 218.2 (C-3), 141.1 (C-19), 116.3 (C-20), 77.6 (C-11), 67.5 (C-14), 59.4 (C-4), 47.5 (C-13), 45.8 (C-9), 44.9 (C-12), 43.5 (C-5), 37.6 (C-6), 36.5 (C-10), 34.9 (C-2), 31.0 (C-8), 29.2 (C-18), 27.3 (C-7), 25.6 (C-1), 18.5 (C-16), 14.6 (C-15), 12.2 (C-17), 1.5 and 1.1 (SiCH<sub>3</sub>). HRMS (ESI) calc. for C<sub>26</sub>H<sub>48</sub>O<sub>2</sub>Si<sub>2</sub>Na [M+Na]<sup>+</sup> 487.3034. Found 487.3045. [α]<sup>21</sup><sub>D</sub> = +44.0 (*c* 0.75, CHCl<sub>3</sub>). IR (v<sub>max</sub>/cm<sup>-1</sup>) (neat): 2956 (alkane C–H), 1736 (ketone C=O).

<sup>1</sup>H NMR data in accord with the literature data.<sup>2</sup>

#### Synthesis of alkene 14



TMS-mutilin **12** (400 mg, 0.861 mmol) was dissolved in tetrahydrofuran (10 mL) and cooled to 0 °C. A solution of methylmagnesium bromide in Et<sub>2</sub>O (3 M, 1.43 mL, 4.30 mmol) was added dropwise and the solution warmed to room temperature and stirred for 16 hours. The reaction was quenched with water (20 mL) and extracted with dichloromethane ( $3 \times 20$  mL). The combined organic layers were dried over MgSO<sub>4</sub>, filtered, and concentrated *in vacuo*.

The resulting material was dissolved in a solution of HCl in MeOH (4 M, 7.5 mL) and stirred for 16 hours at room temperature. The reaction mixture was neutralised with aqueous NaOH solution and extracted with dichloromethane ( $3 \times 15$  mL). The combined organic layers were dried over MgSO<sub>4</sub>, filtered, and concentrated *in vacuo*. The crude material was purified by column chromatography (20% EtOAc in petrol) to give alkene **14** (153 mg, 56%) as a white solid.

#### Alkene 14

 $δ_{\rm H}$  (400 MHz, CDCl<sub>3</sub>) 6.12 (1H, dd, *J* 18.0, 11.0, 19-H), 5.29 (1H, dd, *J* 18.0, 1.5, 20-*H*H), 5.25 (1H, dd, *J* 11.0, 1.5, 20-H*H*), 4.34 (1H, d, *J* 8.0, 14-H), 3.06 (1H, d, *J* 5.5, 11-H), 2.35 (1H, ddd, *J* 17.0, 11.0, 4.5, 2-*H*H), 2.25 (1H, ddd, *J* 17.0, 10.0, 7.0, 2-H*H*), 2.10 (1H, qd, *J* 7.0, 5.5, 10-H), 1.98-1.77 (3H, m, 1-*H*H, 8-*H*H, 13-H*H*), 1.89 (3H, s, 2'-H<sub>3</sub>), 1.56-1.32 (5H, m, 6-H, 7-H<sub>2</sub>, 2 × O*H*), 1.52 (1H, d, *J* 15.0, 13-H*H*), 1.31 (3H, s, 15-H<sub>3</sub>), 1.30-1.17 (2H, m, 1-H*H*, 8-H*H*), 1.05 (3H, s, 18-H<sub>3</sub>), 1.01 (3H, d, *J* 6.5, 16-H<sub>3</sub>), 0.83 (3H, d, *J* 6.5, 17-H<sub>3</sub>).  $δ_{\rm C}$  (101 MHz, CDCl<sub>3</sub>) 141.8 (C-4), 139.9 (C-19), 133.3 (C-3), 115.8 (C-20), 76.3 (C-11), 68.3 (C-14), 57.3 (C-9), 48.4 (C-5), 47.2 (C-13), 45.3 (C-12), 43.8 (C-6), 41.0 (C-2), 38.4 (C-8), 37.1 (C-10), 30.2 (C-1), 28.6 and 28.5 (C-7 and C-18), 19.9 (C-15), 18.2 (C-16), 17.8 (C-2'), 11.3 (C-17). HRMS (ESI) calc. for C<sub>21</sub>H<sub>34</sub>O<sub>2</sub>Na [M+Na]<sup>+</sup> 341.2451. Found 341.2467. M.p. 118-120 °C (from CHCl<sub>3</sub>). [α]<sub>D<sup>2</sup></sub><sup>2</sup> = -55.0 (*c* 1.00, CHCl<sub>3</sub>). IR (v<sub>max</sub>/cm<sup>-1</sup>) (neat): 3466 (alcohol O–H), 2921 (alkane C–H).

