Synthesis of Functionalised Isochromans: Epoxides as Aldehyde Surrogates in HFIP

Supporting Information

Cyprien Muller, Filip Horký, Marie Vayer, Andrei Golushko, David Lebœuf,* Joseph Moran*

Université de Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, 67000, France

<u>moran@unistra.fr</u>

dleboeuf@unistra.fr

Table of contents

Supplemental Experimental Procedures	2	
1. General Remarks	2	
2. Procedures for the Synthesis of Functionalized Isochromans	3	
2.1 Optimization of Reaction Parameters	3	
2.2 General Procedure	4	
2.3 Characterization Data	5	
3. Procedures and Characterization of Post-Functionalization Products	39	
4. NMR Spectra4		
5. NOESY Analyses1	.06	
6. XRD1	13	

Supplemental Experimental Procedures

1. General Remarks

All reagents were used as received from commercial suppliers (*Alfa Aesar, Sigma Aldrich, abcr, TCI* or *FluoroChem*) unless otherwise stated. Triflic acid (TfOH) *ReagentPlus*[®], \geq 99% (CAS: 1493-13-6) was purchased from Sigma Aldrich, and HFIP (CAS: 920-66-1) from FluoroChem. Reaction progress was monitored by thin layer chromatography (TLC) performed on aluminum plates coated with silica gel F₂₅₄ with 0.2 mm thickness. Chromatograms were visualized by fluorescence quenching with UV light at 254 nm and/or by staining using vanilin. Flash column chromatography (FC) was performed using silica gel 60 (230-400 mesh, Merck and co.). Yields refer to chromatographically and spectroscopically pure compounds. When stated, NMR yields were calculated by using mesitylene or 1,3,5-trimethoxybenzene as an internal standard.

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded using a Bruker UltraShield 400, 500 at 300K. ¹H NMR chemical shifts are reported in ppm using residual solvent peak as reference (CDCl₃: $\delta = 7.26$ ppm, CD₂Cl₂: $\delta = 5.32$ ppm, or acetone-*d*₆: $\delta = 2.09$ ppm). Data for ¹H NMR are presented as follows: chemical shift δ (ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad), coupling constant *J* (Hz) and integration; ¹³C NMR spectra were recorded at 100, 125 or using broadband proton decoupling and chemical shifts are reported in ppm using residual solvent peaks as reference (CDCl₃: $\delta = 77.16$ ppm, CD₂Cl₂: $\delta = 53.84$ ppm, or acetone-*d*₆: $\delta = 30.60$ ppm). Multiplicity was defined by recording a ¹³C NMR spectra using the attached proton test (APT). ¹⁹F NMR spectra were recorded at 376.5 or 471 MHz at ambient temperature. High-resolution mass spectrometry (HRMS) analysis was performed on instruments GCT 1er Waters (EI and IC), MicroTOF-Q Bruker (ESI) and a GC Thermo Scientific Trace 1300 GC unit coupled to an APPI MasCom source mounted on a Thermo Scientific Exactive Plus EMR mass unit (Orbitrap FT-HRMS analyzer).

Melting points were measured using a Melting Point Apparatus SMP10 from Stuart.

2. Procedures for the Synthesis of Functionalized Isochromans

2.1 Optimization of Reaction Parameters

Table S1. Concentration and catalyst loading screening for isochroman synthesis

Entry	Deviation from Standard	Yield [%]
1	none	70
2	[0.2 M]	46
3	[0.4 M]	41
4	[0.6 M]	25
5	TfOH (5 mol%)	47
6	TfOH (1 mol%)	48

Table S2. Optimization of isochroman synthesis at 0.1 M

Entry	Deviation from Standard	Yield [%]
1	none	70
2	$HNTf_2$	35
3	Bi(OTf) ₃	59
4	Sc(OTf) ₃	17
5	Bi(OTf) ₃ /nBu ₄ NPF ₆	60
6	Ca(NTf ₂) ₂ /nBu ₄ NPF ₆	32
7	$B(C_{6}F_{5})_{3}$	-

8	Molecular sieves	54
9	80 °C	52
10	1.1 equiv	43

Table S3. Solvent screening for isochroman synthesis

Entry	Deviation from Standard	NMR Yield [%] 2a/2'a
1	none	70 ^[a] /0
2	MeNO ₂	0/20
3	Toluene	0/39
4	DCM	0/46
5	TFE	0/- ^[b]
6	HFIP-Me	0/36

[a] Isolated yield. [b] product of addition of TFE obtained:

Epoxide (1.0 equiv.) and nucleophile (2.0 equiv.) were charged (in air) in a 10 mL screw-cap tube equipped with a Teflon-coated magnetic stir bar. HFIP (0.1 M) and TfOH (1.0 - 20.0 mol%) were

added (addition of TfOH at 0 °C), and the glass tube was sealed. The reaction mixture was stirred at 25 °C for the indicated time (0.25–1 h). Upon completion, the reaction mixture was quenched with a saturated solution of NaHCO₃ (10 mL) and extracted with EtOAc (10 mL \times 3). The combined organic layers were washed with brine (10 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude reaction mixture was purified by FC over silica gel to furnish the target products **2**.

2.3 Characterization Data

1-(4-Nitrobenzyl)isochromane (2a)

Exact Mass: 269.11

The general procedure was followed with 2-(4-nitrophenyl)oxirane (33.0 mg, 0.2 mmol) and phenylethanol (48 μ L, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 1 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 90:10 gradient) afforded **2a** (37.8 mg, 70% yield) as a yellow solid.

$m.p. = 122 - 124 \ ^{\circ}C$

¹**H** NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 8.8 Hz, 2H), 7.41 (d, *J* = 8.8 Hz, 2H), 7.25 – 7.09 (m, 4H), 5.08 (dd, *J* = 8.4, 3.6 Hz, 1H), 4.12 (ddd, *J* = 11.2, 5.3, 3.6 Hz, 1H), 3.74 (ddd, *J* = 11.2, 9.5, 3.6 Hz, 1H), 3.36 (dd, *J* = 14.4, 3.6 Hz, 1H), 3.16 (dd, *J* = 14.4, 8.4 Hz, 1H), 2.88 (ddd, *J* = 14.9, 9.5, 5.3 Hz, 1H), 2.66 (ddd, *J* = 14.9, 3.6, 3.6 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 146.7, 146.7, 136.9, 134.4, 130.6 (2C), 129.2, 126.8, 126.3, 124.9, 123.4 (2C), 76.1, 63.4, 42.3, 29.1.

HRMS (**ESI**): m/z calcd. for C₁₆H₁₆O₃N [M+H]⁺ 270.1027, found 270.1114.

Gram-scale synthesis: 2-(4-nitrophenyl)oxirane (825.0 mg, 5.0 mmol) and 2-(3,4dimethoxyphenyl)ethanol (1.83 g, 10.0 mmol) were charged (in air) in a 100 mL round-bottom flask equipped with a Teflon-coated magnetic stir bar. HFIP (50 mL, 0.1 M) and TfOH (44.0 μ L, 0.500 mmol, 10.0 mol%) were added (addition of TfOH at 0 °C), and the flask was sealed. The reaction mixture was stirred at 25 °C for 1 h. Upon completion, the reaction mixture was quenched with a saturated solution of NaHCO₃ (50 mL) and extracted with EtOAc (50 mL × 3). The combined organic layers were washed with brine (50 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude reaction mixture was purified by FC over silica gel (*n*-pentane/EtOAc, 95:5 to 80:20 gradient) to furnish **2e** (1.40 g, 85% yield) as a yellow solid. 6,7-Dimethoxy-1-((perfluorophenyl)methyl)isochromane (2b)

Chemical Formula: C₁₈H₁₅F₅O₃ Exact Mass: 374.09

The general procedure was followed with 2-(perfluorophenyl)oxirane (42.0 mg, 0.2 mmol) and 2-(3,4-dimethoxyphenyl)ethan-1-ol (73.0 mg, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 1 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 90:10 gradient) afforded **2b** (41.0 mg, 55% yield) as a colorless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 6.65 (s, 2H), 4.91 (dd, *J* = 9.7, 4.0 Hz, 1H), 4.06 (ddd, *J* = 11.3, 6.2, 4.7 Hz, 1H), 3.91 (s, 3H), 3.90 (s, 3H), 3.74 (ddd, *J* = 11.3, 6.6, 4.6 Hz, 1H), 3.23 – 3.08 (m, 2H), 2.82 – 2.66 (m, 2H)

¹³**C NMR (126 MHz, CDCl₃):** δ 148.3, 147.8, 145.7 (dm, *J* = 245.9 Hz, 2C), 140.1 (dm, *J* = 251.9 Hz), 137.6 (dm, *J* = 250.6 Hz, 2C), 128.5, 126.3, 112.5 (td, *J* = 18.8, 3.8 Hz), 111.7, 108.2, 74.2, 61.9, 56.3, 56.1, 29.6 (d, *J* = 1.4 Hz), 28.5.

¹⁹F NMR (471 MHz, CDCl₃): δ -142.9 (dd, J = 22.6, 8.4 Hz), -157.2 (t, J = 20.8 Hz), -163.0 (td, J = 22.2, 8.0 Hz).

HRMS (ESI): m/z calcd. for $C_{18}H_{16}O_3F_5$ [M+H]⁺ 375.1014, found 375.1004.

1-(3,5-Bis(trifluoromethyl)benzyl)-6,7-dimethoxyisochromane (2c)

Chemical Formula: C₂₀H₁₈F₆O₃ Exact Mass: 420.12

The general procedure was followed with 2-(3,5-bis(trifluoromethyl)phenyl)oxirane (51.2 mg, 0.2 mmol) and 2-(3,4-dimethoxyphenyl)ethan-1-ol (73.0 mg, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 1 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 85:15 gradient) afforded **2c** (62.0 mg, 74% yield) as a white solid.

 $m.p. = 143 - 145 \ ^{\circ}C$

¹**H NMR** (**400 MHz, CDCl₃**): δ 7.71 (m, *J* = 4.5 Hz, 3H), 6.59 (s, 2H), 4.99 (dd, *J* = 8.3, 3.5 Hz, 1H), 4.11 (ddd, *J* = 11.2, 5.7, 3.7 Hz, 1H), 3.86 (s, 3H), 3.86 (s, 3H), 3.70 (ddd, *J* = 11.2, 9.5, 3.7 Hz, 1H), 3.32 (dd, *J* = 14.4, 3.5 Hz, 1H), 3.13 (dd, *J* = 14.4, 8.3 Hz, 1H), 2.77 (ddd, *J* = 15.5, 9.5, 5.7 Hz, 1H), 2.56 (ddd, *J* = 15.5, 3.7, 3.7 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃): δ 148.0, 147.7, 141.0, 131.1 (q, *J* = 33.0 Hz, 2C), 129.9 (m), 128.3, 126.7, 123.5 (q, *J* = 272.6 Hz, 2C), 120.3 (p, *J* = 3.8 Hz, 2C), 111.7, 107.9, 75.5, 63.3, 56.1, 55.9, 42.2, 28.5.

¹⁹F NMR (471 MHz, CDCl₃): δ -62.8.

HRMS (ESI): m/z calcd. for C₂₀H₁₉O₃F₆ [M+H] + 421.1233, found 421.1221.

(4-((6,7-Dimethoxyisochroman-1-yl)methyl)phenyl)(piperidin-1-yl)methanone (2d)

The general procedure was followed with 4-(oxiran-2-yl)phenyl(piperidin-1-yl)methanone (46.0 mg, 0.20 mmol) and 2-(3,4-dimethoxyphenyl)ethan-1-ol (73.0 mg, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 10 min and then TfOH (1.8 μ L, 0.020 mmol, 10 mol%) was added. The operation was repeated twice for a reaction time of 1 h. Purification by FC over silica gel (*n*-pentane/EtOAc 80:20 to 35:65 gradient) afforded **2d** (64.0 mg, 82% yield) as a colorless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.33 – 7.27 (m, 4H), 6.58 (s, 1H), 6.52 (s, 1H), 4.97 (dd, J = 8.2, 4.2 Hz, 1H), 4.10 (ddd, J = 11.2, 5.1, 4.2 Hz, 1H), 3.85 (s, 3H), 3.80 (s, 3H), 3.73 (ddd, J = 11.2, 8.7, 4.2 Hz, 1H), 3.70 (brs, 2H), 3.37 (brs, 2H), 3.18 (dd, J = 14.3, 4.2 Hz, 1H), 3.07 (dd, J = 14.3, 8.2 Hz, 1H), 2.81 (ddd, J = 15.9, 8.7, 5.1 Hz, 1H), 2.60 (ddd, J = 15.9, 4.2, 4.2 Hz, 1H), 1.72 – 1.44 (m, 6H).

¹³C NMR (100 MHz, CDCl₃): 170.5, 147.8, 147.4, 140.4, 134.4, 129.6 (2C), 129.4, 127.0 (2C), 126.4, 111.7, 108.3, 76.2, 63.0, 56.1, 56.0, 48.9, 43.3, 42.6, 28.7, 26.6, 25.8, 24.7.

HRMS (**ESI**): *m*/*z* calcd. For C₂₄H₃₀NO₄ [M+H]⁺ 396.2169, found 396.2161.

6,7-Dimethoxy-1-(4-nitrobenzyl)isochromane (2e)

The general procedure was followed with 2-(4-nitrophenyl)oxirane (33.0 mg, 0.2 mmol) and 2-(3,4-dimethoxyphenyl)ethanol (73.0 mg, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 0.25 h. Purification by FC over silica gel (*n*-pentane/EtOAc 95:5 to 80:20 gradient) afforded **2e** (54.0 mg, 82% yield) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃): δ 8.11 (d, J = 8.7 Hz, 2H), 7.40 (d, J = 8.7 Hz, 2H), 6.58 (s, 1H), 6.59 (s, 1H), 5.01 (dd, J = 8.3, 3.7 Hz, 1H), 4.08 (ddd, J = 11.1, 5.2, 3.8 Hz, 1H), 3.85 (br s, 6H), 3.70 (ddd, J = 11.1, 9.5, 3.8 1H), 3.30 (dd, J = 14.3, 3.7 Hz, 1H), 3.13 (dd, J = 14.3, 8.3 Hz, 1H), 2.78 (ddd, J = 15.1, 9.5, 5.2 Hz, 1H), 2.56 (ddd, J = 15.1, 3.8, 3.8 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 148.0, 147.6, 146.7, 146.7, 130.6 (2C), 128.6, 126.7, 123.4 (2C), 111.7, 108.0, 75.7, 63.4, 56.2, 56.0, 42.5, 28.6.

HRMS (**ESI**): *m*/*z* calcd. For C₁₈H₂₀NO₅ [M+H]⁺ 330.1336, found 330.1329.

