Supporting Information

Regioselective C–H alkylation of anisoles with olefins by cationic imidazolin-2-iminato scandium(III) alkyl complexes

Shiyu Wang, Chenhao Zhu, Lichao Ning, Dawei Li, Xiaoming Feng, Shunxi Dong*

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China

Table of Contents

1. General remarks	2
2. Preparation of catalysts	2
3. Typical procedure for C–H activation of anisoles or 2-methyl anisole with alkenes	8
5. Experimental procedure for the scale-up reaction	15
6. Control experiments	15
7. X-ray crystallography data	29
8. The analytical and spectral characterization data of products	35
9. References	53
10. Copies of NMR spectra for catalysts and products	54

1. General remarks

¹H NMR spectra were recorded on Bruker ASCENDTM 400M (400 MHz). Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃, δ = 7.26 ppm, (CD₃)₂SO, δ = 2.50 ppm, C₆D₆, δ = 7.16 ppm). Spectra were reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, g = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets), coupling constants (Hz), integration and assignment. ¹³C{¹H} NMR spectra were collected on ASCENDTM 400M (101 MHz). Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard (CDCl₃, δ = 77.0, (CD₃)₂SO, δ = 39.5 ppm, C₆D₆, δ = 128.1 ppm). High resolution mass spectra (HRMS) were performed on Thermo Q-Exactive Focus (FTMS+c ESI) and data were reported as (m/z). GC-MS analysis was performed on Shimadzu GCMS-2020 NX gas chromatograph with an SH-I-5MS column. Infrared spectra (IR) were recorded on Bruker Tensor II spectrometer with Plantium ATR accessory and the peaks were reported as absorption maxima (v, cm⁻¹). Melting point ranges were determined on OptiMelt. X-ray crystallographic data were collected by a Bruker D8 Venture Photon II. All manipulations were performed under a dry and oxygen-free (< 0.01 ppm) argon atmosphere in a glovebox. All reported reaction temperatures correspond to temperatures of the oil bath. Solvents (including deuterated solvents used for NMR) were dried and distilled prior to use. [Ph₃C][B(C₆F₅)₄] was purchased from Adamas. Anhydrous ScCl₃(THF)₃ was purchased from Yanfeng technology, Anhydrous YCl₃ were purchased from Aladdin. Anhydrous GdCl₃ and LuCl₃ were purchased from Alfa. 1,3-Bis(1-adamantyl)imidazolium chloride were purchased from Bidepharm. Ln(CH₂C₆H₄NMe₂-o)₃ (Ln = Sc, Y, Gd, Lu) were prepared according to the literatures.^[1] Imidazolin-2-imine scandium neosilyl complexes [NHISc(CH₂SiMe₃)₂(THF)] was prepared according to the reported procedure.^[2] All substrates were distilled from CaH₂ and stored in molecular sieves before use. 4-Methyl[2-D]anisole and 1-methoxy-2-(methyl-d₃)benzene were prepared as described previously.^[3] 1,3-Bis(2,4,6trimethylphenyl)imidazolin-2-imine were prepared as described previously.^[4]

2. Preparation of catalysts

2.1 Preparation of imidazolin-2-imine ligands.

2.1.1 General procedure for synthesis of diimines

General Procedure (GP): In a round bottom flask, aniline (2.0 equiv.) was dissolved in methanol (2M), 2,3butanedione (1.0 equiv.) or glyoxal 40% in water (1.0 equiv.) and two drops of formic acid were added subsequently. The resulting solution was stirred at room temperature for 12 h. The yellow suspension was filtrated, washed with cold methanol. The solid was dried in vacuo to get product.

A1 (C₂₈H₄₀N₂) prepared according to the general procedure to yield 94% of yellow powder. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.19 – 7.17 (m, 4H), 7.13 – 7.09 (m, 2H), 2.76 – 2.69 (m, 4H), 2.08 (s, 6H), 1.22 – 1.18 (m, 24H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 168.1, 146.1, 135.0, 123.7, 122.9, 28.5, 22.9, 22.6, 16.5. (Consistent with the data in previous literature) ^[5].

A2 (C₂₆H₃₆N₂) prepared according to the general procedure to yield 90% of yellow powder. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11 (s, 2H), 7.21 – 7.14 (m, 6H), 2.99 – 2.92 (m, 4H), 1.22 (d, *J* = 6.8 Hz, 24H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 163.0, 148.0, 136.7, 125.1, 123.1, 28.0, 23.3. (Consistent with the data in previous literature)^[5].

2.1.2 Synthesis of diamine (B1)

2,4,6-Trifluoroaniline (3.0 g, 20.0 mmol, 2.0 equiv.) was dissolved in methanol (5 mL), glyoxal 40% in water (1.14 mL, 10.0 mmol, 1.0 equiv.) and two drops of formic acid were added subsequently. The solution was stirred at room temperature for 12 h. The milky white suspension was filtrated, washed with cold methanol. The obtained solid was dried in vacuo to afford *N*,*N*-bis(2,4,6-trifluorophenyl)ethane-1,2-diimine as a white powder. The powder was dissolved in THF, LiAlH₄ was added slowly at 0 °C. The solution was warmed to room temperature and stirred for 12 h. Then the reaction mixture was cooled to 0 °C. Ice water was added to quench the reaction, followed by addition of KOH solution. The aqueous phase was extracted with ethyl acetate. The combined organic layer was removed to afford *N*,*N*-bis(2,4,6-trifluorophenyl)ethane-1,2-diamine (**B1**, 3.04 g, 9.5 mmol, 95%) as a colorless liquid. ¹H **NMR** (400 MHz, Chloroform-*d*) δ 6.63 (t, *J* = 8.4 Hz, 4H), 3.40 (s, 4H). ¹³C{¹H} **NMR** (101 MHz, Chloroform-*d*) δ -120.93, -125.25. **IR** (film, cm⁻¹): 3410, 1610, 1505, 1440, 1242, 1173, 1113, 1018, 995, 837, 597, 511. **HRMS** (ESI-TOF) calcd for C₁₄H₁₀F₆N₂⁺ ([M]+H⁺) = 321.0821, found 321.0814.