**Supplementary Table 1.** Summary of expression vectors used in this study to express genes from C. *passeckerianus* in *A. oryzae*. Selectable marker *argB*: *A. nidulans* ornithine carbamoyltransferase (OCTase) gene; *adeA*: *A. oryzae* phosphoribosyl-aminoimidazole-succinocarboxamide synthetase gene; *bar*: *Streptomyces spp.* phosphinothricin acetyl-transferase gene. Promoter Padh: *A. oryzae* alcohol dehydrogenase; PgpdA: *A. nidulans* glyceraldehyse 3'-phosphate dehydrogenase; Peno: *A. oryzae* enolase.

| Backbone              | Selectable        | Promoter | Gene             | Plasmid name                |
|-----------------------|-------------------|----------|------------------|-----------------------------|
| vector                | marker gene       |          |                  |                             |
| pTVGSorg <sup>3</sup> | argB              | Padh     | Pl-ggs           | pTYGSargGC <sup>4</sup>     |
| priosaig              |                   | Peno     | Pl-cyc           |                             |
|                       | <sup>3</sup> adeA | Padh     | Pl-p450-1        |                             |
|                       |                   | PgpdA    | <i>Pl-p450-2</i> | pTYGSadeP1P2P3 <sup>4</sup> |
| nTVGSade <sup>3</sup> |                   | Peno     | <i>Pl-p450-3</i> |                             |
| priosade              |                   | Padh     | <i>Pl-p450-2</i> | pTYGSadeP2P3                |
|                       |                   | Peno     | <i>Pl-p450-3</i> |                             |
|                       |                   | Padh     | <i>Pl-p450-2</i> | pTYGSadeP2                  |
|                       |                   | Padh     | Pl-p450-3        | pTYGSadeP3 <sup>4</sup>     |
|                       | bar               | Padh     | Pl-atf           | pTYGSbarAS <sup>4</sup>     |
| nTVGSbar <sup>3</sup> |                   | Peno     | Pl-sdr           |                             |
| P1105001              |                   | Padh     | Pl-atf           | pTYGSbarA <sup>4</sup>      |
|                       |                   | Padh     | Pl-sdr           | pTYGSbarS <sup>4</sup>      |

**Supplementary Table 2.** List of primers used in this study. Nucleotides in italics represent sequences used to generate overlapping regions with plasmid backbones for yeast-based homologous recombination.