4-((6,7-Dimethoxyisochroman-1-yl)methyl)benzonitrile (2f)

The general procedure was followed with 2-(4-cyanophenyl)oxirane (29.0 mg, 0.20 mmol) and 2-(3,4-dimethoxyphenyl)ethanol (73.0 mg, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 1 h. Purification by FC over silica gel (*n*-pentane/EtOAc 90:10 to 80:20 gradient) afforded **2f** (47.0 mg, 76% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃): δ 7.55 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 8.3 Hz, 2H), 6.58 (s, 1H), 6.56 (s, 1H), 4.98 (dd, J = 8.3, 3.8 Hz, 1H), 4.08 (ddd, J = 11.2, 5.2, 3.8 Hz, 1H), 3.86 (s, 3H), 3.84 (s, 3H), 3.70 (ddd, J = 11.2, 9.3, 3.8 Hz, 1H), 3.25 (dd, J = 14.3, 3.8 Hz, 1H), 3.08 (dd, J = 14.3, 8.3 Hz, 1H), 2.77 (ddd, J = 15.9, 9.3, 5.2, 1H), 2.56 (ddd, J = 15.9, 3.8, 3.8 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 148.0, 147.6, 144.5, 132.0 (2C), 130.6 (2C), 128.7, 126.6, 119.2, 111.7, 110.2, 108.1, 75.7, 63.3, 56.2, 56.0, 42.8, 28.6.

HRMS (**ESI**): *m*/*z* calcd. For C₁₉H₂₀NO₃ [M+H]⁺ 310.1432, found 310.1438.

6,7-Dimethoxy-1-(4-(trifluoromethyl)benzyl)isochromane (2g)

The general procedure was followed with 2-(4-trifluoromethylphenyl)oxirane (37.6 mg, 0.20 mmol) and 2-(3,4-dimethoxyphenyl)ethanol (73.0 mg, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 0.25 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 90:10 gradient) afforded **2g** (40.0 mg, 57% yield) as a white solid.

 $Mp = 84 - 86 \ ^{\circ}C$

¹**H NMR** (400 MHz, CDCl₃): δ 7.54 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 6.60 (s, 1H), 6.52 (s, 1H), 4.98 (dd, J = 8.3, 4.1 Hz, 1H), 4.10 (ddd, J = 11.2, 4.9, 4.1 Hz, 1H), 3.86 (s, 3H), 3.81 (s, 3H), 3.72 (ddd, J = 11.2, 8.8, 4.1 Hz, 1H), 3.23 (dd, J = 14.2 Hz, 4.1 Hz, 1H), 3.11 (dd, J = 14.2 Hz, 8.3 Hz, 1H), 2.81 (ddd, J = 15.7, 8.8, 4.9 Hz, 1H), 2.60 (ddd, J = 15.7, 4.1, 4.1 Hz, 1H).

¹³**C NMR (100 MHz, CDCl₃):** δ 147.9, 147.5, 143.0 (q, *J* = 1.4 Hz), 130.0 (2C), 129.1, 128.7 (q, *J* = 32.3 Hz), 126.5, 125.2 (q, *J* = 3.8 Hz, 2C), 124.5 (q, *J* = 271.8 Hz), 111.7, 108.2, 76.0, 63.2, 56.1, 56.0, 42.6, 28.7.

¹⁹F NMR (**377** MHz, CDCl₃): δ -62.3.

HRMS (ESI): m/z calcd. For C₁₉H₂₀O₃F₃ [M+H]⁺ 353.1353, found 353.1359.

Methyl 4-((6,7-dimethoxyisochroman-1-yl)methyl)benzoate (2h)

The general procedure was followed with methyl 4-(oxiran-2-yl)benzoate (35.6 mg, 0.16 mmol) and 2-(3,4-dimethoxyphenyl)ethan-1-ol (58.4 mg, 0.32 mmol) in the presence of TfOH (1.4 μ L, 0.016 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 1 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 80:20 gradient) afforded **2h** (41.0 mg, 77% yield) as a colorless oil. The product was contaminated with a side-product resulting from a transesterification with HFIP. The corrected yield is 69%.

¹**H NMR (400 MHz, CDCl₃):** δ 7.95 (d, *J* = 8.3 Hz, 2H), 7.33 (d, *J* = 8.3 Hz, 2H), 6.58 (s, 1H), 6.53 (s, 1H), 4.99 (dd, *J* = 8.2, 4.1 Hz, 1H), 4.09 (ddd, *J* = 11.2, 5.2, 4.1 Hz, 1H), 3.89 (s, 3H), 3.85 (s, 3H), 3.80 (s, 3H), 3.71 (ddd, *J* = 11.2, 9.0, 4.1 Hz, 1H), 3.23 (dd, *J* = 14.2, 4.1 Hz, 1H), 3.10 (dd, *J* = 14.2, 8.2 Hz, 1H), 2.79 (ddd, *J* = 14.6, 9.0, 5.2 Hz, 1H), 2.58 (ddd, *J* = 14.6, 4.1, 4.1 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃): δ 167.2, 147.8, 147.4, 144.3, 129.7 (2C), 129.6 (2C), 129.1, 128.2, 126.4, 111.6, 108.1, 76.0, 63.1, 56.1, 55.9, 52.1, 42.8, 28.6.

HRMS (ESI): m/z calcd. for $C_{20}H_{23}O_5$ [M+H]⁺ 343.1540, found 343.1533.

1-(4-((6,7-Dimethoxyisochroman-1-yl)methyl)phenyl)ethan-1-one (2i)

The general procedure was followed with 2-(4-acetylphenyl)oxirane (32.4 mg, 0.20 mmol) and 2-(3,4-dimethoxyphenyl)ethan-1-ol (73.0 mg, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 0.25 h. A first purification by FC over silica gel (*n*-pentane/EtOAc 95:5 to 65:35 gradient) followed by a second purification (*n*-pentane/EtOAc 100:0 to 80:20) afforded **2i** (47.7 mg, 73% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃): δ 7.88 (d, *J* = 8.3 Hz, 2H), 7.36 (d, *J* = 8.3 Hz, 2H), 6.59 (s, 1H), 6.55 (s, 1H), 4.99 (dd, *J* = 8.3, 4.0 Hz, 1H), 4.10 (ddd, *J* = 11.2, 4.6, 4.6 Hz, 1H), 3.86 (s, 3H), 3.82 (s, 3H), 3.72 (ddd, *J* = 11.2, 9.0, 3.9 Hz, 1H), 3.24 (dd, *J* = 14.2, 4.0 Hz, 1H), 3.10 (dd, *J* = 14.2, 8.3 Hz, 1H), 2.81 (ddd, *J* = 16.8, 9.0, 4.6 Hz, 1H), 2.58 (s, 3H), 2.62 – 2.56 (ddd, *J* = 16.8, 4.6, 3.9 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 198.0, 147.9, 147.5, 144.7, 135.5, 129.9 (2C), 129.2, 128.4 (2C), 126.5, 111.7, 108.2, 76.0, 63.2, 56.2, 56.0, 42.8, 28.7, 26.7.

HRMS (**ESI**): *m*/*z* calcd. For C₂₀H₂₃O₄ [M+H]⁺ 327.1571, found 327.1591.

1-(4-Bromobenzyl)-6,7-dimethoxyisochromane (2j)

The general procedure was followed with 2-(4-bromophenyl)oxirane (39.8 mg, 0.2 mmol) and 2-(3,4-dimethoxyphenyl)ethan-1-ol (73.0 mg, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 0.25 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 85:15 gradient) afforded **2j** (29.0 mg, 40% yield) as a colorless oil. Spectral data are in accordance with those found in the literature.¹

¹**H NMR** (400 MHz, CDCl₃): δ 7.40 (d, J = 8.3 Hz, 2H), 7.13 (d, J = 8.3 Hz, 2H), 6.58 (s, 1H), 6.51 (s, 1H), 4.93 (dd, J = 8.1, 4.2 Hz, 1H), 4.09 (ddd, J = 11.2, 5.0, 4.2 Hz, 1H), 3.86 (s, 3H), 3.81 (s, 3H), 3.70 (ddd, J = 11.2, 9.0, 4.2 Hz, 1H), 3.13 (dd, J = 14.2, 4.2 Hz, 1H), 3.00 (dd, J = 14.2, 8.1 Hz, 1H), 2.80 (ddd, J = 15.9, 9.0, 5.0 Hz, 1H), 2.59 (ddd, J = 15.9, 4.2, Hz, 1H).

¹³C NMR (126 MHz, CDCl₃): δ 147.7, 147.3, 137.6, 131.4 (2C), 131.2 (2C), 129.1, 126.4, 120.1, 111.5, 108.2, 76.0, 63.0, 56.0, 55.9, 42.1, 28.6.

HRMS (ESI): m/z calcd. for $C_{18}H_{20}O_3Br [M+H]^+$ 363.0590, found 363.0572.

1-Benzyl-6,7-dimethoxyisochromane (2k)

The general procedure was followed with 2-phenyloxirane (24.0 mg, 0.20 mmol) and 2-(3,4-dimethoxyphenyl)ethanol (73.0 mg, 0.4 mmol) in the presence of TfOH (0.4 μ L, 0.004 mmol, 2 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 0.25 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 95:5 gradient) afforded **2k** (31.2 mg, 55% yield) as a colorless oil. Spectral data are in accordance with those found in the literature.¹

¹**H NMR** (**400 MHz**, **CDCl**₃): δ 7.30 – 7.18 (m, 5H), 6.57 (s, 1H), 6.44 (s, 1H), 4.95 (dd, *J* = 7.8, 5.0 Hz, 1H), 4.09 (ddd, *J* = 11.2, 5.0, 4.3 Hz, 1H), 3.83 (s, 3H), 3.73 (s, 3H), 3.75 – 3.70 (ddd, *J* = 11.2, 8.4, 4.3 Hz, 1H), 3.13 (dd, *J* = 14.2, 5.0 Hz, 1H), 3.06 (dd, *J* = 14.2, 7.8 Hz, 1H), 2.80 (ddd, *J* = 15.9, 8.4, 5.0 Hz, 1H), 2.60 (ddd, *J* = 15.9, 4.3 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 147.7, 147.3, 138.9, 129.7 (3C), 128.4 (2C), 126.4, 126.3, 111.6, 108.5, 76.4, 62.9, 56.0, 56.0, 42.9, 28.8.

HRMS (**ESI**): *m*/*z* calcd. For C₁₈H₂₁O₃ [M+H]⁺ 285.1480, found 285.1485.

6,7-Dimethoxy-1-(3-nitrobenzyl)isochromane (2m)

The general procedure was followed with 2-(3-nitrophenyl)oxirane (33.0 mg, 0.2 mmol) and 2-(3,4-dimethoxyphenyl)ethan-1-ol (73.0 mg, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 0.25 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 80:20 gradient) afforded **2m** (47.4 mg, 72% yield) as a yellow oil.

¹**H NMR (400 MHz, CDCl₃):** δ 8.16 (t, J = 2.0 Hz, 1H), 8.07 (ddd, J = 8.2, 2.3, 1.1 Hz, 1H), 7.58 (dt, J = 7.7, 1.4 Hz, 1H), 7.43 (t, J = 7.9 Hz, 1H), 6.60 (s, 1H), 6.59 (s, 1H), 4.99 (dd, J = 8.5, 3.5 Hz, 1H), 4.11 (ddd, J = 11.2, 5.1, 3.8 Hz, 1H), 3.86 (s, 3H), 3.86 (s, 3H), 3.71 (ddd, J = 11.2, 9.4, 3.8 Hz, 1H), 3.12 (dd, J = 14.4, 8.5 Hz, 1H), 2.81 (ddd, J = 15.9, 9.4, 5.1 Hz, 1H), 2.58 (ddd, J = 15.9, 3.8, 3.8 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 148.3, 148.0, 147.7, 140.8, 136.1, 129.0, 128.7, 126.7, 124.7, 121.6, 111.8, 108.1, 75.8, 63.3, 56.3, 56.0, 42.2, 28.7.

HRMS (**ESI**): *m*/*z* calcd. For C₁₈H₂₀NO₅ [M+H]⁺ 330.1336, found 330.1329.

1-(2-Bromobenzyl)-6,7-dimethoxyisochromane (2n)

The general procedure was followed with 2-(2-bromophenyl)oxirane (39.8 mg, 0.20 mmol) and 2-(3,4-dimethoxyphenyl)ethan-1-ol (73.0 mg, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 0.25 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 80:20 gradient) afforded **2n** (33.0 mg, 46% yield) as a colorless oil. Spectral data are in accordance with those found in the literature.²

¹**H NMR (400 MHz, CDCl₃):** δ 7.58 (dd, J = 8.3, 1.3 Hz, 1H), 7.35 (dd, J = 7.5, 1.7 Hz, 1H), 7.26 (dd, J = 7.5, 1.7, 1.3 Hz, 1H), 7.11 (ddd, J = 7.6, 1.7, 1.3 Hz, 1H), 6.68 (s, 1H), 6.62 (s, 1H), 5.02 (dd, J = 9.5, 3.3 Hz, 1H), 4.12 (ddd, J = 11.3 Hz, 4.9, 4.7 Hz, 1H), 3.87 (s, 3H), 3.83 (s, 3H), 3.76 (ddd, J = 11.3, 7.8, 4.7 Hz, 1H), 3.38 (dd, J = 14.2, 3.3 Hz, 1H), 3.09 (dd, J = 14.3, 9.5 Hz, 1H), 2.90 – 2.84 (ddd, J = 15.9, 7.8, 4.9 1H), 2.69 (ddd, J = 15.9, 4.7, 4.7 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 147.8, 147.5, 138.4, 132.8, 132.4, 129.6, 128.3, 127.4, 126.2, 124.9, 111.5, 108.4, 74.8, 62.6, 56.1, 56.0, 43.0, 28.7.

HRMS (**ESI**): *m*/*z* calcd. For C₁₈H₂₀O₃Br [M+H]⁺ 363.0590, found 363.0571.

6,7-Dimethoxy-1-phenethylisochromane (20)

Chemical Formula: C₁₉H₂₂O₃ Exact Mass: 298.16

The general procedure was followed with 2-benzyloxirane (26.3 μ L, 0.2 mmol) and 2-(3,4-dimethoxyphenyl)ethan-1-ol (73.0 mg, 0.4 mmol) in the presence of TfOH (0.4 μ L, 0.004 mmol, 2 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 0.25 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 80:20 gradient) afforded **20** (46.0 mg, 77% yield) as a yellow oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.38 – 7.14 (m, 5H), 6.62 (s, 1H), 6.54 (s, 1H), 4.73 (dd, J = 8.5, 3.7 Hz, 1H), 4.19 (ddd, J = 11.3, 5.4, 3.8 Hz, 1H), 3.87 (s, 3H), 3.84 (s, 3H), 3.80 (ddd, J = 11.3, 9.5, 3.8 Hz, 1H), 2.96 (ddd, J = 15.7, 9.5, 5.4 1H), 2.85 – 2.73 (m, 2H), 2.64 (ddd, J = 15.7, 3.8, 3.8 Hz, 1H), 2.27 – 2.00 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 147.6, 147.6, 142.6, 130.1, 128.6 (2C), 128.5 (2C), 126.2, 125.8, 111.6, 107.9, 75.0, 63.4, 56.1, 56.0, 37.9, 31.6, 28.8.