2.1.3 General procedure for synthesis of imidazolium salts

General Procedure (GP): Paraformaldehyde (1.5 equiv.) was suspended in a solution of 4 M hydrochloric acid in dioxane (1.5 equiv.) and stirred until complete dissolution of the white solid. Diimine (1.0 equiv.) in Ethyl acetate (0.5 M) was added slowly. The resulting solution was stirred at room temperature for 5 h. Then the suspension was filtered, washed with diethyl ether to afford light pink solid. Then the obtained solid was dissolved in methanol and was neutralized with sodium bicarbonate. The suspension was filtered. The solvent was removed under reduced pressure. The residue was subjected to column chromatography on silica gel (eluent: DCM:MeOH = 10:1, v/v) to afford desired product.

C1 prepared according to the general procedure (white powder, 55% yield). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.01 (s, 1H), 7.69 (t, *J* = 7.8 Hz, 2H), 7.55 (d, *J* = 7.8 Hz, 4H), 2.33 - 2.29 (m, 4H), 2.08 (s, 6H), 1.26 (d, *J* = 6.8 Hz, 12H), 1.12 (d, *J* = 6.8 Hz, 12H). ¹³C{¹H} **NMR** (101 MHz, DMSO-*d*₆) δ 145.2, 136.6, 132.1, 128.9, 127.8, 125.0, 28.4, 24.8, 22.6, 8.4. (Consistent with the data in previous literature). ^[6]

C2 prepared according to the general procedure to yield 70% of white powder. ¹H NMR (400 MHz, DMSO- d_6) δ 10.22 (s, 1H), 8.57 (s, 2H), 7.69 (t, J = 7.8 Hz, 2H), 7.53 (d, J = 7.8 Hz, 4H), 2.39 – 2.32 (m, 4H), 1.26 (d, J = 6.8 Hz, 12H), 1.16 (d, J = 6.9 Hz, 12H). ¹³C{¹H} NMR (101 MHz, DMSO- d_6) δ 144.8, 139.3, 131.8, 130.0, 126.2, 124.6, 28.6, 24.1, 23.1. (Consistent with the date in previous literature).^[6]

2.1.4 Synthesis of imidazolin-2-imine ligands

1,3-Bis(2,6-diisopropylphenyl)-4,5-dimethylimidazolin-2-imine (NHI 1)

In a glovebox, [1,3-bis(2,6-diisopropylphenyl)-4,5-dimethyl]imidazolium chloride (C1) (4.53 g, 10.0 mmol, 1.0 equiv.) and KO'Bu (2.81 g, 25.0 mmol, 2.5 equiv.) are added to a round-bottom flask. 40 mL of anhydrous THF was added. After stirring at room temperature for 12 h, the milky white suspension gradually turned into a light-yellow solution, and the solvent was removed under the vacuum, the off-white solid was obtained. Then toluene (20 mL) was added and the mixture was slightly heated to make it uniform. Hexane was added and a large amount of white solid was precipitated. Concentration of the combined filtrate gave a microcrystalline colorless solid (free NHC). A solution of the [1,3-bis(2,6-diisopropylphenyl)-4,5-dimethyl]imidazol-2-ylidene in toluene (20 mL) was treated dropwise with trimethylsilyl azide (2 mL, 15.0 mmol, 1.5 equiv.), and the resulting reaction mixture was heated at 120 °C for 72 h. Filtration and evaporation of the solvent afforded the TMS-protected imines as yellowish solids. Then the solid were treated with an excess of CH₃OH (10 mL) and KOH (840 mg) for 2 h. The solvent was then removed in reduced pressure. The residue was subjected to column chromatography on silica gel (eluent: DCM:MeOH = 10:1) to afford 1,3-bis(2,6-diisopropylphenyl)-4,5-dimethylimidazolin-2-imine (2.37 g, 5.5 mmol, 80 %) as a white powder. Melting point: 194 – 198 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 (t, *J* = 7.8 Hz, 2H), 7.38 (d, J = 7.8 Hz, 4H), 2.61 – 2.54 (m, 4H), 1.91 (s, 6H) 1.28 – 1.25 m, 24H). ¹³C{¹H} NMR (101 MHz, Chloroform*d*) δ 147.0, 131.8, 125.2, 119.3, 117.7, 29.0, 24.2, 23.7, 8.9. **IR** (film, cm⁻¹)): 3395, 2963, 2870, 2001, 1646, 1594, 1575, 1465, 1385, 1364, 1327, 1271, 1221, 1144, 1059, 940, 808, 761, 730, 699, 647, 441. HRMS (ESI-TOF) calcd for $C_{29}H_{42}N_3^+$ ([M]+H⁺) = 432.3373, found 432.3367.

1,3-Bis(2,6-diisopropylphenyl)-4,5-dichloroimidazolin-2-imine (NHI 2)

In a glovebox, 1,3- bis-(2,6-diisopropylphenyl)imidazolium chloride (C2) (4.3 g, 10.0 mmol, 1.0 equiv.) and KO'Bu (2.8 g, 25.0 mmol, 2.5 equiv.) are added to a round-bottom flask. 40 mL of anhydrous THF was added. After stirring at room temperature for 12 h, the milky white suspension gradually turned into a light-yellow solution, and the solvent was removed in the vacuo, the off-white solid was obtained. Then toluene (50 mL) was added and the mixture was slightly heated to make it uniform. Hexane was added and a large amount of white solid was precipitated. Concentration of the combined filtrate gave a microcrystalline colorless solid (free NHC). The obtained solid was dissolved in THF (5 mL), and CCl₄ (3.1 mL, 20.0 mmol, 2.0 equiv.) was added. The resulting solution was stirred an additional 12 h at room temperature. The solution turned into violet, and the solvent was drained under the vacuum, the violate solid was obtained. Recrystallized from hexane at -30 °C to provide [1,3-bis(2,6diisopropylphenyl)-4,5-dichloro]imidazol-2-ylidene (D1) (3.7 g, 8.0 mmol, 80 %) as a violet powder. ¹H NMR (400 MHz, Benzene-d₆) δ 7.29 – 7.25 m, 2H), 7.16 – 7.14 (m, 3H), 2.94 – 2.85 (m, 4H), 1.26 (d, J = 6.8 Hz, 12H), 1.21 (d, J = 7.0 Hz, 12H). ¹³C{¹H} NMR (101 MHz, Benzene-*d*₆) δ 146.4, 138.9, 129.6, 123.6, 116.6, 28.8, 24.4, 22.6. A solution of the [1,3-bis(2,6-diisopropylphenyl)-4,5-dichloro]imidazol-2-ylidene in toluene (20 mL) was treated dropwise with trimethylsilyl azide (1.4 mL, 12.0 mmol, 1.5 equiv.), and the resulting reaction mixture was subsequently heated at 120 °C for 72 h. The solvent was removed to the TMS-protected imines as yellowish solids. Then the solid were treated with an excess of CH₃OH 10 mL for 2 h. The solvent was then removed in reduced pressure. The residue was subject to column chromatography on silica gel (eluent: DCM:MeOH = 10:1, v/v) to afford 1,3-bis(2,6-diisopropylphenyl)-4,5-dichloroimidazolin-2-imine (1.89 g, 4.0 mmol, 50%) as a yellow powder. Melting point: 169 – 171 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 (t, *J* = 7.8 Hz, 2H), 7.23 (d, *J* = 9.4 Hz, 4H), 2.92 – 2.85 (m, 4H), 1.23 (d, J = 6.8 Hz, 12H), 1.19 (d, J = 6.8 Hz, 12H). ¹³C{¹H} NMR (101 MHz, Chloroform-d) δ 148.8, 130.4, 124.3, 29.0, 24.0, 23.5. IR (film, cm⁻¹)): 3394, 2963, 2870, 1653, 1605, 1586, 1466, 1405, 1383, 1365, 1252, 1204, 1070, 936, 869, 802, 752, 680, 542, 430. HRMS (ESI-TOF) calcd for C₂₇H₃₆Cl₂N₃ + ([M]+H⁺) = 472.2281, found 472.2278.