| Primer             | DNA Sequence (5'->3')             | Description                    |
|--------------------|-----------------------------------|--------------------------------|
| Pl-ggs FF          | ATGAGAATACCTAACGTCTTTCTCT         | Screening primers for the      |
| Pl-ggs RR          | CTA CTC TGC GAT GTA CAA CTT TTC C | amplification of Pl-ggs        |
| Pl-cyc FF          | ATG GGT CTA TCT GAA GAT CTT CAT G | Screening primers for the      |
| Pl-cyc RR          | TCA ATG GTG GAT TCC ATT GCT CCC G | amplification of Pl-cyc        |
| Pl-p450-1 FF       | ATG CTG TCC GTC GAC CTC CCG TCT G | Screening primers for the      |
| Pl-p450-1 RR       | CTA CAA CGC AGC GAA CGC TTC CTT A | amplification of Pl-p450-1     |
| Pl-p450-2 FF       | ATG AAT CTT TCT GCT CTG AAG GCT G | Screening primers for the      |
| Pl-p450-2 RR       | CTA ATA GTC TGC AAC ATC GTG GAT C | amplification of Pl-p450-2     |
| Pl-p450-3 FF       | ATG GCT CCG TCA ACG GAA CGT GCT C | Screening primers for the      |
| Pl-p450-3 RR       | CTA GCC ACT AGC AGG CTT CGT GAA C | amplification of Pl-p450-3     |
| Pl-atf FF          | ATG AAG CCC TTC TCA CCA GAA CTT C | Screening primers for the      |
| Pl-atf RR          | CTA CTG TGC TAC ACG AGG GGG ATT C | amplification of Pl-atf        |
| Pl-sdr FF          | ATG GAA GGC AAG GTC GCA ATC GTC A | Screening primers for the      |
| Pl-sdr RR          | CTA AAT GAC ACT CCA CCC GTT ATC G | amplification of Pl-sdr        |
| Padh-Pl-p450-2 FF  | TTTCTTTCAACACAAGATCCCAAAGT        |                                |
|                    | CAAAATGAATCTTTCTGCTCTGAA          | Amplification of Pl-p450-2 for |
| Pl-p450-2-TgpdA    | ACGACAATGTCCATATCATCAATCAT        | assembly of pTYGSadeP2P3       |
| RR                 | <b>GACCCTAATAGTCTGCAACATCGT</b>   |                                |
| Peno- Pl-p450-3 FF | GTCGACTGACCAATTCCGCAGCTCGT        |                                |
|                    | CAAAATGGCTCCGTCAACGGAACG          | Amplification of Pl-p450-2 for |
| Pl-p450-3-Teno RR  | GGTTGGCTGGTAGACGTCATATAATC        | assembly of pTYGSadeP2P3       |
|                    | ATACCTAGCCACTAGCAGGCTTCG          |                                |
| Padh-Pl-p450-2 FF  | TTTCTTTCAACACAAGATCCCCAAAGT       |                                |
|                    | CAAAATGAATCTTTCTGCTCTGAA          | Amplification of Pl-p450-2 for |
| Pl-p450-2-Teno RR  | GGTTGGCTGGTAGACGTCATATAATC        | assembly of pTYGSadeP2         |
|                    | ATACCTAATAGTCTGCAACATCGT          |                                |

| A. oryzae strain | Heterologous genes from C.                | Plasmids used for       |
|------------------|-------------------------------------------|-------------------------|
|                  | passeckerianus                            | heterologous expression |
| GCP2             | Pl-ggs, Pl-cyc, Pl-p450-2                 | pTYGSargGC, pTYGSadeP2  |
| GCP2S            | Pl-ggs, Pl-cyc, Pl-p450-2, Pl-sdr         | pTYGSargGC,             |
|                  |                                           | pTYGSadeP2, pTYGSbarS   |
| GCP2P3SA         | Pl-ggs, Pl-cyc, Pl-p450-2, Pl-p450-3, Pl- | pTYGSargGC,             |
|                  | sdr, Pl-atf                               | pTYGSadeP2P3,           |
|                  |                                           | pTYGSbarAS              |
| GCP1P2P3A        | Pl-ggs, Pl-cyc, Pl-p450-1, Pl-p450-2, Pl- | pTYGSargGC,             |
|                  | p450-3, Pl-atf                            | pTYGSadeP1P2P3,         |
|                  |                                           | pTYGSbarA               |
| AP3              | Pl-atf, Pl-p450-3                         | pTYGSbarA, pTYGSadeP3   |

**Supplementary Table 3.** List of *A. oryzae* strains generated in this study and relative expression vectors used to introduce the relevant pleuromutilin biosynthetic genes.



Supplementary Figure 35. Plasmid maps of the expression vectors used in this work.

#### References

- Berner, H., Vyplel, H., Schulz, G. & Stuchlik, P. Chemie der pleuromutiline— IV. *Tetrahedron* 39, 1317–1321 (1983).
- Wang, H., Andemichael, Y. W. & Vogt, F. G. A scalable synthesis of 2Shydroxymutilin via a modified rubottom oxidation. *J. Org. Chem.* 74, 478–481 (2009).
- Pahirulzaman, K. A. K., Williams, K. & Lazarus, C. M. A toolkit for heterologous expression of metabolic pathways in aspergillus oryzae. *Methods Enzymol.* 517, 241–260 (2012).
- Alberti, F. *et al.* Heterologous expression reveals the biosynthesis of the antibiotic pleuromutilin and generates bioactive semi-synthetic derivatives. *Nat. Commun.* 8, 1831 (2017).