HRMS (ESI): m/z calcd. for C₁₉H₂₃O₃ [M+H]⁺ 299.1642, found 299.1633.

1-Heptyl-6,7-dimethoxyisochromane (2p)

A modified version of the general procedure was followed with 2-hexyloxirane (183.4 μ L, 1.2 mmol) and 2-(3,4-dimethoxyphenyl)ethan-1-ol (73.0 mg, 0.4 mmol) in the presence of TfOH (3.6 μ L, 0.040 mmol, 10 mol%) in HFIP (4.0 mL). The reaction mixture was stirred at 25 °C for 16 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 85:15 gradient) afforded **2p** (78.0 mg, 67% yield) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃): δ 6.58 (s, 1H), 6.55 (s, 1H), 4.67 (dd, J = 8.5, 3.2 Hz, 1H), 4.11 (ddd, J = 11.2, 5.3, 3.7 Hz, 1H), 3.85 (s, 3H), 3.84 (s, 3H), 3.73 (ddd, J = 11.2, 9.4, 3.7 Hz, 1H), 2.88 (ddd, J = 15.9, 9.4, 5.3 Hz, 1H), 2.59 (ddd, J = 15.9, 3.7, 3.7 Hz, 1H), 1.91 – 1.72 (m, 2H), 1.50 – 1.41 (m, 2H), 1.29 (m, 8H), 0.93 – 0.80 (m, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 147.5 (2C), 130.6, 126.1, 111.6, 108.1, 75.7, 63.3, 56.1, 56.0, 36.2, 32.0, 29.9, 29.4, 28.8, 25.4, 22.8, 14.2.

HRMS (ESI): m/z calcd. for C₁₈H₂₉O₃ [M+H]⁺ 293.2111, found 293.2102.

6,7-Dimethoxy-1-((4-nitrophenyl)(phenyl)methyl)isochromane (2q)

The general procedure was followed with 2-phenyl-2-(4-nitrophenyl)oxirane (48.0 mg, 0.20 mmol) and 2-(3,4-dimethoxyphenyl)ethan-1-ol (73.0 mg, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 0.25 h. Purification by FC over silica gel (*n*-pentane/EtOAc 90:10 to 70:30 gradient) afforded **2q** as two diastereoisomers (44.0 mg, 54% yield, 70:30 *dr*) as a yellow oil.

¹**H** NMR (400 MHz, CDCl₃): δ 8.15 (d, J = 8.6 Hz, 2H, minor), 8.02 (d, J = 8.6 Hz, 2H, major), 7.58 (d, J = 8.6 Hz, 2H, major), 7.56 (d, J = 8.6 Hz, 2H, minor), 7.40 – 7.12 (m, 5H, major + minor), 6.51 (s, 1H, major), 6.49 (s, 1H, minor), 6.44 (s, 1H, minor), 6.31 (s, 1H, major), 5.52 (d, J = 5.1 Hz, 1H, major), 5.48 (d, J = 3.9 Hz, 1H, minor), 4.63 (d, J = 3.9 Hz, 1H, minor), 4.57 (d,

J = 5.1 Hz, 1H, major), 4.07 (m, 1H, major + minor), 3.83 (s, 3H, major), 3.82 (s, 3H, minor), 3.71 (s, 3H, minor), 3.64 (s, 3H, major), 3.69 – 3.61 (m, 1H, major + minor), 2.58 (ddd, *J* = 15.9, 9.5, 5.1 Hz, 1H, major + minor), 2.49 (ddd, *J* = 15.9, 3.9, 3.9 Hz, 1H, major), 2.42 (ddd, *J* = 15.9, 3.1, 3.1 Hz, 1H, minor).

¹³**C NMR (100 MHz, CDCl₃):** δ 150.7 (minor), 149.1 (major), 147.8 (major), 147.7 (minor), 147.3 (minor), 147.2 (major), 146.6 (minor), 146.5 (major), 141.5 (major), 139.2 (minor), 130.7 (2C, major), 130.3 (2C, minor), 130.1 (2C, minor), 129.3 (2C, major), 128.8 (2C, major), 128.1 (2C, minor), 127.7 (major), 127.7 (minor), 127.6 (minor), 127.2 (major), 127.1 (major), 126.8 (minor), 123.5 (2C, minor), 123.0 (2C, major), 111.4 (both), 108.7 (major), 108.4 (minor), 77.8 (minor), 77.3 (major), 64.0 (minor), 63.4 (major), 57.3 (major), 56.9 (minor), 56.0 (minor), 55.9 (major + minor), 55.9 (major + minor).

HRMS (**ESI**): *m*/*z* calcd. For C₂₄H₂₃NO₅Na [M+Na]⁺ 428.1468, found 428.1430.

6,7-Dimethoxy-1-(1-(4-(trifluoromethyl)phenyl)ethyl)isochromane (2r)

The general procedure was followed with 2-methyl-2-(4-(trifluoromethyl)phenyl)oxirane (40.4 mg, 0.2 mmol) and 2-(3,4-dimethoxyphenyl)ethan-1-ol (73.0 mg, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 1 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 80:20 gradient) afforded **2r** (67.0 mg, 92% yield, 57:43 *dr*) as a yellow oil.

¹**H** NMR (400 MHz, CDCl₃): δ 7.58 (d, *J* = 8.3 Hz, 2H, major), 7.48 (d, *J* = 8.3 Hz, 2H, major), 7.39 (d, *J* = 8.3 Hz, 2H, minor), 7.26 (d, *J* = 8.3 Hz, 2H, minor), 6.61 (s, 1H, major), 6.45 (s, 2H, minor), 6.37 (s, 1H, major), 4.99 (d, *J* = 4.1 Hz, 1H, major), 4.84 (d, *J* = 3.2 Hz, 1H, minor), 4.11 (dd, *J* = 11.1, 5.4 Hz, 1H, major + minor), 3.86 (s, 3H, major), 3.80 (s, 3H, minor), 3.77 (s, 3H, minor), 3.73 (s, 3H, major), 3.63 (m, 1H, major + minor), 3.41 (dd, *J* = 7.2, 3.2 Hz, 1H, minor), 3.23 (dd, *J* = 7.1, 4.1 Hz, 1H, major), 2.91 (ddd, *J* = 15.6, 10.0, 5.3 Hz, 1H, major), 2.54 (m, 1H, major + minor), 2.33 (m, 1H, minor), 1.38 (d, *J* = 7.2 Hz, 3H, minor), 1.11 (d, *J* = 7.1 Hz, 3H, major).

¹³**C NMR (126 MHz, CDCl₃):** δ 149.0 (q, J = 1.3 Hz), 147.7, 147.4, 147.4, 147.2, 146.9 (q, J = 1.3 Hz), 129.4 (2C), 128.9 (2C), 128.6 (q, J = 32.3 Hz, 2C), 128.4, 128.3 (q, J = 32.2 Hz, 2C), 128.0, 127.5, 127.3, 125.1 (q, J = 3.9 Hz), 124.5 (q, J = 3.8 Hz), 124.5 (q, J = 271.7 Hz, 2C), 111.5, 111.3, 108.4, 108.2, 79.6, 79.3, 64.1, 63.5, 56.0, 55.9, 55.9, 55.8, 45.4, 45.3, 28.8 (2C), 17.8, 14.3.

¹⁹F NMR (471 MHz, CDCl₃): δ -62.27 (minor), -62.28 (major).

HRMS (ESI): m/z calcd. for C₂₀H₂₁O₃F₃Na [M+Na] + 389.1335, found 389.1322.

6,7-Dimethoxy-1-(1-phenylheptyl)isochromane (2s)

The general procedure was followed with 2-hexyl-2-phenyloxirane (40.8 mg, 0.2 mmol) and 2-(3,4-dimethoxyphenyl)ethan-1-ol (73.0 mg, 0.4 mmol) in the presence of TfOH (0.4 μ L, 0.004 mmol, 2 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 1 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 90:10 gradient) afforded **2s** as two diastereoisomers (56.0 mg, 76% yield, 57:43 *dr*) as a yellow oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.29 – 7.22 (m, 2H major, 3H minor), 7.20 – 7.14 (m, 1H, major), 7.10 – 6.97 (m, 2H, major + minor), 6.52 (s, 1H, major), 6.48 (s, 1H, minor), 6.33 (s, 1H, minor), 6.12 (s, 1H, major), 5.01 – 4.90 (m, 1H, minor), 4.72 (d, *J* = 5.3 Hz, 1H, major), 4.10 – 4.02 (m, 1H, major + minor), 3.79 (s, 3H, major), 3.77 (s, 3H, minor), 3.72 (s, 3H, minor), 3.63 (ddd, *J* = 11.2, 8.5, 4.1 Hz, 1H, major), 3.59 – 3.51 (m, 3H major, 1H minor), 3.07 – 2.91 (m, 1H, major + minor), 2.84 – 2.73 (m, 1H, major), 2.61 – 2.41 (m, 1H, major + minor), 1.92 – 1.54 (m, 2H, major + minor), 1.31 – 0.91 (m, 8H, major + minor), 0.85 – 0.70 (m, 3H, major + minor).

¹³C NMR (101 MHz, CDCl₃): δ 147.4, 147.0, 147.0, 146.8, 143.1, 141.3, 129.7 (2C), 129.4 (2C), 129.1, 128.7, 128.2 (2C), 127.4 (2C), 127.3, 126.6, 126.4, 125.9, 111.3, 111.1, 108.7, 108.5, 79.6, 78.9, 64.2, 62.7, 56.0, 55.8, 55.7 (2C), 51.8, 51.5, 32.4, 31.8, 31.7, 29.6, 29.3, 29.3, 28.8, 28.7, 28.0, 27.5, 22.7, 22.6, 14.1, 14.1.

HRMS (ESI): m/z calcd. for $C_{24}H_{33}O_3$ [M+H]⁺ 369.2424, found 369.2433.

1-(4-(6,7-Dimethoxyisochroman-1-yl)pentyl)-3,7-dimethyl-3,7-dihydro-1H-purine-2,6-dione (2t)

 $\begin{array}{c} \mbox{Chemical Formula: } C_{24} H_{32} N_4 O_5 \\ \mbox{Exact Mass: } 456.24 \end{array}$

The general procedure was followed with 3,7-dimethyl-1-(4-(2-methyloxiran-2-yl)butyl)-3,7dihydro-1H-purine-2,6-dione (59.0 mg, 0.2 mmol) and 2-(3,4-dimethoxyphenyl)ethan-1-ol (73.0 mg, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 10 min and then TfOH (1.8 μ L, 0.020 mmol, 10 mol%) was added. The operation was repeated twice for a reaction time of 1 h Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 85:15 gradient) afforded **2t** as two diastereoisomers (70.0 mg, 77% yield, 57:43 *dr*) as a colorless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.48 (d, J = 0.7 Hz, 1H, major), δ 7.46 (d, J = 0.7 Hz, 1H, minor) 6.54 (s, 1H, minor), 6.54 (s, 1H, minor), 6.53 (s, 1H, major), 6.53 (s, 1H, major), 4.65 – 4.63 (m, 1H, major), 4.60 – 4.56 (m, 1H, minor), 4.12 – 4.06 (m, 2H, minor), 4.03 – 3.97 (m, 2H, major), 3.95 (d, J = 0.7 Hz, 3H, major), 3.93 (d, J = 0.7 Hz, 3H, minor), 3.87 (ddd, J = 8.8, 6.1, 5.2 Hz, 1H, major + minor), 3.83 – 3.81 (m, 6H major, 3H minor), 3.79 (s, 3H, minor), 3.62 – 3.55 (m, 1H, major + minor), 3.54 (s, 3H, major), 3.51 (s, 3H, minor), 2.95 – 2.85 (m, 1H, major + minor), 2.45 – 2.42 (m, 1H, major), 2.41 – 2.38 (m, 1H, minor), 2.02 – 1.92 (m, 1H, major + minor), 1.73 – 1.60 (m, 2H, major + minor), 1.51 – 1.43 (m, 3H, major + minor), 1.16 – 1.12 (m, 1H, major + minor), 1.09 (d, J = 6.9 Hz, 3H, minor), 0.63 (d, J = 6.9 Hz, 3H, major).

¹³C NMR (101 MHz, CDCl₃): δ 155.3, 155.2, 151.5, 151.4, 148.7, 148.7, 147.5, 147.4, 147.2, 147.2, 141.4, 141.4, 129.8, 129.5, 127.2, 127.2, 111.4, 111.4, 107.8, 107.7 (2C), 107.6, 80.5, 78.5, 64.4, 64.3, 56.1, 56.0, 55.8 (2C), 41.5, 41.5, 38.4, 38.2, 33.6, 33.6, 33.5, 29.7, 29.6, 29.1, 29.0, 29.0, 28.2, 28.1, 25.2, 25.2, 17.1, 12.9.

HRMS (**ESI**): m/z calcd. for C₂₄H₃₃N₄O₅ [M+H]⁺ 457.2445, found 457.2432.

1-Benzyl-6,7-dimethoxy-1-methylisochromane (2u)

The general procedure was followed with 2-methyl-3-phenyloxirane (26.8 mg, 0.2 mmol) and 2-(3,4-dimethoxyphenyl)ethan-1-ol (73.0 mg, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 1 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 85:15 gradient) afforded **2u** (37.0 mg, 62% yield) as a colorless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.23 – 7.17 (m, 3H), 7.11 (dd, *J* = 7.6, 1.8 Hz, 2H), 6.52 (s, 1H), 6.51 (s, 1H), 3.98 (ddd, *J* = 11.0, 6.4, 4.4 Hz, 1H), 3.89 (ddd, *J* = 11.0, 6.6, 4.4 Hz, 1H), 3.85 (s, 3H), 3.83 (s, 3H), 3.18 (d, *J* = 13.7 Hz, 1H), 2.98 (d, *J* = 13.7 Hz, 1H), 2.65 (ddd, *J* = 15.7, 6.4, 4.4 Hz, 1H), 2.54 (ddd, *J* = 15.7, 6.6, 4.4 Hz, 1H), 1.47 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 147.4, 147.2, 137.8, 133.4, 130.9 (2C), 127.7 (2C), 126.4, 126.1, 111.2, 109.4, 76.7, 59.9, 56.1, 55.9, 48.0, 29.3, 27.9.

HRMS (ESI): m/z calcd. for C₁₉H₂₃O₃ [M+H]⁺ 299.1642, found 299.1637.