1,3-Bis(1-adamantyl)imidazolin-2-imine (NHI 3)

According to the same procedures of **NHI 1**, 1,3-bis(1-adamantyl)imidazolin-2-imine was afforded in 60% yield as a white powder. Melting point: 288 – 292 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.17 (s, 2H), 3.61 (s, 18H), 2.16 (s, 18H), 1.81 (d, *J* = 12.2 Hz, 6H), 1.62 (d, *J* = 12.2 Hz, 6H). ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆) δ 143.4, 113.0, 59.7, 35.0, 29.6. **IR** (film, cm⁻¹): 3116, 2911, 2852, 2028, 1630, 1477, 1309, 1175, 1093, 735. **HRMS** (ESI-TOF) calcd for C₂₃H₃₄N₃⁺ ([M]+H⁺) = 352.2747, found 352.2743.

1,3-Bis(2,4,6-trifluorophenyl)imidazolidin-2-imine (NHI 4)

To a stirring solution of *N*,*N'*-bis(2,4,6-trifluorophenyl)ethane-1,2-diamine (**B1**, 2.6 g, 8.0 mmol) in 3 mL of ethanol was carefully added a solution of cyanogen bromide (932 mg, 8.8 mmol, 1.1 equiv.) in 1 mL of ethanol at 0 °C. The reaction mixture was warmed to 25 °C and heated at 80 °C for 12 h. The mixture was cooled to rt and was diluted with aqueous 1M NaOH (20 mL). The aqueous phase was extracted with DCM, the combined organic layer was washed with H₂O, brine and dried with anhydrous magnesium sulfate ^[7]. The mixture was filtered and the solvent was removed in vacuo and the residue was subjected to column chromatography on silica gel (eluent: DCM:MeOH = 10:1, v/v) to afford 1,3-bis(2,4,6-trifluorophenyl)imidazolidin-2-imine (829 mg, 2.4 mmol, 45%) as a white powder.

Melting point: 147 – 150 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 6.93 – 6.65 (m, 4H), 3.85 (s, 4H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 162.7, 161.9, 161.8, 161.7, 161.7, 160.2, 160.1, 159.3, 159.3, 159.2, 159.1, 156.7, 101.5, 101.2, 101.0, 46.8. ¹⁹F{¹H} NMR (377 MHz, Chloroform-*d*) δ -107.02, -113.41. IR (film, cm⁻¹): 3332, 3026, 1634, 1601, 1506, 1446, 1423, 1360, 1292, 1229, 1174, 1121, 1029, 995, 864, 841, 787, 739, 704, 651, 613, 582, 539, 510, 415. HRMS (ESI-TOF) calcd for C₁₅H₁₀F₆N₃⁺ ([M]+H⁺) = 346.0773, found 346.0768.

2.2 General procedure for the synthesis of imidazolin-2-iminato complexes of rare earth metals.

General procedure (GP): In a glovebox, $Sc(CH_2C_6H_4NMe_2-o)_3$ (224 mg, 0.5 mmol) and 1,3-bis(2,6-diisopropylphenyl)-4,5-dimethylimidazolin-2-imine (216 mg, 0.5 mmol, 1.0 equiv.) were dissolved in THF (5 mL). The resulting mixture was stirred at room temperature for 12 h. The solvent was removed in vacuo. The residue was dissolved in toluene and filtered. The solvent was removed in vacuo. The resulting residue was washed with hexane (0.5 mL*3) to finally give a pale-yellow solid. The obtained solid was dissolved in hexane at 70 °C. The solution was cooled to room temperature and crystalline compound precipitated. The crystals were filtered off and washed with hexane.

Sc-1 (C₄₇H₆₄N₅Sc) prepared according to the general procedure (colorless crystal, 298.0 mg, 80% yield). ¹H NMR (400 MHz, Benzene-*d*₆) δ 7.21 (t, 2H), 7.17 (m, 2H), 7.10 (m, 2H), 7.00 (m, 2H), 6.98 (m, 2H), 6.80 (m, 2H), 6.71 (m, 2H), 3.35 (s, 2H), 2.86 (s, 2H), 2.28 (s, 6H), 1.88 (s, 6H), 1.56 (br, 2H), 1.55 (d, 6H), 1.46 (s, 6H), 1.27 (br, 2H), 1.14 (d, 12H), 0.90 (s, 6H). ¹³C{¹H} NMR (101 MHz, Benzene-*d*₆) δ 149.3, 148.5, 146.0, 145.6, 136.2, 135.1, 129.5, 128.7, 126.9, 124.0, 120.1, 118.1, 113.9, 47.2, 45.2, 44.1, 29.0, 24.2, 23.9, 22.6, 10.0.

Y-1 ($C_{47}H_{64}N_5Y$) prepared according to the general procedure (yellow crystal, 295.5 mg, 75% yield). ¹**H NMR** (400 MHz, Benzene-*d*₆) δ 7.20 (t, 2H), 7.12 (m, 2H), 7.10 (m, 2H), 6.92 (m, 2H), 6.91 (m, 2H), 6.71 (m, 2H), 6.67 (m, 2H), 3.18 (s, 4H), 2.08 (s, 12H), 1.55 (s, 6H), 1.39 (s, 6H), 1.19 (m, 10H), 1.19 (d, 12H). ¹³C{¹H} NMR (101 MHz, Benzene-*d*₆) δ 149.0, 144.7, 140.3, 138.6, 138.5, 135.2, 128.9, 128.4, 127.4, 123.9, 119.1, 118.6, 113.6, 44.4, 43.32, 43.0, 29.0, 24.5, 10.0.

Lu-1

Lu-1 ($C_{47}H_{64}N_5Lu$) prepared according to the general procedure (pale yellow powder, 358.50 mg, 81% yield). ¹H NMR (400 MHz, Benzene-*d*₆) δ 7.20 (t, 2H), 7.07 (br, 4H), 6.96 (m, 4H), 6.76 (m, 2H), 6.66 (d, 2H), 3.35 (s, 2H), 2.97 (s, 2H), 2.23 (s, 6H), 1.87 (s, 6H), 1.54 (s, 12H), 1.44 (br, 4H), 1.18 (d, 12H), 1.00 (br, 6H). ¹³C{¹H} NMR (101 MHz, Benzene-*d*₆) δ 149.6, 148.7, 144.9, 142.1, 141.9, 135.3, 129.6, 127.3, 123.9, 119.4, 118.6, 113.6, 48.6, 45.5, 44.7, 29.0, 24.9, 24.4, 24.1, 23.6, 22.6, 10.1, 9.5.

Sc-2 (C₄₅H₅₈Cl₂N₅Sc) prepared according to the general procedure (yellow crystal, 274.7 mg, 70%). ¹**H NMR** (400 MHz, Benzene-*d*₆) δ 7.18 (t, 2H), 7.12 (br, 2H), 7.07 (s, 2H), 6.97 (s, 2H), 6.96 (m, 2H), 6.79 (m, 2H), 6.67 (d, 2H) , 3.33 (s, 2H), 2.96 (s, 2H), 2.23 (s, 6H), 1.81 (s, 6H), 1.47 (s, 6H), 1.35 (br, 4H), 1.20 (d, 12H), 0.87 (br, 6H). ¹³C{¹H} **NMR** (101 MHz, Benzene-*d*₆) δ 150.1, 149.3, 145.3, 145.1, 133.5, 129.8, 129.5, 127.1, 124.4, 123.8, 120.8, 118.3, 107.2, 47.1, 45.0, 44.8, 29.5, 29.2, 24.4, 23.9, 23.4, 22.7, 14.3.

Sc-3 (C₄₁H₅₆N₅Sc) prepared according to the general procedure (pale yellow powder, 199.2 mg, 60% yield). ¹H NMR (400 MHz, Benzene-*d*₆) δ 6.97 (m, 4H), 6.88 (m, 4H), 6.06 (s, 2H), 2.73 (s, 12H), 6.96 (m, 2H), 2.35 (s, 12H), 2.03 (s, 6H), 1.76 (d, 6H), 1.62 (d, 6H), 1.46 (br, 2H), 1.32 (br, 2H). ¹³C{¹H} NMR (101 MHz, Benzene-*d*₆) δ 144.7, 143.6, 136.2, 129.7, 128.6, 127.3, 120.1, 118.0, 105.8, 55.6, 46.1, 45.9, 43.7, 40.3, 36.6, 30.3, 30.2.

Sc-4

F F N', Sc-5 **Sc-5** (C₃₃H₃₂F₆N₅Sc) prepared according to the general procedure (pale yellow powder, 230.2 mg, 70% yield). ¹**H NMR** (400 MHz, Benzene-*d*₆) δ 7.10 (d, *J* = 7.4 Hz, 1H), 6.96 – 6.91 (m, 3H), 6.83 – 6.75 (m, 5H), 6.33 (t, *J* = 8.6 Hz, 3H), 3.27 (s, 4H), 2.44 (d, *J* = 7.8 Hz, 12H), 1.36 (s, 2H), 1.21 (s, 2H). ¹⁹F{¹H} NMR (376 MHz, Benzene-*d*₆) δ –107.86, –110.21, –113.91, –119.73, –137.21. ¹³C{¹H} NMR (101 MHz, Benzene-*d*₆) δ 143.6, 142.2, 129.9, 127.7, 120.6, 118.5, 45.2, 44.4.

3. Typical procedure for C–H activation of anisoles and 2-methyl anisole with alkenes

3.1 General procedure for ortho C(sp²)–H activation of anisoles with norbornene

In a glovebox, a dry reaction tube was charged with **Sc-1** (2.5 mol%, 3.7 mg) and $[Ph_3C][B(C_6F_5)_4]$ (2.5 mol%, 4.6 mg). Then, toluene (0.5 mL) was added. The resulting mixture was stirred at ambient temperature for 5 min. Anisole (21.6 mg, 0.2 mmol) and norbornene (28.2 mg, 0.3 mmol) were added. The closed tube was taken outside and heated at 50 °C for 24 h. After the tube was cooled to room temperature, all volatiles were removed under reduced pressure. The residue was subjected to column chromatography on silica gel and eluted with petroleum to afford the desired product.

3.2 General procedure for C(sp³)–H activation of 2-methyl anisole with alkenes

In a glovebox, a dry reaction tube was charged with **Sc-1** (0.5 mol%, 0.7 mg) and $[Ph_3C][B(C_6F_5)_4]$ (0.5 mol%, 0.9 mg). Then, 0.5 mL toluene was added under argon atmosphere. The resulting mixture was stirred at ambient temperature for 5 min. 2-Methyl anisole (24.4 mg, 0.2 mmol) and norbornene (28.2 mg, 0.3 mmol) were added successively. The closed tube was taken outside and heated at 70 °C for 24 h. After the tube was cooled to room temperature, all volatiles were removed under reduced pressure. The residue was subjected to column chromatography on silica gel and eluted with petroleum to afford the desired product.

4. Optimization of the reaction conditions

4.1 Evaluation of the anisoles

Table S1 Screening of catalysts.^a

^aUnless otherwise noted, all reactions were carried out with **Cat**./[Ph₃C][B(C₆F₅)₄] (1:1, 10 mol%), anisole **1a** (0.20 mmol) and norbornene **2a** (0.30 mmol) at 70 °C for 24 h. ^bYield was determined by ¹H NMR, with $C_2H_2Br_4$ as an internal standard.