4-(Isochroman-1-ylmethyl)benzonitrile (2v)

The general procedure was followed with 4-(oxiran-2-yl)benzonitrile (29.0 mg, 0.2 mmol) and phenylethanol (48.0 μ L, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 1 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 85:15 gradient) afforded **2v** (35.5 mg, 71% yield) as a white solid. Spectral data are in accordance with those found in the literature.³

m.p. = 109 − 111 °C

¹**H NMR (400 MHz, CDCl₃):** δ 7.56 (d, *J* = 8.4 Hz, 2H), 7.36 (d, *J* = 8.4 Hz, 2H), 7.25 – 7.01 (m, 4H), 5.05 (dd, *J* = 8.6, 3.4 Hz, 1H), 4.11 (ddd, *J* = 11.2, 5.3, 3.8 Hz, 1H), 3.73 (ddd, *J* = 11.2, 9.5, 3.8 Hz, 1H), 3.30 (dd, *J* = 14.3, 3.4 Hz, 1H), 3.10 (dd, *J* = 14.3, 8.6 Hz, 1H), 2.88 (ddd, *J* = 16.1, 9.5, 5.3 Hz, 1H), 2.66 (ddd, *J* = 16.1, 3.8, 3.8 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃): δ 144.4, 136.9, 134.3, 131.9 (2C), 130.4 (2C), 129.1, 126.7, 126.2, 124.9, 119.2, 110.1, 76.0, 63.2, 42.5, 29.0.

HRMS (ESI): m/z calcd. for C₁₇H₁₄ON [M+H] + 250.1133, found 250.1226.

5-(4-Nitrobenzyl)-7,8-dihydro-5H-[1,3]dioxolo[4,5-g]isochromene (2w)

The general procedure was followed with 2-(4-nitrophenyl)oxirane (33.0 mg, 0.2 mmol) and 2-(benzo[d][1,3]dioxol-5-yl)ethanol (66.5 mg, 0.40 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 0.25 h. Purification by FC over silica gel (*n*-pentane/EtOAc 95:5 to 85:15 gradient) afforded **2w** (46.0 mg, 73% yield) as a yellow solid.

m.p. = 167 − 169 °C.

¹**H NMR** (400 MHz, CDCl₃): δ 8.12 (d, J = 8.7 Hz, 2H), 3.93 (d, J = 8.7 Hz, 2H), 6.62 (s, 1H), 6.55 (s, 1H), 5.93 – 5.92 (m, 2H), 4.96 (dd, J = 8.3, 3.5 Hz, 1H), 4.06 (ddd, J = 11.2, 5.1, 3.7 Hz, 1H), 3.66 (ddd, J = 11.2, 9.5, 3.7 Hz, 1H), 3.27 (dd, J = 14.3, 3.5 Hz, 1H), 3.09 (dd, J = 14.3, 8.3 Hz, 1H), 2.75 (ddd, J = 16.0, 9.5, 5.1 Hz, 1H), 2.53 (ddd, J = 16.0, 3.7, 3.7 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 146.8, 146.6, 146.4, 146.3, 130.6 (2C), 129.7, 127.8, 123.4 (2C), 108.9, 105.0, 101.0, 76.1, 63.3, 42.5, 29.2.

HRMS (**ESI**): *m*/*z* calcd. For C₁₇H₁₅NO₅Na [M+Na]⁺ 336.0830, found 336.0842.

1-(4-Nitrobenzyl)isochromane-6,7-diol (2x)

Chemical Formula: C₁₆H₁₅NO₅ Exact Mass: 301.10

The general procedure was followed with 2-(4-nitrophenyl)oxirane (33.0 mg, 0.2 mmol) and 4-(2-hydroxyethyl)benzene-1,2-diol (61.6 mg, 0.40 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 1 h. Purification by FC over silica gel (*n*-pentane/EtOAc 80:20 to 50:50 gradient) afforded **2x** (24.0 mg, 40% yield) as a yellow solid.

m.p. = decomposition at 190 °C.

¹**H** NMR (400 MHz, acetone-*d*₆): δ 8.13 (d, *J* = 8.7 Hz, 1H), 7.79 (brs, 2H), 7.58 (d, *J* = 8.7 Hz, 2H), 6.77 (s, 1H), 6.57 (s, 1H), 4.92 (dd, *J* = 8.9, 3.2 Hz, 1H), 4.02 (ddd, *J* = 11.2, 5.1, 4.0 Hz, 1H), 3.61 (ddd, *J* = 11.2, 9.2, 3.8 Hz, 1H), 3.34 (dd, *J* = 14.2, 3.2 Hz, 1H), 3.10 (dd, *J* = 14.2, 8.9 Hz, 1H), 2.68 (ddd, *J* = 15.7, 9.2, 5.1 Hz, 1H), 2.48 (ddd, *J* = 15.7, 4.0, 3.8 Hz, 1H).

¹³C NMR (100 MHz, acetone-*d*₆): δ 149.4, 148.1, 145.4, 145.21, 132.5 (2C), 130.0, 127.0, 124.4 (2C), 116.7, 113.4, 77.3, 64.4, 43.4, 29.7.

HRMS (**ESI**): *m*/*z* calcd. For C₁₆H₁₅NO₅Na [M+Na]⁺ 324.0842, found 324.0829.

6-Methoxy-1-(4-nitrobenzyl)isochromane (2y)

The general procedure was followed with 2-(4-nitrophenyl)oxirane (33.0 mg, 0.2 mmol) and 2-(3-methoxyphenyl)ethanol (60.9 mg, 0.40 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 1 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 85:15 gradient) afforded **2y** (42.0 mg, 70% yield) as a yellow solid.

m.p. = 66 - 68 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 8.12 (d, *J* = 8.7 Hz, 2H), 7.40 (d, *J* = 8.7 Hz, 2H), 7.07 (d, *J* = 8.5 Hz, 1H), 6.78 (dd, *J* = 8.5, 2.7 Hz, 1H), 6.63 (d, *J* = 2.6 Hz, 1H), 5.04 – 5.01 (dd, *J* = 8.3, 3.5 Hz, 1H), 4.09 (ddd, *J* = 11.2, 5.3, 3.7 Hz, 1H), 3.80 (s, 3H), 3.71 (ddd, *J* = 11.2, 9.7, 3.7 Hz, 1H), 3.32 (dd, *J* = 14.3, 3.5 Hz, 1H), 3.11 (dd, *J* = 14.3, 8.3 Hz, 1H), 2.85 (ddd, *J* = 16.3, 9.7, 5.3 Hz, 1H), 2.62 (ddd, *J* = 16.3, 3.7, 3.7 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 158.3, 146.8, 146.7, 135.8, 130.6 (2C), 129.1, 126.0, 123.4 (2C), 113.6, 112.8, 75.9, 63.4, 55.4, 42.5, 29.5.

HRMS (**ESI**): *m*/*z* calcd. For C₁₇H₁₇NO₄Na [M+Na]⁺ 322.1038, found 322.1050.

1-(4-Nitrobenzyl)isochroman-6-ol (2z)

The general procedure was followed with 2-(4-nitrophenyl)oxirane (33.0 mg, 0.2 mmol) and 3-(2-hydroxyethyl)phenol (55.2 mg, 0.40 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 1 h. Purification by FC over silica gel (*n*-pentane/EtOAc 80:20 to 60:40 gradient) afforded a mixture of two regioisomers (35.4 mg, 63% yield, *p/o* 90:10). After re-crystallization from CHCl₃ + acetone/*n*-hexane, a pure sample of **2z** was obtained as yellow crystals.

m.p. = 154 - 156 °C.

¹**H** NMR (400 MHz, acetone-*d*₆): δ 8.22 (s, 1H), 8.16 (d, *J* = 8.6 Hz, 2H), 7.61 (d, *J* = 8.6 Hz, 2H), 7.20 (d, *J* = 8.3 Hz, 1H), 6.75 (d, *J* = 8.3 Hz, 1H), 6.63 (s, 1H), 5.01 (dd, *J* = 8.8, 3.3 Hz, 1H), 4.09 (ddd, *J* = 11.0, 5.2, 4.0 Hz, 1H), 3.69 (ddd, *J* = 11.0, 9.2, 4.0 Hz, 1H), 3.44 (dd, *J* = 14.2, 3.3 Hz, 1H), 3.12 (dd, *J* = 14.2, 8.8 Hz, 1H), 2.81 (ddd, *J* = 16.3, 9.2, 5.2 Hz, 1H), 2.61 (ddd, *J* = 16.3, 4.0, 4.0 Hz, 1H).

¹³C NMR (100 MHz, acetone-*d*₆): δ 157.4, 149.3, 148.2, 137.2, 132.5 (2C), 129.9, 127.9, 124.4 (2C), 116.6, 115.2, 77.5, 64.2, 43.4. One CH₂ signal overlaps with the signal of the solvent.

HRMS (**ESI**): *m*/*z* calcd. For C₁₆H₁₅NO₄Na [M+Na]⁺ 308.0881, found 308.0893.

6-Methyl-1-(4-nitrobenzyl)isochromane (2aa)

The general procedure was followed with 2-(4-nitrophenyl)oxirane (33.0 mg, 0.2 mmol) and 2-(3-methylphenyl)ethanol (54.5 mg, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 1 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 90:10 gradient) afforded two regioisomers (44.4 mg, 78% yield, 83:17 *p*:*o*) as a yellow oil. The two regioisomers were separated by a second FC with a slower gradient.

¹**H NMR (400 MHz, CDCl₃):** δ 8.12 (d, *J* = 8.7 Hz, 2H), 7.41 (d, *J* = 8.7 Hz, 2H), 7.07 – 7.02 (m, 2H), 6.93 (s, 1H), 5.04 (dd, *J* = 8.5, 3.3 Hz, 1H), 4.10 (ddd, *J* = 11.2, 5.2, 3.7 Hz, 1H), 3.71 (ddd, *J* = 11.2, 9.7, 3.7 Hz, 1H), 3.33 (dd, *J* = 14.3, 3.3 Hz, 1H), 3.13 (dd, *J* = 14.3, 8.5 Hz, 1H), 2.85 (ddd, *J* = 15.4, 9.7, 5.2 Hz, 1H), 2.62 (ddd, *J* = 15.4, 3.7 Hz, 1H), 2.32 (s, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 146.8, 146.7, 136.4, 134.2, 133.9, 130.6 (2C), 129.8, 127.2, 124.8, 123.4 (2C), 76.1, 63.5, 42.4, 29.1, 21.1.

HRMS (**ESI**): *m*/*z* calcd. For C₁₇H₁₇NO₃Na [M+Na]⁺ 306.1096, found 306.1101.

6-Fluoro-1-(4-nitrobenzyl)isochromane (2ab)

Chemical Formula: C₁₆H₁₄FNO₃ Exact Mass: 287.10

The general procedure was followed with 2-(4-nitrophenyl)oxirane (33.0 mg, 0.2 mmol) and 2-(3-fluorophenyl)ethan-1-ol (49.6 μ L, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 1 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 90:10 gradient) afforded two regioisomers (48.7 mg, 85% yield, 96:4 *p:o*) as a yellow solid.

¹**H NMR (400 MHz, CDCl₃):** δ 8.12 (d, *J* = 8.8 Hz, 2H), 7.40 (d, *J* = 8.8 Hz, 2H), 7.13 (dd, *J* = 8.5, 5.5 (HF) Hz, 1H), 6.92 (ddd, *J* = 8.5, 8.5 (HF), 2.7 Hz, 1H), 6.80 (dd, *J* = 9.3 (HF), 2.7 Hz, 1H), 5.03 (dd, *J* = 8.4, 3.5 Hz, 1H), 4.10 (ddd, *J* = 11.4, 5.4, 3.7 Hz, 1H), 3.70 (ddd, *J* = 11.4, 9.7, 3.7 Hz, 1H), 3.33 (dd, *J* = 14.4, 3.5 Hz, 1H), 3.13 (dd, *J* = 14.3, 8.4 Hz, 1H), 2.86 (ddd, *J* = 16.4, 9.7, 5.4 Hz, 1H), 2.63 (ddd, *J* = 16.4, 3.7, 3.7 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃): δ 161.3 (d, J = 245.7 Hz), 146.6, 146.3, 136.6 (d, J = 7.6 Hz), 132.5 (d, J = 3.1 Hz), 130.5 (2C), 126.5 (d, J = 8.3 Hz), 123.3 (2C), 115.4 (d, J = 20.7 Hz), 113.5 (d, J = 21.6 Hz), 75.7, 63.0, 42.2, 29.1.

¹⁹**F** NMR (471 MHz, CDCl₃): δ -115.9 (ddd, J = 9.3, 8.5, 5.3 Hz).

HRMS (ESI): m/z calcd. for C₁₆H₁₃O₃NF [M+H] + 288.0932, found 288.1021.

7-Methoxy-1-(4-nitrobenzyl)isochromane (2ad)

Chemical Formula: C₁₇H₁₇NO₄ Exact Mass: 299.12

The general procedure was followed with 2-(4-nitrophenyl)oxirane (33.0 mg, 0.2 mmol) and 2-(4-methoxyphenyl)ethan-1-ol (61 mg, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 0.25 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 90:10 gradient) afforded **2ad** (17.7 mg, 29% yield) as a yellow solid.

m.p. = $79 - 81 \,^{\circ}\text{C}$

¹**H NMR (400 MHz, CDCl₃):** δ 8.13 (d, *J* = 8.7 Hz, 2H), 7.41 (d, *J* = 8.7 Hz, 2H), 7.03 (d, *J* = 8.4 Hz, 1H), 6.76 (d, *J* = 11.1 Hz, 1H), 6.69 (s, 1H), 5.03 (dd, *J* = 8.5, 3.7 Hz, 1H), 4.17 – 4.03 (ddd, *J* = 11.0, 5.3, 3.9 Hz, 1H), 3.80 (s, 3H), 3.69 (ddd, *J* = 11.0, 9.7, 3.9 Hz, 1H), 3.33 (dd, *J* = 14.3, 3.7 Hz, 1H), 3.14 (dd, *J* = 14.3, 8.5 Hz, 1H), 2.80 (ddd, *J* = 15.9, 9.7, 5.3, 1H), 2.59 (d, *J* = 15.9, 3.9, 3.9 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 158.0, 146.6, 146.5, 137.8, 130.5 (2C), 130.0, 126.4, 123.3 (2C), 112.4, 110.3, 76.0, 63.5, 55.4, 42.2, 28.2.

HRMS (ESI): m/z calcd. for C₁₇H₁₇O₄NNa [M+Na] + 322.1050, found 322.1038.

7-(Tert-butyl)-1-(4-nitrobenzyl)isochromane (2ae)

The general procedure was followed with 2-(4-nitrophenyl)oxirane (33.0 mg, 0.2 mmol) and 2-(3-(tert-butyl)phenyl)ethan-1-ol (71.3 mg, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 1 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 95:5 gradient) afforded **2ae** (43.7 mg, 67% yield) as a colorless oil.

¹**H NMR** (**500 MHz**, **CDCl**₃): δ 8.13 (d, J = 8.9 Hz, 2H), 7.42 (d, J = 8.9 Hz, 2H), 7.23 (dd, J = 8.0, 2.4 Hz, 1H), 7.13 (d, J = 2.4 Hz, 1H), 7.06 (d, J = 8.0 Hz, 1H), 5.09 (dd, J = 8.5, 3.7 Hz, 1H), 4.12 (ddd, J = 11.3, 5.3, 3.8 Hz, 1H), 3.73 (ddd, J = 11.3, 9.5, 3.8 Hz, 1H), 3.36 (dd, J = 14.3, 3.7 Hz, 1H), 3.18 (dd, J = 14.3, 8.5 Hz, 1H), 2.85 (ddd, J = 16.0, 9.5, 5.3 Hz, 1H), 2.64 (ddd, J = 16.0, 3.8, 3.8 Hz, 1H), 1.32 (s, 9H).