Table S2 Screening of the solvent.^a

Table S3 Control experiments.^a

^aUnless otherwise noted, all reactions were carried out with **Sc-1**/activator (1:1, 10 mol%), anisole (0.20 mmol) and norbornene (0.30 mmol) in toluene (0.5 mL) at 70 °C for 24 h. ^b**Sc-1**/[Ph₃C][B(C₆F₅)₄] (1:2, 10 mol%). ^cYield was determined by ¹H NMR, with C₂H₂Br₄ as an internal standard.

Table S4 Screening of reaction temperature.^a

being used as an internal standard.

Table S5 Screening of the catalyst loading.^a

 $C_2H_2Br_4$ as an internal standard.

Scope limitation.

alkenes

4.2 Optimization of the reaction with 2-methyl anisoles.

Table S6 Screening of catalysts.^a

Sc-5	Sc-6	Sc-7
Entry	cat.	Yield (%) ^b
1	Sc-1	99
2	Y-1	NR
3	Gd-1	NR
4	Lu-1	NR
5	Sc-2	99
6	Sc-3	NR
7	Sc-4	NR
8	Sc-5	NR
9	Sc-6	99
10	Sc-7	NR

^aAll reactions were carried out with **cat**./[Ph₃C][B(C₆F₅)₄] (1:1, 10 mol%), 2-methyl anisole (0.20 mmol) and 1-octene (0.60 mmol) in toluene (0.5 mL) at 70 °C for 24 h. ^{*b*}Yield was determined by ¹H NMR, with C₂H₂Br₄ as an internal standard.

^aAll reactions were carried out with **Sc-1**/[Ph₃C][B(C₆F₅)₄] (1:1, 2 mol%), 2-methyl anisole (0.20 mmol) and 1-octene (0.60 mmol) in toluene (0.5 mL) at T °C for 24 h. ^bYield was determined by ¹H NMR, with $C_2H_2Br_4$ as an internal standard.

Table S9 Screening of catalysts.^a

Sc-5	Sc-6	Sc-7
Entry	Cat	Yield (%) ^b
1	Sc-1	82
2	Y-1	NR
3	Gd-1	NR
4	Lu-1	NR
5	Sc-2	45
6	Sc-3	NR
7	Sc-4	NR
8	Sc-5	NR
9	Sc-6	10
10	Sc-7	NR

^aAll reactions were carried out with **Cat**/[Ph₃C][B(C₆F₅)₄] (1:1, 10 mol%), 2-methyl anisole (0.10 mmol) and styrene (0.15 mmol) in toluene (0.5 mL) at 70 °C for 24 h. ^{*b*}Yield was determined by ¹H NMR, with C₂H₂Br₄ as an internal standard.

^aAll reactions were carried out with **Sc-1**/[Ph₃C][B(C₆F₅)₄] (1:1, 10 mol%), 2-methyl anisole (0.1 mmol) and olefin (0.15 mmol) in toluene (0.5 mL) at 70 °C for 24 h. The branched chain product yield was determined by ¹H NMR, with C₂H₂Br₄ as an internal standard.

5. Experimental procedure for the scale-up reaction

A Schlenk bottle was charged with **Sc-1**/[Ph₃C][B(C₆F₅)₄] (1:1, 0.5 mol%) in toluene (1 mL). The solution was stirred at room temperature for five minutes. Then, 2-methyl anisole (610.8 mg, 5.0 mmol) and norbornene (720.0 mg, 7.5 mmol) was added and the mixture was stirred at 70 °C for 24 h. After the tube was cooled to room temperature, all volatiles were removed under reduced pressure. The residue was subjected to column chromatography on silica gel and eluted with petroleum to afford desired product 1.08 g in 99% yield.

6. Control experiments

6.1 The formation of cationic intermediate monitored by ¹H NMR

In a glovebox, a dry reaction tube was charged with **Sc-1** (0.02 mmol, 14.9 mg) and [PhNHMe₂][B(C₆F₅)₄] (0.02 mmol, 16.0 mg). Toluene- d_8 (0.7 mL) was added under argon atmosphere. The resulting mixture was stirred at ambient temperature for 5 min. The mixture was transferred to a J. Young valve NMR tube. ¹H NMR analysis (Figure S1) indicated that the formation of ion-pair complex (**A**) along with *N*,*N*,2-trimethylaniline (**1s**) and *N*,*N*-dimethyl-2-(methyl-aniline (**1s-D**) are obtained by quenching with deuterium water.

Figure S1. ¹H NMR spectrum (400 MHz) of 1s, A, NHI 1 and 1t in Toluene-*d*₈.

Figure S2. ¹H NMR spectrum (400 MHz) in CDCI₃.

6.2 The formation of cationic intermediate B monitored by ¹H NMR

In a glovebox, a dry reaction tube was charged with **Sc-1** (0.02 mmol, 14.9 mg) and $[Ph_3C][B(C_6F_5)_4]$ (0.02 mmol, 18.4 mg). Toluene-*d*₈ (0.7 mL) was added under argon atmosphere. The resulting mixture was stirred at ambient temperature for 5 min. 4-Methoxy-1,1'-biphenyl (**1k**, 18.4 mg, 0.10 mmol) was added and the mixture was stirred at 50 °C for 2 h. Quenched with deuterium water, high resolution mass spectra indicated that the formation of 4-methoxy-1,1'-biphenyl-3-*d* (**1k-D**). **HRMS** (ESI-TOF) calcd for C₁₃H₁₂ONa⁺ ([M]+Na⁺) = 208. 0843, found 208.0847.

6.3 Intramolecular KIE Experiments

In a glovebox, a dry reaction tube was charged with **Sc-1** (2.5 mol%, 3.7 mg) and $[Ph_3C][B(C_6F_5)_4]$ (2.5 mol%, 4.6 mg). Then, 0.5 mL toluene was added under argon atmosphere. The resulting mixture was stirred at ambient temperature for 5 min. Then, 4-methyl[2-D]anisole (24.6 mg, 0.20 mmol) and norbornene (28.2 mg, 0.30 mmol) were added to the mixture subsequently The closed tube was taken outside and heated at 50 °C for 24 h. After the tube was cooled to room temperature, all volatiles were removed under reduced pressure. The residue was subjected to column chromatography on silica gel and eluted with petroleum to afford desired product (36.5 mg, 0.17 mmol) in 84% yield. The KIE value was determined to be 5.2 by analysis of its ¹H NMR spectrum (Figure S3).

In a glovebox, a dry reaction tube was charged with **Sc-1** (2.5 mol%, 3.7 mg) and $[Ph_3C][B(C_6F_5)_4]$ (2.5 mol%, 4.6 mg). Then, 0.5 mL toluene was added under argon atmosphere. The resulting mixture was stirred at ambient temperature for 5 min. Then 4-methyl[2-D]anisole (24.6 mg, 0.20 mmol) and norbornene (28.2 mg, 0.30 mmol) were added to the mixture subsequently. The closed tube was taken outside and heated at 50 °C for 90 min. After the tube was cooled to room temperature, all volatiles were removed under reduced pressure. The residue was subjected to column chromatography on silica gel and eluted with petroleum to afford desired product (12.6 mg, 0.06 mmol) in 29% yield. The KIE value was determined as 3.5 by analysis of its ¹H NMR spectrum (Figure S4).

Figure S4. ¹H NMR spectrum (400 MHz) in CDCl₃.

6.4 Intermolecular KIE Experiments

In a glovebox, a dry reaction tube was charged with **Sc-1** (2.5 mol%, 3.7 mg) and $[Ph_3C][B(C_6F_5)_4]$ (2.5 mol%, 4.6 mg). Then, 0.5 mL toluene was added under argon atmosphere. The resulting mixture was stirred at ambient temperature for 5 min. Then 2-methyl anisole (12.2 mg, 0.10 mmol), 1-methoxy-2-(methyl- d_3) benzene (12.5 mg, 0.1 mmol) and norbornene (28.2 mg, 0.30 mmol) were added to the mixture successively. The closed tube was taken outside and heated at 40 °C for 0.5 h. After the tube was cooled to room temperature, all volatiles were removed under reduced pressure. The residue was subjected to column chromatography on silica gel and eluted with petroleum to afford desired product (10.8 mg, 0.05 mmol) in 27% yield. The KIE value was determined as 4.5 by analysis of its ¹H NMR spectrum (Figure S5).

Figure S5. ¹H NMR spectrum (400 MHz) in CDCl₃.

A Schlenk bottle was charged with **Sc-1**/[Ph₃C][B(C₆F₅)₄] (1:1, 2 mol%), toluene (0.5 mL) was added. The resulting mixture was stirred at ambient temperature for 5 min. Then, 2-methyl anisole (12.2 mg, 0.10 mmol), 1-methoxy-2-(methyl- d_3)benzene (12.5 mg, 0.10 mmol) and 1-octene (33.66 mg, 0.30 mmol) was added and the mixture was stirred at 70 °C for 2 h. After the tube was cooled to room temperature, all volatiles were removed under reduced pressure. The residue was subjected to column chromatography on silica gel and eluted with petroleum to afford desired product (14 mg, 0.06 mmol) in 29% yield. The KIE value was determined as 5.7 by analysis of its ¹H NMR spectrum (Figure S6).

Figure S6. ¹H NMR spectrum (400 MHz) in CDCl₃.

In a glovebox, a dry reaction tube was charged with **Sc-1** (2.5 mol%, 3.7 mg) and [Ph₃C][B(C₆F₅)₄] (2.5 mol%, 4.6 mg). Toluene-*d*₈ (0.7 mL) was added under argon atmosphere. The resulting mixture was stirred at ambient temperature for 5 min. 2-Methyl anisole (24.4 mg, 0.20 mmol) or 1-methoxy-2-(methyl-*d*₃)benzene (25.0 mg, 0.20 mmol) and norbornene (28.2 mg, 0.30 mmol) were added to the mixture successively, then the mixture was transferred to a J. Young valve NMR tube. The closed NMR tube was taken outside and heated at 40 °C and was monitored by an NMR spectrometer. The yield was determined on the signal of OMe in the product based on **4a** and **4a-D**. A KIE value of 7.3 was found in these side-by-side reactions. These results suggest that the C–H activation of 2-methyl anisole was involved in the rate-determining step.

Figure S7. C–H bond activation of 4a in C–H alkylation of 4a with 2a.

Figure S8. C–H bond activation of 4a-D in C–H alkylation of 4a-D with 2a.

In a glovebox, a dry reaction tube was charged with **Sc-1** (2.0 mol%, 3.0 mg) and $[Ph_3C][B(C_6F_5)_4]$ (2.0 mol%, 3.7 mg). Toluene-*d*₈ (0.7 mL) was added under argon atmosphere. The resulting mixture was stirred at ambient temperature for 5 min. 2-Methyl anisole (24.4 mg, 0.20 mmol) or 1-methoxy-2-(methyl-*d*₃)benzene (25.0 mg, 0.20 mmol) and the 1-octene (33.66 mg, 0.30 mmol) were added, then the mixture was transferred to a J. Young valve NMR tube. The closed NMR tube was taken outside and heated at 70 °C and was monitored by an NMR spectrometer. The yield was determined on the signal of OMe in the product based on **4a** and **4a-D**. A KIE value of 2.75 was found in these side-by-side reactions. These results suggest that the C–H activation of 2-methyl anisole was probably involved in the rate-determining step.

Figure S9. C–H bond activation of 4a in C–H alkylation of 4a with 5a.

Figure S10. C–D bond activation of 4a-D in C–H alkylation of 4a-D with 5a.

6.5 Kinetic Studies

In a glovebox, a dry reaction tube was charged with **Sc-1** (2.0 mol%, 3.0 mg) and [Ph₃C][B(C₆F₅)₄] (2.0 mol%, 3.7 mg). Toluene- d_8 (0.7 mL) was added under argon atmosphere. The resulting mixture was stirred at ambient temperature for 5 min. 2-Methyl anisole (0.10 mmol, 0.20 mmol, 0.40 mmol, 0.60 mmol) and 1-octene (33.7 mg, 0.30 mmol) were added to the mixture successively, then the mixture was transferred to a J. Young valve NMR tube. The closed NMR tube was taken outside and heated at 70 °C and was monitored by an NMR spectrometer. The yield was determined on the signal of OMe in the product based on **4a**. As depicted in Figure S12, a linear correlation was found between ln(rate) and ln[**4a**] and the slope was determined to be 0.96, indicating that the reaction order in **4a** is 1.