¹³C NMR (126 MHz, CDCl₃): δ 149.2, 146.7, 146.6, 136.2, 131.3, 130.5 (2C), 128.8, 123.9, 123.3 (2C), 121.5, 76.2, 63.3, 42.4, 34.6, 31.4 (3C), 28.6.

HRMS (ESI): m/z calcd. for C₂₀H₂₃O₃NNa [M+Na]⁺ 348.1570, found 348.1555.

6-Fluoro-7-methoxy-1-(4-nitrobenzyl)isochromane (2af)

The general procedure was followed with 2-(4-nitrophenyl)oxirane (33.0 mg, 0.2 mmol) and 2-(3-fluoro-4-methoxyphenyl)ethan-1-ol (68.0 mg, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 1 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 75:25 gradient) afforded **2af** (37.0 mg, 59% yield) as a yellow solid.

m.p. = 129 − 131 °C

¹**H** NMR (400 MHz, CDCl₃): δ 8.13 (d, J = 8.8 Hz, 2H), 7.41 (d, J = 8.8 Hz, 2H), 6.81 (d, J = 11.6 Hz (HF), 1H), 6.69 (d, J = 8.5 Hz (HF), 1H), 5.00 (dd, J = 8.3, 3.7 Hz, 1H), 4.08 (ddd, J =

11.1, 5.2, 3.8 Hz, 1H), 3.86 (s, 3H), 3.68 (ddd, *J* = 11.1, 9.4, 3.8 Hz, 1H), 3.31 (dd, *J* = 14.3, 3.7 Hz, 1H), 3.13 (dd, *J* = 14.3, 8.3 Hz, 1H), 2.77 (ddd, *J* = 16.0, 9.4, 5.2 Hz, 1H), 2.55 (ddd, *J* = 16.0, 3.8, 3.8 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 151.3 (d, *J* = 246 Hz), 146.8, 146.4, 146.1 (d, *J* = 11.1 Hz), 132.5 (d, *J* = 3.8 Hz), 130.5 (2C), 127.2 (d, *J* = 6.5 Hz), 123.4 (2C), 116.3 (d, *J* = 17.9 Hz), 110.3 (d, *J* = 2.2 Hz), 75.7, 63.1, 56.6, 42.3, 28.2.

¹⁹**F** NMR (471 MHz, CDCl₃): δ -137.3 (dd, J = 11.6, 8.5 Hz).

HRMS (ESI): m/z calcd. for C₁₇H₁₆O₄NF [M+Na]⁺ 340.0956, found 340.0964.

5,8-Dimethoxy-1-(4-nitrobenzyl)isochromane (2ag)

The general procedure was followed with 2-(4-nitrophenyl)oxirane (33.0 mg, 0.2 mmol) and 2-(2,5-dimethoxyphenyl)ethan-1-ol (73.0 mg, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 0.25 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 90:10 gradient) afforded **2ag** (42.0 mg, 64% yield) as a yellow solid.

m.p. = 115 − 117 °C

¹**H** NMR (400 MHz, CDCl₃): δ 8.13 (d, J = 8.6 Hz, 2H), 7.41 (d, J = 8.6 Hz, 2H), 6.71 (s, 2H), 5.12 (dd, J = 8.8, 2.7 Hz, 1H), 4.06 (ddd, J = 11.8, 7.7, 4.9 Hz, 1H), 3.86 (s, 3H), 3.81 – 3.75 (m, 1H), 3.78 (s, 3H), 3.35 (dd, J = 14.1, 2.7 Hz, 1H), 3.15 (dd, J = 14.1, 8.8 Hz, 1H), 2.76 – 2.66 (m, 1H), 2.58 (ddd, J = 17.1, 4.9, 4.9 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 151.0, 149.6, 148.3, 146.6, 130.3 (2C), 126.8, 124.7, 123.4 (2C), 108.2, 107.6, 72.9, 59.9, 55.8, 55.6, 39.3, 23.2.

HRMS (ESI): m/z calcd. for C₁₈H₂₀O₅N [M+H]⁺ 330.1336, found 330.1341.

4-(4-nitrobenzyl)-1,4-dihydro-2H-benzo[f]isochromene (2ai)

The general procedure was followed with 2-(4-nitrophenyl)oxirane (33.0 mg, 0.2 mmol) and 2-(naphthalen-1-yl)ethan-1-ol (68.9 mg, 0.4 mmol) in the presence of TfOH (0.35 μ L, 0.004 mmol, 2 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 16 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 90:10 gradient) afforded **2ai** (12.0 mg, 19% yield) as a light-yellow solid.

m.p. = 137 − 139 °C

¹**H** NMR (400 MHz, CDCl₃): δ 8.11 (d, J = 8.7 Hz, 2H), 7.92 (dd, J = 8.4, 1.3 Hz, 1H), 7.84 (dd, J = 7.7, 1.6 Hz, 1H), 7.74 (d, J = 8.6 Hz, 1H), 7.53 (m, 2H), 7.43 (d, J = 8.7 Hz, 2H), 7.29 (d, J = 8.6 Hz, 1H), 5.22 (m, 1H), 4.30 (ddd, J = 11.3, 4.8, 4.8 Hz, 1H), 3.88 (ddd, J = 11.3, 8.1, 4.8 Hz, 1H), 3.44 (dd, J = 14.4, 3.5 Hz, 1H), 3.21 (dd, J = 14.4, 8.4 Hz, 1H), 3.14 – 3.03 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 146.8, 146.6, 133.8, 132.2, 132.0, 130.6 (2C), 130.0, 128.6, 126.7, 126.7, 125.9, 123.4 (2C), 123.0, 123.0, 76.3, 62.9, 42.1, 25.6.

HRMS (ESI): m/z calcd. for C₂₀H₁₇O₃NNa [M+Na]⁺ 342.1101, found 342.1091.

1-(4-Nitrobenzyl)-4-(perfluorophenyl)isochromane (2aj)

Chemical Formula: C₂₂H₁₄F₅NO₃ Exact Mass: 435.0894

The general procedure was followed with 2-(4-nitrophenyl)oxirane (33.0 mg, 0.2 mmol) and 2-(perfluorophenyl)-2-phenylethan-1-ol (115.2 mg, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 1 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 92:8 gradient) afforded **2aj** as two diastereoisomers (58.3 mg, 67% yield, 85:15 *dr*) as a yellow solid.

¹**H** NMR (400 MHz, CDCl₃, major product): δ 8.14 (d, J = 8.8 Hz, 2H), 7.44 (d, J = 8.8 Hz, 2H), 7.32 – 7.27 (m, 2H), 7.17 (m, 1H), 6.79 (m, 1H), 5.23 (dd, J = 8.5, 3.3 Hz, 1H), 4.66 (dd, J = 10.3, 5.6 Hz, 1H), 4.12 (dd, J = 11.0, 5.6 Hz, 1H), 3.89 (dd, J = 11.0, 10.3 Hz, 1H), 3.48 (dd, J = 14.3, 3.3 Hz, 1H), 3.17 (dd, J = 14.3, 8.5 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃, major product): δ 146.8, 146.1, 145.7 (dm, *J* = 247 Hz), 140.5 (dm, *J* = 252 Hz, 2C), 137.9 (dm, *J* = 251 Hz, 2C), 136.3, 134.7, 130.7 (2C), 127.5, 127.3, 127.1, 124.8, 123.4 (2C), 114.0 (m), 77.0, 66.9, 42.0, 34.9.

¹⁹F NMR (471 MHz, CDCl₃, major product): δ -140.5 – -141.0 (m), -154.9 (t, J = 20.8 Hz), - 161.3 (td, J = 20.8, 8.1 Hz).

HRMS (ESI): m/z calcd. for C₂₂H₁₅O₃NF₅ [M+H]⁺ 436.0872, found 436.0956.

4-((4-(Perfluorophenyl)isochroman-1-yl)methyl)benzonitrile (2ak)

Chemical Formula: C₂₃H₁₄F₅NO Exact Mass: 415.0996

The general procedure was followed with 2-(4-cyanophenyl)oxirane (29.0 mg, 0.2 mmol) and 2-(perfluorophenyl)-2-phenylethanol (115.3 mg, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 1 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 95:5 gradient) afforded **2ak** as two diastereoisomers (50.9 mg, 72% yield, 85:15 *dr*) as a white solid. The two diastereoisomers were separated by a second FC with a slower gradient.

m.p. = 125 − 127 °C

¹**H NMR (400 MHz, CDCl₃, major product):** δ 7.58 (d, J = 8.1 Hz, 2H), 7.39 (d, J = 8.1 Hz, 2H), 7.28 – 7.25 (m, 2H), 7.18 – 7.14 (m, 1H), 6.79 (d, J = 7.7 Hz, 1H), 5.20 (dd, J = 8.6, 3.3 Hz, 1H), 4.66 (dd, J = 10.2, 5.6 Hz, 1H), 4.12 (dd, J = 11.0, 5.6 Hz, 1H), 3.89 (dd, J = 11.0, 10.2 Hz, 1H), 3.43 (dd, J = 14.4, 3.3 Hz, 1H), 3.12 (dd, J = 14.4, 8.6 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃, major product): δ 145.7 (dm, J = 249 Hz), 143.9, 140.5 (dm, J = 254 Hz, 2C), 137.9 (dm, J = 252 Hz, 2C), 136.4, 134.7, 132.1 (2C), 130.6 (2C), 127.4, 127.3, 127.1, 124.9, 119.2, 114.1 (m), 110.4, 77.0, 66.9, 42.4, 34.9 (d, J = 1 Hz).

¹⁹F NMR (377 MHz, CDCl₃, major product): δ -140.8 (brs), -154.9 (t, *J* = 21.0 Hz), -161.4 (td, *J* = 21.0, 8.0 Hz).

HRMS (**ESI**): *m*/*z* calcd. For C₂₃H₁₄NOF₅Na [M+Na]⁺ 438.0876, found 438.0888.

1-(4-Nitrobenzyl)-4-(4-nitrophenyl)isochromane (2al)

The general procedure was followed with 2-(4-nitrophenyl)oxirane (33.0 mg, 0.2 mmol) and 2-(4-nitrophenyl)-2-phenylethan-1-ol (97.2 mg, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 1 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 95:5 gradient) afforded **2al** as two diastereoisomers (67.9 mg, 87% yield, 80:20 *dr*) as a yellow solid. The two diastereoisomers were separated by a second FC with a slower gradient.

m.p. = 158 – 160 °C

¹**H** NMR (400 MHz, CDCl₃, major product): δ 8.15 (d, J = 8.7 Hz, 4H), 7.43 (d, J = 8.7 Hz, 2H), 7.33 – 7.26 (m, 4H), 7.16 (ddd, J = 7.2, 7.2, 1.6 Hz, 1H), 6.82 (d, J = 7.2 Hz, 1H), 5.25 (dd, J = 8.5, 3.4 Hz, 1H), 4.26 – 4.19 (m, 2H), 3.74 (dd, J = 12.6, 9.1 Hz, 1H), 3.40 (dd, J = 14.4, 3.4 Hz, 1H), 3.25 (dd, J = 14.4, 8.5 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃, major product): δ 149.7, 147.2, 146.9, 146.2, 136.7, 136.1, 130.6 (2C), 130.0 (2C), 129.5, 127.5, 127.4, 125.1, 124.0 (2C), 123.5 (2C), 76.6, 68.9, 45.0, 42.0.

HRMS (ESI): m/z calcd. for $C_{22}H_{19}O_5N_2$ [M+H]⁺ 391.1299, found 391.1302.

5,8-Dimethyl-1-(4-nitrobenzyl)-4-(perfluorophenyl)isochromane (2am)

Chemical Formula: C₂₄H₁₈F₅NO₃ Exact Mass: 463.1207 The general procedure was followed with 2-(4-nitrophenyl)oxirane (33.0 mg, 0.2 mmol) and 2-(2,5-dimethylphenyl)-2-(perfluorophenyl)ethan-1-ol (126.4 mg, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 1 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 90:10 gradient) afforded **2am** as two diastereoisomers (51.0 mg, 55% yield, 80:20 *dr*) as a yellow oil.

¹**H** NMR (400 MHz, CDCl₃, major product): δ 8.20 (d, J = 8.8 Hz, 2H), 7.51 (d, J = 8.8 Hz, 2H), 7.11 (d, J = 7.8 Hz, 1H), 7.03 (d, J = 7.8 Hz, 1H), 5.23 (dd, J = 10.5, 2.4 Hz, 1H), 4.54 (dd, J = 12.0, 3.9 Hz, 1H), 4.40 (d, J = 3.9 Hz, 1H), 3.91 (d, J = 12.0 Hz, 1H), 3.32 (dd, J = 15.3, 10.5 Hz, 1H), 3.14 (dd, J = 15.3, 2.4 Hz, 1H), 2.42 (s, 3H), 2.06 (s, 3H).

¹³C NMR (126 MHz, CDCl₃, major product): δ 147.3, 146.9, 145.6 (dm, J = 247.1 Hz), 140.1 (dm, J = 253.0 Hz, 2C), 137.8 (dm, J = 260.2 Hz, 2C), 135.9, 133.9, 131.0, 130.5, 130.3, 129.9 (2C), 129.2, 123.8 (2C), 116.7 (td; J = 15.1, 3.9 Hz), 74.9, 63.5, 37.6, 32.8, 19.5, 18.6.

¹⁹**F NMR (471 MHz, CDCl₃, major product**) δ -139.98, -143.90, -156.17 (dd, *J* = 21.0, 21.0 Hz), -161.56, -162.57.

4-Methyl-1-(4-nitrobenzyl)isochromane (2an)

The general procedure was followed with 2-(4-nitrophenyl)oxirane (33.0 mg, 0.2 mmol) and 2methyl-2-phenylethanol (54.5 mg, 0.40 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 0.25 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 85:15 gradient) afforded **2an** as two diastereoisomers (29.0 mg, 51% yield, 57:43 *dr*) as a yellow oil.

¹**H NMR (400 MHz, CDCl₃):** δ 8.15 – 8.09 (m, 2H, major + minor), 7.42 – 7.38 (m, 2H, major + minor), 7.26 – 7.14 (m, 4H, major + minor), 5.11 (dd, *J* = 7.9, 3.5 Hz, 1H, major), 5.05 (dd, *J* = 7.9, 3.6 Hz, 1H, minor), 4.05 (dd, *J* = 11.2, 4.7 Hz, 1H, major), 3.81 (d, *J* = 3.0 Hz, 2H, minor), 3.43 (dd, *J* = 11.2, 7.8 Hz, 1H, major), 3.37 (dd, *J* = 14.3, 3.6 Hz, 1H, minor), 3.31 (dd, *J* = 14.3, 3.5 Hz, 1H, major), 3.18 (dd, 14.3, 7.9 Hz, 1H, major + minor), 2.94 – 2.85 (m, 1H, major), 2.78 – 2.71 (m, 1H, minor), 1.22 (d, *J* = 7.0 Hz, 3H, major), 1.17 (d, *J* = 7.1 Hz, 3H, minor).