Figure S11. Concentration effect of 4a in C–H alkylation of 4a with 5a.

Concentration of 4a /M	Reaction Rate/M·min ⁻¹	ln(4a)	In(rate)
0.14285	0.00020	1.94596	-8.51719
0.28571	0.00030	-1.25277	-8.11173
0.57143	0.00083	-0.55961	-7.09408
1.14286	0.00100	0.13353	-6.90775

Figure S12. Kinetic order of 4a in C-H alkylation of 4a with 5a.

In a glovebox, a dry reaction tube was charged with **Sc-1** (2.0 mol%, 3.0 mg) and $[Ph_3C][B(C_6F_5)_4]$ (2.0 mol%, 3.7 mg). Toluene-*d*₈ (0.7 mL) was added under argon atmosphere. The resulting mixture was stirred at ambient temperature for 5 min. 2-Methyl anisole (24.4 mg, 0.20 mmol) and 1-octene (0.10 mmol, 0.20 mmol, 0.30 mmol, 0.40 mmol) were added, then the mixture was transferred to a J. Young valve NMR tube. The closed NMR tube was taken outside and heated at 70 °C and was monitored by an NMR spectrometer. The yield was determined on the signal of OMe in the product based on **4a**. As depicted in Figure S14, a linear correlation was found between ln(rate) and ln[**5a**] and the slope was determined to be 0.75, indicating that the reaction order in **5a** is 1.

Figure S13. Concentration effect of 5a in C-H alkylation of 4a with 5a.

Table S11 Concentration effect of 5a in C-H alkylation of 4a with 5a

Concentration of 5a/M	Reaction Rate/M.min ⁻¹	In(5a)	In(rate)
0.14285	0.00019	-1.94596	-8.56849
0.28571	0.00031	-1.25277	-8.07894
0.42857	0.00039	-0.84730	-7.84936
0.57143	0.00056	-0.55961	-7.48757

Figure S14. Kinetic order of 5a in C-H alkylation of 4a with 5a.

In a glovebox, a dry reaction tube was charged with **Sc-1** (1.0 mol%, 2.0 mol%, 4.0 mol%) and $[Ph_3C][B(C_6F_5)_4]$ (1.0 mol%, 2.0 mol%, 4.0 mol%). Then, toluene- d_8 (0.7 mL) was added under argon atmosphere. The resulting mixture was stirred at ambient temperature for 5 min. 2-Methyl anisole (24.4 mg, 0.20 mmol) and 1-octene (33.7 mg, 0.30 mmol) were added, then the mixture was transferred to a J. Young valve NMR tube. The closed NMR tube was taken outside and heated at 70 °C and was monitored by an NMR spectrometer. The yield was determined on the signal of OMe in the product based on **4a**. As depicted in Figure S16, a linear correlation was found between ln(rate) and ln[**Cat**] and the slope was determined to be 0.63, indicating that the reaction order in **Sc-1** is 1.

Figure S15. Concentration effect of catalyst in C-H alkylation of 4a with 5a.

Table S12 Concentrat	ion effect of cata	alvst in C–H all	vlation of 4a with 5a .
		arystin o rran	Cyludon of the with ou.

Concentration of cat/M	Reaction Rate/M·min ⁻¹	In(cat)	In(rate)
0.001429	0.00016	-6.55078	-8.71320
0.002857	0.00022	-5.85798	-8.43746
0.004286	0.00034	-5.45240	-7.99395

Figure S16. Kinetic order of catalyst in C-H alkylation of 4a with 5a.

7. X-ray crystallography data

7.1 Determination of the structure of imidazolin-2-imine NHI 1 by X-ray crystallography

Crystals of **NHI 1** for the X-ray crystal structure analysis were obtained from a concentrated solution of **NHI 1** in methyl alcohol and diethyl ether at room temperature. The colourless crystal in block-shape, with approximate dimensions of $0.098 \times 0.212 \times 0.473$ mm³, was selected and mounted for the single-crystal X-ray diffraction. The data set was collected by Bruker D8 Venture Photon II diffractometer at 173(2) K equipped with micro-focus Cu radiation source ($K_{\alpha} = 1.54178$ Å). Applied with face-indexed numerical absorption correction, the structure solution was solved and refinement was processed by SHELXTL (version 6.14) and OLEX 2.3 program package⁸. The structure was analyzed by ADDSYM routine implemented in PLATON suite and no higher symmetry was suggested⁹. The crystal data and further details are listed in Table S13. CCDC 2219241 which contains the crystallographic data for the structure have been deposited with the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK, which can be obtained free of charge via Fax: +44 (0)1223 336033; E-Mail: deposit@ccdc.cam.ac.uk, https://www.ccdc.cam.ac.uk/structures/.

Figure S17. The thermal ellipsoid figure of NHI 1 with 50% probabilities.

Table S13 Crystallographic Data for $C_{29}H_{41}N_3$.

Formula	$C_{29}H_{41}N_3$
Formula mass (amu)	431.33
Space group	Pnma
a (Å)	16.6840 (5)
b (Å)	19.1264 (5)
<i>c</i> (Å)	10.7020 (3)
α (deg)	90
β (deg)	90
γ (deg)	90
V (Å ³)	3415.06 (17)
Ζ	4
λ (Å)	1.54178
Т (К)	173
$ ho_{ m calcd}$ (g cm ⁻³)	1.097
μ (mm ⁻¹)	1.240
Transmission factors	0.513–1.000
$\theta_{\max}(\deg)$	68.285
No. of unique data, including $F_0^2 < 0$	3200
No. of unique data, with $F_0^2 > 2\sigma(F_0^2)$	2703
No. of variables	209
$R(F)$ for $F_0^2 > 2\sigma(F_0^2)^a$	0.0800
$R_{\rm W}(F_{\rm o}^2)^{b}$	0.2029
Goodness of fit	1.062

^a $R(F) = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|.$

^b $R_w(F_0^2) = [\Sigma[w(F_0^2 - F_c^2)^2] / \Sigma wF_0^4]^{1/2}; w^{-1} = [\sigma^2(F_0^2) + (Ap)^2 + Bp], \text{ where } p = [\max(F_0^2, 0) + 2F_c^2] / 3.$

7.2 Determination of the structure of rare earth metals complexes by X-ray crystallography

Crystals of **Sc-1** for the X-ray crystal structure analysis were obtained from a concentrated solution of **Sc-1** in hexane at room temperature. The colorless crystal in block-shape, with approximate dimensions of 0.208 × 0.340 × 0.659 mm³, was selected and mounted for the single-crystal X-ray diffraction. The data set was collected by Bruker D8 Venture Photon II diffractometer at 173(2)K equipped with micro-focus Mo radiation source (K α = 0.71073Å). Applied with face-indexed numerical absorption correction, the structure solution was solved and refinement was processed by SHELXTL (version 6.14) and OLEX 2.3 program package⁸. The structure was analyzed by ADDSYM routine implemented in PLATON suite and no higher symmetry was suggested⁹. The crystal data and further details are listed in Table S14. CCDC 2219242 which contains the crystallographic data for the structure have been deposited with the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK, which can be obtained free of charge via Fax: +44 (0)1223 336033; E-Mail: deposit@ccdc.cam.ac.uk, https://www.ccdc.cam.ac.uk/structures/.