¹³C NMR (100 MHz, CDCl₃): δ 146.8 (2C, major + minor ; 1C, major), 146.6 (minor),140.0 (minor), 139.7 (major), 136.3 (major), 136.2 (minor), 130.8 (2C, minor), 130.6 (2C, major), 128.8 (minor), 127.3 (major), 127.1 (major), 127.0 (minor), 126.3 (minor), 126.2 (major), 124.9 (major), 124.8 (minor), 123.4 (2C, major), 123.3 (2C, minor), 76.5 (major), 76.3 (minor), 69.3 (minor), 69.0 (major), 42.3 (major), 42.3 (minor), 33.0 (minor), 32.1 (major), 21.0 (minor), 17.5 (major).

HRMS (**ESI**): *m*/*z* calcd. For C₁₇H₁₇NO₃Na [M+Na]⁺ 306.1101, found 306.1083.

1-(4-Nitrobenzyl)-3a,4,5,6-tetrahydro-1H,3H-benzo[de]isochromene (2ao)

The general procedure was followed with 2-(4-nitrophenyl)oxirane (33.0 mg, 0.2 mmol) and (1,2,3,4-tetrahydronaphthalen-1-yl)methanol (64.9 mg, 0.40 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 0.25 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 93:7 gradient) afforded **2ao** as two diastereoisomers (37.1 mg, 60% yield, 85:15 *dr*) as a yellow solid. The two diastereoisomers were separated by a second FC with a slower gradient. The compound was recrystallized from DCM/hexane.

 $m.p. = 142 - 144 \ ^{\circ}C.$

¹**H NMR (400 MHz, CDCl₃):** δ 8.09 (d, J = 8.7 Hz, 2H), 7.36 (d, J = 8.7 Hz, 2H), 7.15 (dd, J = 7.6, 7.6 Hz, 1H), 7.02 – 6.94 (m, 2H), 5.17 (dd, J = 7.4, 3.7 Hz, 1H), 3.99 (dd, J =10.5 Hz, 4.7 Hz, 1H), 3.36 (dd, J = 14.1, 3.7 Hz, 1H), 3.30 (dd, J = 11.1, 10.5 Hz, 1H), 3.14 (dd, J = 14.1, 7.4 Hz, 1H), 2.87 (dd, J = 16.2, 5.6 Hz, 1H), 2.77 (ddd, J = 16.2, 11.5, 6.8 Hz, 1H), 2.65 (m, 1H), 2.00 – 1.94 (m, 1H), 1.81-1.66 (m, 2H), 1.08 (m, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 146.7, 146.6, 136.0, 135.5, 135.4, 130.8 (2C), 127.3, 126.1, 123.2 (2C), 122.1, 77.1, 69.7, 43.7, 35.7, 28.8, 24.5, 22.0.

HRMS (**ESI**): *m*/*z* calcd. For C₁₉H₁₉NO₃Na [M+Na]⁺ 332.1257, found 332.1248.

4,4-Dimethyl-1-(4-nitrobenzyl)isochromane (2ap)

The general procedure was followed with 2-(4-nitrophenyl)oxirane (33.0 mg, 0.2 mmol) and 2,2dimethyl-2-phenylethanol (60.1 mg, 0.40 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 0.25 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 85:15 gradient) afforded **2ap** (42.0 mg, 71% yield) as a yellow oil.

¹**H** NMR (400 MHz, CDCl₃): δ 8.12 (d, J = 8.7 Hz, 2H), 7.41 (d, J = 8.7 Hz, 2H), 7.33 (dd, J = 7.4, 1.8 Hz, 1H), 7.26 – 7.16 (m, 3H), 5.10 (dd, J = 8.1, 3.6 Hz, 1H), 3.67 (d, J = 11.1 Hz, 1H), 3.49 (d, J = 11.1 Hz, 1H), 3.35 (dd, J = 14.3, 3.6 Hz, 1H), 3.22 (dd, J = 14.3, 8.1 Hz, 1H), 1.20 (s, 3H), 1.17 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 146.7, 146.6, 143.9, 135.4, 130.7 (2C), 127.2, 125.9, 125.9, 124.7, 123.3 (2C), 76.8, 74.4, 42.1, 33.8, 28.5, 25.9.

HRMS (**ESI**): *m*/*z* calcd. For C₁₈H₁₉NO₃Na [M+Na]⁺ 320.1245, found 320.1257.

3-Methyl-1-(4-nitrobenzyl)isochromane (2aq)

The general procedure was followed with 2-(4-nitrophenyl)oxirane (33.0 mg, 0.2 mmol) and 1phenylpropan-2-ol (56.0 μ L, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 1 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 90:10 gradient) afforded **2aq** as a single diastereoisomer (27.0 mg, 47% yield) as a yellow oil. 60% NMR yield with a ratio of 80/20 were determined by ¹H NMR using mesitylene as an external standard.

¹**H NMR (400 MHz, CDCl₃):** δ 8.08 (d, *J* = 8.7 Hz, 2H), 7.39 (d, *J* = 8.7 Hz, 2H), 7.24 – 7.13 (m, 3H), 7.04 (d, *J* = 7.3 Hz, 1H), 5.11 (dd, *J* = 7.3, 3.5 Hz, 1H), 3.74 (m, 1H), 3.41 (dd, *J* = 14.2, 3.5 Hz, 1H), 3.12 (dd, *J* = 14.2, 7.3 Hz, 1H), 2.55 (m, 2H), 1.29 (d, *J* = 6.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 146.6, 146.6, 136.6, 134.9, 130.9 (2C), 129.0, 126.7, 126.3, 124.5, 123.0 (2C), 76.5, 70.4, 42.5, 36.7, 21.8.

HRMS (**ESI**): m/z calcd. for C₁₇H₁₇O₃NNa [M+Na]⁺ 306.1101, found 306.1108.

5,8-dimethoxy-3-methyl-1-(4-nitrobenzyl)isochromane (2ar)

The general procedure was followed with 2-(4-nitrophenyl)oxirane (47.3 mg, 0.285 mmol) and 1-(2,5-dimethoxyphenyl)propan-2-ol (112.0 mg, 0.57 mmol) in the presence of TfOH (2.5 μ L, 0.029 mmol, 10 mol%) in HFIP (2.9 mL). The reaction mixture was stirred at 25 °C for 1 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 70:30 gradient) afforded **2ar** as two isolated diastereoisomers (*cis*: 41.7 mg, 43% yield and *trans*: 34.0 mg, 35% yield) as yellow solids.

m.p. (*cis*) = 96 – 98 °C

¹**H NMR** (400 MHz, CDCl₃, *cis* diastereoisomer): δ 8.00 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H), 6.70 – 6.61 (m, 2H), 5.21 (m, 1H), 3.85 (s, 3H), 3.72 (s, 3H), 3.55 (dqd, J = 12.1, 6.1, 2.2 Hz, 1H), 3.40 (dd, J = 13.6, 3.2 Hz, 1H), 3.23 (d, J = 13.6, 5.9 Hz, 1H), 2.68 (ddd, J = 16.4, 2.2, 1.3 Hz, 1H), 1.89 (m, 1H), 1.28 (d, J = 6.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃, *cis* diastereoisomer): δ 150.6, 149.9, 147.8, 146.5, 130.9 (2C), 126.3, 126.1, 122.8 (2C), 108.3, 107.7, 74.1, 69.0, 55.8, 55.5, 41.1, 30.9, 21.7.

HRMS (ESI *cis*): m/z calcd. for C₁₉H₂₁O₅NNa [M+Na]⁺ 366.1312, found 366.1306.

m.p. (*trans*) = 124 - 126 °C

¹**H** NMR (400 MHz, CDCl₃, *trans* diastereoisomer): δ 8.19 (d, J = 8.7 Hz, 2H), 7.46 (d, J = 8.7 Hz, 2H), 6.77 – 6.66 (m, 2H), 5.10 (dd, J = 10.2, 2.6 Hz, 1H), 4.15 (dqd, J = 12.2, 6.1, 3.4 Hz, 1H), 3.86 (s, 3H), 3.80 (s, 3H), 3.29 (dd, J = 14.2, 2.6 Hz, 1H), 3.12 (dd, J = 14.2, 10.2 Hz, 1H), 2.83 (dd, J = 17.2, 3.4 Hz, 1H), 2.34 (dd, J = 17.2, 12.2 Hz, 1H), 1.31 (d, J = 6.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃, trans diastereoisomer): δ 151.0, 149.4, 148.6, 146.6, 130.2 (2C), 126.8, 123.9, 123.6 (2C), 108.2, 107.5, 73.5, 62.8, 55.8, 55.7, 38.5, 30.3, 21.7.

HRMS (ESI trans): m/z calcd. for C₁₉H₂₁O₅NNa [M+Na]⁺ 366.1312, found 366.1304.

The general procedure was followed with 2-(4-nitrophenyl)oxirane (33.0 mg, 0.2 mmol) and (1S,2S)-2-phenylcyclohexan-1-ol (70.4 mg, 0.4 mmol) in the presence of TfOH (1.8 µL, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 1 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 90:10 gradient) afforded a mixture of diastereoisomers (27.6 mg, 69% yield, 80:20 *dr*) as a white solid. The two diastereoisomers were separated by a second FC with toluene as eluent.

m.p. = $94 - 97 \,^{\circ}C$

¹**H NMR (400 MHz, CDCl₃):** δ 8.04 (d, J = 8.7 Hz, 2H), 7.31 (d, J = 8.7 Hz, 2H), 7.23 – 7.12 (m, 4H), 5.23 (dd, J = 6.6, 3.7 Hz, 1H), 3.37 (dd, J = 14.1, 3.7 Hz, 1H), 3.20 (m, 1H), 3.14 (dd, J = 14.1, 6.6 Hz, 1H), 2.36 (m, 1H), 2.24 – 2.16 (m, 1H), 2.05 – 1.95 (m, 1H), 1.82 (m, 2H), 1.47 – 1.21 (m, 3H), 1.07 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 146.6, 146.5, 138.9, 136.6, 131.0 (2C), 126.8, 126.1, 125.0, 124.7, 123.0 (2C), 77.7, 76.5, 43.3, 41.8, 32.7, 28.3, 25.7, 24.6.

HRMS (ESI): m/z calcd. for $C_{20}H_{21}O_3NNa$ [M+Na]⁺ 346.1414, found 346.1422.

1-Benzhydryl-6,7-dimethoxyisochromane (2au)

The general procedure was followed with (2S,3R)-2,3-diphenyloxirane (39.3 mg, 0.2 mmol) and 2-(3,4-dimethoxyphenyl)ethan-1-ol (73.0 mg, 0.4 mmol) in the presence of TfOH (0.4 μ L, 0.004 mmol, 2 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 1 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 90:10 gradient) afforded **2au** (67.0 mg, 93% yield) as a colorless oil. Spectral data are in accordance with those found in the literature.⁴

¹**H NMR (400 MHz, CDCl₃):** δ 7.37 – 7.33 (m, 2H), 7.31 – 7.25 (m, 4H), 7.23 – 7.16 (m, 3H), 7.15 – 7.10 (m, 1H), 6.51 (s, 1H), 6.17 (s, 1H), 5.48 (d, *J* = 6.2 Hz, 1H), 4.47 (d, *J* = 6.2 Hz, 1H),

4.05 (ddd, *J* = 11.2, 5.0, 4.6 Hz, 1H), 3.81 (s, 3H), 3.66 (ddd, *J* = 11.3, 8.2, 4.6 Hz, 1H), 3.54 (s, 3H), 2.62 (ddd, *J* = 15.9, 8.2, 5.0 Hz, 1H), 2.53 (ddd, *J* = 15.9, 4.6, 4.6 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃): δ 147.4, 146.6, 142.9, 141.3, 129.5 (2C), 129.4 (2C), 128.5, 128.4 (2C), 128.0 (2C), 126.9, 126.5, 126.2, 111.2, 109.1, 77.5, 62.7, 57.3, 55.8, 55.6, 28.5.

HRMS (ESI): m/z calcd. for $C_{24}H_{25}O_3$ [M+H]⁺ 361.1798, found 361.1790.

2-(4,5-Dimethoxy-2-(2-methyl-1,2,3,4-tetrahydronaphthalen-1-yl)phenyl)ethan-1-ol (2av)

The general procedure was followed with 2-methyl-2-phenethyloxirane (32.4 mg, 0.2 mmol) and 2-(3,4-dimethoxyphenyl)ethan-1-ol (73.0 mg, 0.4 mmol) in the presence of TfOH (0.4 μ L, 0.004 mmol, 2 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 1 h. The 95:5 *dr* was determined by NMR and purification by FC over silica gel (*n*-pentane/EtOAc 90:10 to 70:30 gradient) afforded **2av** (45.0 mg, 70% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃): δ 7.14 – 7.03 (m, 2H), 6.97 (m, 1H), 6.75 (s, 1H), 6.62 (m, 1H), 6.42 (s, 1H), 3.88 (s, 3H), 3.87 – 3.77 (m, 3H), 3.69 (s, 3H), 3.01 (m, 2H), 2.91 (ddd, *J* = 16.8, 5.6, 3.3 Hz, 1H), 2.86 – 2.76 (m, 1H), 2.07 – 1.93 (m, 2H), 1.70 – 1.55 (m, 2H), 0.92 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 147.9, 147.1, 140.4, 136.9, 136.5, 129.6, 129.3, 128.7, 125.8, 125.6, 112.8, 112.5, 63.6, 56.0, 55.9, 49.0, 37.2, 36.1, 31.3, 29.5, 20.5.

HRMS (ESI): m/z calcd. for $C_{21}H_{25}O_2$ [M+H]⁺ - H₂O 309.1849, found 309.1861.

1-(4-Nitrobenzyl)-2-tosyl-1,2,3,4-tetrahydroisoquinoline (3a)

The general procedure was followed with 2-(4-nitrophenyl)oxirane (33.0 mg, 0.2 mmol) and 4methyl-N-phenethylbenzenesulfonamide (110.0 mg, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 1 h. Purification by FC over silica gel (*n*-pentane/DCM 20:80 to 10:90 gradient) afforded **3a** (68.0 mg, 81% yield) as a white solid.

 $m.p. = 145 - 147 \ ^{\circ}C$

¹**H NMR (400 MHz, CDCl₃):** δ 8.04 (d, *J* = 8.7 Hz, 2H), 7.49 (d, *J* = 8.3 Hz, 2H), 7.18 (d, *J* = 8.7 Hz, 2H), 7.15 – 7.07 (m, 4H), 7.00 – 6.88 (m, 2H), 5.20 (m, 1H), 3.60 (ddd, *J* = 13.4, 5.8, 4.7 Hz, 1H), 3.46 (ddd, *J* = 13.4, 9.7, 4.7 Hz, 1H), 3.25 (m, 2H), 2.65 (ddd, *J* = 15.8, 9.7, 5.8 Hz, 1H), 2.46 (ddd, *J* = 15.8, 4.7, 4.7 Hz, 1H), 2.32 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 146.9, 145.5, 143.5, 136.7, 134.9, 133.7, 130.8 (2C), 129.6 (2C), 129.0, 127.4, 127.1 (2C), 127.0, 126.4, 123.4 (2C), 57.9, 44.4, 40.3, 27.2, 21.5.

HRMS (ESI): m/z calcd. for C₂₃H₂₃O₄N₂S [M+H]⁺ 423.1373, found 423.1382.

1-benzyl-2-tosyl-1,2,3,4-tetrahydroisoquinoline (3b)

The general procedure was followed with 2-phenyloxirane (22.8 μ L, 0.2 mmol) and 4-methyl-N-phenethylbenzenesulfonamide (110.0 mg, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 1 h. Purification by FC over silica gel (*n*-pentane/EA 100:0 to 90:10 gradient) afforded **3b** (60.0 mg, 79% yield) as a white solid.

m.p. = 128 − 131 °C

¹**H** NMR (400 MHz, CDCl₃): δ 7.49 (d, J = 8.4 Hz, 2H), 7.26 – 7.20 (m, 3H), 7.15 – 7.02 (m, 6H), 7.00 – 6.95 (m, 1H), 6.84 (dd, J = 7.4, 1.6 Hz, 1H), 5.24 (dd, J = 6.6, 6.6 Hz, 1H), 3.57 (ddd, J = 13.4, 6.0, 4.6 Hz, 1H), 3.43 (ddd, J = 13.4, 9.8, 4.6 Hz, 1H), 3.24 – 3.06 (m, 2H), 2.71 (ddd, J = 16.4, 9.8, 6.0 Hz, 1H), 2.49 (ddd, J = 16.4, 4.6, 4.6 Hz, 1H), 2.34 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 143.1, 137.7, 137.1, 135.7, 133.7, 130.0 (2C), 129.5 (2C), 128.8, 128.3 (2C), 127.3, 127.2 (2C), 127.0, 126.6, 126.0, 58.0, 44.6, 40.0, 27.3, 21.5.

HRMS (ESI): m/z calcd. for C₂₃H₂₄O₂NS [M+H]⁺ 378.1522, found 378.1514.

1-phenethyl-2-tosyl-1,2,3,4-tetrahydroisoquinoline (3c)

The general procedure was followed with 2-benzyloxirane (26.3 μ L, 0.2 mmol) and 4-methyl-N-phenethylbenzenesulfonamide (110.0 mg, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 1 h. Purification by FC over silica gel (*n*-pentane/EA 100:0 to 90:10 gradient) afforded **3c** (65.0 mg, 83% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃): δ 7.59 (d, J = 8.3 Hz, 2H), 7.29 – 7.12 (m, 5H), 7.12 – 6.97 (m, 5H), 6.84 (dd, J = 7.5, 1.4 Hz, 1H), 5.04 (dd, J = 9.5, 4.8 Hz, 1H), 3.94 – 3.84 (m, 1H), 3.56 – 3.43 (m, 1H), 2.90 – 2.73 (m, 2H), 2.55 – 2.47 (m, 2H), 2.29 (s, 3H), 2.18 – 1.96 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 143.1, 141.8, 137.9, 136.5, 132.7, 129.4 (2C), 128.9, 128.5 (2C), 128.4 (2C), 127.1 (2C), 126.9, 126.7, 126.2, 125.9, 56.7, 39.4, 39.0, 32.9, 26.2, 21.5.

HRMS (**ESI**): m/z calcd. for C₂₄H₂₆O₂NS [M+H]⁺ 392.1679, found 392.1669.

1-benzhydryl-2-tosyl-1,2,3,4-tetrahydroisoquinoline (3d)

The general procedure was followed with (2S,3R)-2,3-diphenyloxirane (39.3 mg, 0.2 mmol) and 4-methyl-N-phenethylbenzenesulfonamide (110.0 mg, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 16 h. Purification by FC over silica gel (*n*-pentane/EA 100:0 to 90:10 gradient) afforded **3c** (81.0 mg, 89% yield) as a white solid.

m.p. = 74 − 78 °C

¹**H** NMR (400 MHz, CD₂Cl₂): δ 7.60 – 7.54 (m, 2H), 7.40 – 7.34 (m, 2H), 7.33 – 7.24 (m, 3H), 7.24 – 7.11 (m, 5H), 6.98 – 6.90 (m, 3H), 6.74 (d, *J* = 7.5 Hz, 1H), 6.71 – 6.64 (m, 1H), 6.15 (d, *J* = 7.5 Hz, 1H), 5.75 (d, *J* = 10.5 Hz, 1H), 4.22 (d, *J* = 10.5 Hz, 1H), 3.65 – 3.56 (m, 1H), 3.41 (ddd, *J* = 15.1, 10.1, 7.3 Hz, 1H), 2.66 – 2.48 (m, 2H), 2.25 (s, 3H).

¹³C NMR (101 MHz, CD₂Cl₂): δ 143.5, 141.9, 141.7, 137.3, 135.0, 133.1, 129.6 (2C), 129.4 (2C), 129.3, 129.0 (2C), 128.9 (2C), 128.8 (2C), 128.7, 127.5 (2C), 127.3, 127.2, 127.1, 124.9, 60.0, 58.8, 38.6, 25.2, 21.5.

HRMS (ESI): m/z calcd. for C₂₉H₂₈O₂NS [M+H]⁺ 454.1835, found 454.1825.

1-(4-nitrobenzyl)-2-((4-nitrophenyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline (3e)

The general procedure was followed with 2-(4-nitrophenyl)oxirane (66.0 mg, 0.4 mmol) and 4nitro-N-phenethylbenzenesulfonamide (61.1 mg, 0.2 mmol) in the presence of TfOH (5.4 μ L, 0.060 mmol, 30 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 60 °C for 72 h. Purification by FC over silica gel (toluene/EA 100:0 to 95:5 gradient) afforded **3e** (60.0 mg, 67% yield) as a white solid.

m.p. = 174 − 176 °C

¹**H** NMR (400 MHz, CDCl₃): δ 8.15 (d, J = 8.9 Hz, 2H), 8.10 (d, J = 8.6 Hz, 2H), 7.81 (d, J = 8.9 Hz, 2H), 7.24 (d, J = 8.6 Hz, 2H), 7.17 – 7.10 (m, 2H), 6.99 – 6.93 (m, 1H), 6.93 – 6.87 (m, 1H), 5.23 (dd, J = 6.7, 6.7 Hz, 1H), 3.68 (ddd, J = 13.5, 5.3, 5.3 Hz, 1H), 3.55 (ddd, J = 13.5, 8.3, 6.4 Hz, 1H), 3.29 (dd, J = 6.7, 2.0 Hz, 2H), 2.59 – 2.51 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 149.9, 147.1, 145.6, 144.9, 134.1, 132.9, 130.8 (2C), 129.2, 128.2 (2C), 127.9, 127.1, 126.8, 124.3 (2C), 123.6 (2C), 58.4, 44.3, 40.4, 26.9.

HRMS (ESI): m/z calcd. for $C_{22}H_{19}O_6N_3SNa [M+Na]^+ 476.0927$, found 476.0879.

2-(4-Nitrobenzyl)-1,3-dioxolane (3f)

The general procedure was followed with 2-(4-nitrophenyl)oxirane (33.0 mg, 0.2 mmol) and ethylene glycol (22.4 μ L, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 0.25 h. Purification by FC over silica
gel (*n*-pentane/EtOAc 100:0 to 80:20 gradient) afforded **3b** (28.9 mg, 69% yield) as a pale yellow oil. Spectral data are in accordance with those found in the literature.⁵

¹**H NMR (400 MHz, CDCl₃):** δ 8.16 (d, *J* = 8.6 Hz, 2H), 7.44 (d, *J* = 8.6 Hz, 2H), 5.11 (t, *J* = 4.4 Hz, 1H), 3.93 – 3.81 (m, 4H), 3.07 (d, *J* = 4.4 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃): δ 147.0, 143.9, 130.9 (2C), 123.5 (2C), 103.7, 65.3 (2C), 40.6.

HRMS (ESI): m/z calcd. for C₁₀H₁₁O₄NNa [M+Na]⁺ 232.0580, found 232.0574.

2-(4-Nitrobenzyl)-1,3-dioxane (3g)

Exact Mass: 223.08

The general procedure was followed with 2-(4-nitrophenyl)oxirane (33.0 mg, 0.2 mmol) and 1,3propanediol (29.0 μ L, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 0.25 h. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 80:20 gradient) afforded **3c** (32.0 mg, 71% yield) as a white solid.

m.p. = 113 − 115 °C

¹**H NMR (400 MHz, CDCl**₃) δ 8.13 (d, *J* = 8.8 Hz, 2H), 7.41 (d, *J* = 8.8 Hz, 2H), 4.72 (t, *J* = 5.1 Hz, 1H), 4.09 (m, 2H), 3.73 (m, 2H), 2.99 (d, *J* = 5.1 Hz, 2H), 2.06 (m, 1H), 1.34 (m, 1H)

¹³C NMR (101 MHz, CDCl₃) δ 146.9, 144.4, 130.8 (2C), 123.5 (2C), 101.6, 67.1 (2C), 41.7, 25.7.

HRMS (ESI): m/z calcd. for C₁₁H₁₃O₄NNa [M+Na]⁺ 246.0737, found 246.0706.

2-(4-Nitrobenzyl)-3-tosyl-1,3-oxazinane (3h)

The general procedure was followed with 2-(4-nitrophenyl)oxirane (33.0 mg, 0.2 mmol) and N-(3-hydroxypropyl)-4-methylbenzenesulfonamide (91.6 mg, 0.4 mmol) in the presence of TfOH (1.8 μ L, 0.020 mmol, 10 mol%) in HFIP (2.0 mL). The reaction mixture was stirred at 25 °C for 1 h. Purification by FC over silica gel (DCM) afforded **3d** (47.0 mg, 63% yield) as a white solid.

m.p. = 139 – 141 °C

¹**H NMR (400 MHz, CDCl₃):** δ 8.12 (d, *J* = 8.8 Hz, 2H), 7.65 (d, *J* = 8.3 Hz, 2H), 7.37 (d, *J* = 8.8 Hz, 2H), 7.24 (d, *J* = 8.3 Hz, 2H), 5.65 (dd, *J* = 7.4, 6.4 Hz, 1H), 3.96 (m, 1H), 3.81 (dd, *J* = 14.0, 5.3 Hz, 1H), 3.61 – 3.46 (m, 2H), 3.40 (dd, *J* = 14.0, 7.4 Hz, 1H), 3.29 (dd, *J* = 14.0, 6.4 Hz, 1H), 2.40 (s, 3H), 1.52 – 1.38 (m, 1H), 1.32 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 147.0, 144.2, 143.8, 137.6, 130.3 (2C), 129.8 (2C), 127.4 (2C), 123.8 (2C), 84.0, 59.9, 39.3, 36.7, 23.2, 21.6.

HRMS (ESI): m/z calcd. for C₁₈H₂₁O₅N₂S [M+H]⁺ 377.1166, found 377.1154.

3. Procedures and Characterization of Post-Functionalization Products

2-(4,5-Dimethoxy-2-(4-nitrophenethyl)phenyl)ethan-1-ol (4a)

NO₂ MeC MeC Chemical Formula: C18H21NO5 Exact Mass: 331.14

Synthesized using a known procedure.⁶ 6,7-dimethoxy-1-(4-nitrobenzyl)isochromane (69.5 mg, 0.20 mmol) and triethylsilane (63.9 μ L, 0.40 mmol) were charged (in air) in a 10 mL screw-cap tube equipped with a Teflon-coated magnetic stir bar. HFIP (2 mL) and TfOH (10 mol%, 1.76 μ L, 0.02 mmol) were added (addition of TfOH at 0 °C), and the glass tube was sealed. The reaction mixture was quenched with saturated NaHCO₃ (10 mL) and extracted with EtOAc (10 mL × 3). The combined organic layers were washed with brine (10 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. Purification by FC over silica gel (*n*-pentane/EtOAc 80:20 to 50:50 gradient) afforded **4a** (49.0 mg, 74% yield) as a yellow solid.

 $m.p. = 112 - 114 \ ^{\circ}C$

¹**H** NMR (400 MHz, CDCl₃): δ 8.10 (d, J = 8.7 Hz, 2H), 7.28 (d, J = 8.7 Hz, 2H), 6.69 (s, 1H), 6.57 (s, 1H), 3.85 (s, 3H), 3.81 – 3.75 (m, 2H), 3.78 (s, 3H), 3.00 – 2.86 (m, 4H), 2.76 (t, J = 6.8 Hz, 2H), 1.71 (brs, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 149.5, 147.6, 147.6, 146.5, 131.2, 129.5 (2C), 128.2, 123.7 (2C), 113.2, 112.9, 63.6, 56.0, 56.0, 37.8, 35.4, 33.9.

HRMS (ESI): m/z calcd. for C₁₈H₂₁O₅NNa [M+Na]⁺ 354.1312, found 354.1305.

2-(4,5-Dimethoxy-2-(4-nitrophenethyl)phenethyl)-1,3,5-trimethylbenzene (4b)

Synthesized using a known procedure.⁷ 2-(4,5-dimethoxy-2-(4-nitrophenethyl)phenyl)ethan-1-ol (66.2 mg, 0.20 mmol) and mesitylene (139.1 μ L, 1.00 mmol) were charged (in air) in a 10 mL screw-cap tube equipped with a Teflon-coated magnetic stir bar. HFIP (1 mL) and TfOH (10 mol%, 1.76 μ L, 0.02 mmol) were added (addition of TfOH at 0 °C), and the glass tube was sealed. The reaction mixture was quenched with saturated NaHCO₃ (10 mL) and extracted with EtOAc (10 mL × 3). The combined organic layers were washed with brine (10 mL), dried over Na₂SO₄,

filtered and concentrated under reduced pressure. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 80:20 gradient) afforded **4b** (79.0 mg, 91% yield) as a white solid.

m.p. = $86 - 89 \degree C$

¹**H** NMR (400 MHz, CDCl₃): δ 8.13 (d, J = 8.6 Hz, 2H), 7.27 (d, J = 8.6 Hz, 2H), 6.84 (s, 1H), 6.84 (s, 1H), 6.61 (s, 1H), 6.56 (s, 1H), 3.82 (s, 3H), 3.81 (s, 3H), 3.00 – 2.79 (m, 6H), 2.68 – 2.62 (m, 2H), 2.25 (s, 3H), 2.24 (s, 6H).

¹³C NMR (126 MHz, CDCl₃): δ 149.6, 147.6, 147.4, 146.6, 136.1, 135.5, 135.3, 132.1, 130.4, 129.4 (2C), 129.2 (2C), 123.8 (2C), 112.9, 112.7, 56.1, 56.0, 37.9, 33.8, 31.9, 31.3, 27.1, 20.9, 20.0 (2C).

HRMS (ESI): m/z calcd. for C₂₇H₃₂O₄N [M+H]⁺ 434.2326, found 434.2321.

4-((6,7-Dimethoxyisochroman-1-yl)methyl)aniline (4c)

Synthesized using a known procedure.⁸ To a solution of 6,7-dimethoxy-1-(4nitrobenzyl)isochromane (72.7 mg, 0.21 mmol) in 4 mL of EtOAc were added palladium on carbon (10 wt%) (7.3 mg, 0.002 mmol). The reaction mixture was placed under H₂ gas at 30 bar for 24 h. Then, the reaction mixture was filtered over a pad of celite (rinsed with EtOAc (3×5 mL). The solvent was removed by rotary evaporation and purification by FC over silica gel (*n*pentane/EtOAc 70:30 to 50:50 gradient) afforded **4c** (58.0 mg, 92% yield) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃): δ 7.06 (d, J = 8.3 Hz, 2H), 6.63 (d, J = 8.3 Hz, 2H), 6.59 (s, 1H), 6.50 (s, 1H), 4.90 (dd, J = 8.1, 4.7 Hz, 1H), 4.11 (ddd, J = 11.2, 4.8, 4.3 Hz, 1H), 3.85 (s, 3H), 3.78 (s, 3H), 3.74 (ddd, J = 11.2, 8.5, 4.3 Hz, 1H), 3.41 (brs, 2H), 3.05 (dd, J = 14.2, 4.7 Hz, 1H), 2.98 (dd, J = 14.2, 8.1 Hz, 1H), 2.82 (ddd, J = 15.9, 8.5, 4.8, 1H), 2.62 (ddd, J = 15.9, 4.3, 4.3 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 147.5, 147.1, 144.7, 130.4 (2C), 129.8, 128.7, 126.2, 115.2 (2C), 111.5, 108.5, 76.6, 62.8, 55.9, 55.9, 42.0, 28.7.

HRMS (ESI): m/z calcd. for C₁₈H₂₂NO₃ [M+H]⁺ 300.1594, found 300.1586.

1-(4-Nitrobenzyl)-3,4-dihydro-1H-isochromene-5,8-dione (4d)

Synthesized using a known procedure.⁹ Under air, a 10 mL tube equipped with a Teflon-coated magnetic stir bar was charged with 5,8-dimethoxy-1-(4-nitrobenzyl)isochromane (98.7 mg, 0.30 mmol), MeCN (3 mL) and H₂O (3 mL). The mixture was cooled down to 0 °C in an ice bath. Then, cerium ammonium nitrate (987.0 mg, 1.8 mmol) was added and the reaction was stirred at 0 °C for 1 h. The reaction mixture was quenched with saturated H₂O (10 mL) and extracted with DCM (10 mL \times 3). The combined organic layers were washed with brine (10 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 80:20 gradient) afforded **4d** (60.1 mg, 67% yield) as a yellow solid.

¹**H NMR (400 MHz, CDCl₃):** δ 8.13 (d, *J* = 8.6 Hz, 2H), 7.42 (d, *J* = 8.6 Hz, 2H), 6.79 – 6.70 (m, 2H), 4.83 (dd, *J* = 8.6, 2.8 Hz, 1H), 4.04 (ddd, *J* = 11.4, 5.2, 4.5 Hz, 1H), 3.68 (ddd, *J* = 11.4, 6.5, 4.5 Hz, 1H), 3.30 (dd, *J* = 14.1, 2.8 Hz, 1H), 3.08 (dd, *J* = 14.1, 8.6 Hz, 1H), 2.57 – 2.46 (m, 1H), 2.46 – 2.34 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 186.1, 185.6, 146.9, 146.2, 142.0, 141.6, 136.7, 136.3, 130.4 (2C), 123.6 (2C), 71.8, 60.3, 39.1, 22.5.

HRMS (ESI): m/z calcd. for C₁₆H₁₃O₅NNa [M+Na] + 322.0686, found 322.0680.

1-(4-Nitrobenzyl)-3,4-dihydro-1H-benzo[g]isochromene-5,10-dione (4e)

Chemical Formula: C₂₀H₁₅NO₅ Exact Mass: 349.10

Synthesized using a known procedure.¹⁰ A solution of 1-(4-Nitrobenzyl)-3,4-dihydro-1Hisochromene-5,8-dione (17 mg, 0.057 mmol) and buta-1,3-dien-1-yl acetate (28.6 mg, 0.257 mmol) in toluene (0.35 mL) was set aside at room temperature for 2 days. The mixture was evaporated to dryness under reduced pressure and the residual oil was dissolved in ethanol (1.5 mL). To the solution was added 1% sodium carbonate (0.15 mL) and the mixture was stirred at room temperature for 5 hours, diluted with EtOAc and washed with water. The organic layer was dried using Na₂SO₄ and the solvent was evaporated under reduced pressure. Purification by FC over silica gel (*n*-pentane/EtOAc 100:0 to 70:30 gradient) afforded **4e** (18.0 mg, 90% yield) as a white solid.

m.p. = decomposition at 180 $^{\circ}$ C

¹**H** NMR (400 MHz, CDCl₃): δ 8.16 – 8.07 (m, 4H), 7.78 – 7.73 (m, 2H), 7.47 (d, J = 8.7 Hz, 2H), 5.02 (dd, J = 8.6, 2.8 Hz, 1H), 4.09 (ddd, J = 11.4, 5.2, 4.6 Hz, 1H), 3.74 (ddd, J = 11.4, 6.4, 4.6 Hz, 1H), 3.41 (dd, J = 14.1, 2.8 Hz, 1H), 3.14 (dd, J = 14.1, 8.6 Hz, 1H), 2.78 – 2.63 (m, 1H), 2.63 – 2.48 (m, 1H).

¹³C NMR (126 MHz, CDCl₃): δ 183.9, 183.5, 146.9, 146.5, 144.3, 143.9, 134.1, 132.2, 131.9, 130.5 (2C), 126.6, 126.5, 123.6 (2C), 72.2, 60.3, 39.2, 27.1, 23.1.

HRMS (ESI): m/z calcd. for C₂₀H₁₅O₅NNa [M+Na]⁺ 372.0842, found 372.0838.

References

- [1] W. Ding, X. Shi, Chin. J. Chem., 2015, 33, 1276-1286.
- [2] N. Kapadia, W. Harding, Tetrahedron, 2013, 42, 8914-8920.
- [3] P. King, P. Rutledge, M. Todd, ChemRxiv, 2022. DOI: 10.26434/chemrxiv-2022-3njq6.
- [4] I. Ivanov, S. Nikolova, E. Kochovska, S. Statkova-Abeghe, Arkivoc, 2007, 31-44.

[5] I. Kondolff, H. Doucet, M. Santelli, Eur. J. Org. Chem., 2006, 3, 765-774.

[6] M. Vayer, S. Zhang, J. Moran, D. Lebœuf, ACS Catal. 2022, 12, 3309-3316.

[7] S. Zhang, M. Vayer, F. Noël, V. D. Vukovic, A. Golushko, N. Rezajooei, C. N. Rowley, D. Lebœuf, J. Moran, *Chem* 2021, 7, 3425-3441.

[8] S. Wang, R. Guillot, J.-F. Carpentier, Y. Sarazin, C. Bour, V. Gandon, D. Lebœuf, *Angew. Chem. Int. Ed.* **2020**, *59*, 1134-1138.

- [9] M. Vayer, R. J. Mayer, J. Moran, D. Lebœuf, ACS Catal. 2022, 12, 10995-11001.
- [10] T. Kometani, E. Yoshii, J. Chem. Soc. Perkin Trans. 1, 1981, 1191-1196.

4. NMR Spectra

S46

-167.24 -167.24 -167.26 -144.76 -144.76 -129.25 -129.25 -25.42 -75.99 -75.99 -25.62 -26.62-26.62

S69

115.73 115.74 115.75 115.75 115.75 115.75 115.78 115.78 115.94 115.94 115.94 115.94 115.94 115.94 115.94 115.94 115.94 115.75 115.95

-157.96 -157.96 -137.80 -137.80 -130.48 -130.48 -126.39 -25.37 -55.37 -55.37 -25.37-25.37

S75

-133 -135 -137 -139 -141 -143 -145 -147 -149 -151 -153 -155 -157 -159 -161 -163 -165 -167 -169 -171 f1 (ppm)

-118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 -166 -168 -170 -172 -174 -176 -178 -180 -182 -184 f1 (ppm)

D.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -C f1 (ppm)

(183.87) (183.87) (183.87) (183.87) (183.87) (183.87) (183.81)<

5. NOESY Analyses

Analysis: Protons 5 and 8 do not correlate. In addition, proton 5 correlates with proton 6, but not with proton 7. Oppositely, proton 8 correlates more intensely with proton 7 than with proton 6. Put together, these observations show a *trans* relative configuration. This conclusion is also consistent with the XRD structure that was found.

Analysis: Protons 5 and 8 do not correlate. Proton 5 correlates with proton 7 but not with proton 6. Proton 8 correlates with proton 6 more intensely than with proton 7. Put together, these observations show a *trans* relative configuration. This conclusion is also consistent with the XRD structure that was found.

Analysis: Protons 5 and 6 correlate. Proton 6 correlates more intensely with proton 7 than with proton 8. Similarly, proton 5 correlates slightly with proton 7 but not with proton 8. Put together, these observations show a *cis* relative configuration.

Analysis: Protons 1 and 2 correlate. This observation shows a *cis* relative configuration.

Analysis: Protons 1 and 2 do not correlate. This observation shows a *trans* relative configuration.

Analysis: Protons 5 and 6 correlate. Oppositely, protons 5 and 7 do not correlate. Given the original *trans* configuration of the starting alcohol, these observations show a *cis* relative configuration between protons 5 and 6.

Analysis: Protons 1 and 2 do not correlate. On the contrary, protons 3 and 1 correlate strongly. Put together, these observations show a *trans* relative configuration.

6. XRD

X-ray crystallography (jmcm220131, jmcm220204, jmcm220530, jmcm220531)

The crystals were placed in oil, and a single crystal was selected, mounted on a glass fibre and placed in a low-temperature N₂ stream.

For compound **2aj**, X-Ray diffraction data collection was carried out on a Bruker PHOTON-III DUO CPAD diffractometer equipped with an Oxford Cryosystem liquid N₂ device, using Cu-K α radiation (λ = 1.54178 Å). The crystal-detector distance was 40 mm. The cell parameters were determined (APEX4 software) [1] from reflections taken from one set of 180 frames, each at 1s exposure. The structure was solved using the program SHELXT-2014 [2]. The refinement and all further calculations were carried out using SHELXL-2014 [3]. The H-atoms were included in calculated positions and treated as riding atoms using SHELXL default parameters. The non-H atoms were refined anisotropically, using weighted full-matrix least-squares on F². A semi-empirical absorption correction was applied using SADABS in APEX4 [1]; transmission factors: $T_{min}/T_{max} = 0.6091/0.7528$.

For compounds **2a**, **2aj**, **2ao**, X-Ray diffraction data collection was carried out on a Bruker PHOTON-III DUO CPAD diffractometer equipped with an Oxford Cryosystem liquid N₂ device, using Mo-K α radiation ($\lambda = 0.71073$ Å). The crystal-detector distance was 37 mm. The cell parameters were determined (APEX4 software) [1] from reflections taken from one set of 180 frames, each at 1s exposure. The structures were solved using the program SHELXT-2014 [2]. The refinement and all further calculations were carried out using SHELXL-2014 [3]. The H-atoms were included in calculated positions and treated as riding atoms using SHELXL default parameters. The non-H atoms were refined anisotropically, using weighted full-matrix least-squares on F². A semi-empirical absorption correction was applied using SADABS in APEX4 [1]; transmission factors: T_{min}/T_{max} = 0.7128/0.7463; T_{min}/T_{max} = 0.7130/0.7456; T_{min}/T_{max} = 0.7261/0.7456, respectively for jmcm220204, jmcm220530, jmcm220531.

[1] "M86-EXX278V1 APEX4 User Manual", Bruker Corporation, 2021.

[2] G. M. Sheldrick, Acta Cryst. 2015, A71, 3-8.

[3] G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8.

Compound	2a	2c	2aj	2ao
Empirical Formula	C ₁₆ H ₁₅ NO ₃	$C_{20}H_{18}F_6O_3$	$C_{22}H_{14}F_5NO_3$	$C_{19}H_{19}NO_3$
M _r	269.29	420.34	435.34	309.35
Crystal size, mm ³	0.40 x 0.28 x 0.16	0.12 x 0.08 x 0.04	0.18 x 0.14 x 0.06	0.18 x 0.16 x 0.12
Crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space group	P c	P 21/n	P 21/c	P -1
a, Å	7.9798(4)	8.6103(7)	41.4191(17)	7.9718(3)
b, Å	10.8805(5)	7.9713(5)	6.5104(3)	9.2217(3)
c, Å	8.4210(4)	27.483(2)	14.0699(6)	11.1636(4)
α, °	90	90	90	100.8750(10)
β, °	117.053(2)	91.244(3)	98.700(3)	90.0200(10)
γ, °	90	90	90	110.5260(10)
Cell volume, Å ³	651.15(5)	1885.9(2)	3750.4(3)	752.80(5)
Z ; Z'	2, 1.373 Mg/m ³	4, 1.480 Mg/m ³	8, 1.542 Mg/m ³	2, 1.365 Mg/m ³
Т, К	120(2)	120(2)	120(2)	120(2)
Radiation type ;	Mo-Ka $\lambda = 0.71073$	Μο-Κα λ =	$Cu-K\alpha \lambda = 1.54178 \text{ Å}$	Mo-Ka $\lambda = 0.71073$
wavelength Å	Å	0.71073 Å		Å
F ₀₀₀	284	864	1776	328
μ, mm ⁻¹	0.095	0.137	1.186	0.092
heta range, °	2.866 - 32.024	2.464 - 28.011	2.158 - 66.527	1.862 - 28.044
Reflection collected	21584	78056	72332	39094
Reflections unique	4510	4574	6631	3652
R _{int}	0.0231	0.0421	0.0940	0.0240
GOF	1.063	1.055	1.032	1.066
Refl. obs. $(I \ge 2\sigma(I))$	4510	4574	6631	3652
Parameters	181	264	560	208
wR ₂ (all data)	0.0819	0.1214	0.2430	0.1088
R value (I> $2\sigma(I)$)	0.0306	0.0441	0.0826	0.0387
Largest diff. peak and hole (eÅ ⁻³)	0.291; -0.176	0.541; -0.459	0.817; -0.429	0.346; -0.231

 Table S4. Crystal data and structure refinement.