Crystals of **Sc-2** for the X-ray crystal structure analysis were obtained from a concentrated solution of **Sc-2** in hexane at room temperature. The yellow crystal in block-shape, with approximate dimensions of $0.126 \times 0.198 \times 0.347 \text{ mm}^3$, was selected and mounted for the single-crystal X-ray diffraction. The data set was collected by Bruker D8 Venture Photon II diffractometer at 173(2)K equipped with micro-focus Cu radiation source (K α = 1.54178Å). Applied with face-indexed numerical absorption correction, the structure solution was solved and refinement was processed by SHELXTL (version 6.14) and OLEX 2.3 program package⁸. The structure was analyzed by ADDSYM routine implemented in PLATON suite and no higher symmetry was suggested⁹. The crystal data and further details are listed in Table S14. CCDC 2219243 which contains the crystallographic data for the structure have been deposited with the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK, which can be obtained free of charge via Fax: +44 (0)1223 336033; E-Mail: deposit@ccdc.cam.ac.uk, https://www.ccdc.cam.ac.uk/structures/.

Crystals of **Gd-1** for the X-ray crystal structure analysis were obtained from a concentrated solution of **Gd-1** in hexane at room temperature. The yellow crystal in block-shape, with approximate dimensions of 0.171 × 0.210 × 0.241 mm3, was selected and mounted for the single-crystal X-ray diffraction. The data set was collected by Bruker D8 Venture Photon II diffractometer at 173(2)K equipped with micro-focus Mo radiation source (K α = 0.71073Å). Applied with face-indexed numerical absorption correction, the structure solution was solved and refinement was processed by SHELXTL (version 6.14) and OLEX 2.3 program package⁸. The structure was analyzed by ADDSYM routine implemented in PLATON suite and no higher symmetry was suggested⁹. The crystal data and further details are listed in Table S14. CCDC 2219244 which contains the crystallographic data for the structure have been deposited with the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK, which can be obtained free of charge via Fax: +44 (0)1223 336033; E-Mail: deposit@ccdc.cam.ac.uk, https://www.ccdc.cam.ac.uk/structures/.

Crystals of **Y-1** for the X-ray crystal structure analysis were obtained from a concentrated solution of **Y-1** in hexane at room temperature. The yellow crystal in block-shape, with approximate dimensions of 0.177 × 0.201 × 0.347 mm3, was selected and mounted for the single-crystal X-ray diffraction. The data set was collected by Bruker D8 Venture Photon II diffractometer at 173(2)K equipped with micro-focus Mo radiation source (K α = 0.71073Å). Applied with face-indexed numerical absorption correction, the structure solution was solved and refinement was processed by SHELXTL (version 6.14) and OLEX 2.3 program package⁸. The structure was analyzed by ADDSYM routine implemented in PLATON suite and no higher symmetry was suggested⁹. The crystal data and further details are listed in Table S14. CCDC 2219245 which contains the crystallographic data for the structure have been deposited with the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK, which can be obtained free of charge via Fax: +44 (0)1223 336033; E-Mail: deposit@ccdc.cam.ac.uk, https://www.ccdc.cam.ac.uk/structures/.

Figure S18. The thermal ellipsoid figure of Sc-1 with 50% probabilities.

Figure S19. The thermal ellipsoid figure of Sc-2 with 50% probabilities.

Figure S20. The thermal ellipsoid figure of Gd-1 with 50% probabilities.

Figure S21. The thermal ellipsoid figure of Y-1 with 50% probabilities.

Formula	$C_{47}H_{64}N_5Sc$	$C_{45}H_{58}CI_2N_5Sc$	$C_{47}H_{64}N_5Gd$	$C_{47}H_{64}N_5Y$
Formula mass (amu)	743.99	784.82	856.28	787.94
Space group	P 21/c	P 21/c	P 21/n	P -1
<i>a</i> (Å)	19.891 (2)	19.8888 (5)	11.7634 (3)	10.8628 (7)
b (Å)	11.6240 (12)	11.5941 (3)	18.4422 (5)	11.7806 (7)
c (Å)	20.148 (2)	20.0988 (5)	19.7845 (6)	18.3075 (10)
α (deg)	90	90	90	86.193 (2)
β (deg)	112.715	112.329 (1)	93.583 (1)	83.654 (2)
γ (deg)	90	90	90	71.048 (2)
V (Å ³)	4297.3 (8)	4287.12 (19)	4283.7 (2)	2201.1 (2)

Z	4	4	4	2
λ (Å)	0.71073	1.54178	0.71073	0.71073
<i>Т</i> (К)	173 K	173 K	173 K	173 K
$ ho_{calcd}$ (g cm ⁻³)	1.150	1.216	1.328	1.189
μ (mm ⁻¹)	0.208	2.886	1.585	1.361
Transmission factors	0.894–1.000	0.498–0.780	0.772–0.868	0.738–0.848
θ_{\max} (deg)	25.612	68.326	27.497	25.435
No. of unique data, including $F_0^2 < 0$	7765	7744	9792	8092
No. of unique data, with $F_{0}^{2} > 2\sigma(F_{0}^{2})$	6979	7070	8297	7224
No. of variables	498	573	492	503
$R(F)$ for $F_0^2 > 2\sigma(F_0^2)^a$	0.1083	0.0336	0.0305	0.0302
$R_{\rm w}(F_{\rm o}^2)^{b}$	0.2142	0.0946	0.0580	0.0743
Goodness of fit	1.419	1.052	1.103	1.072

^a $R(F) = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|.$

^b $R_w(F_0^2) = [\Sigma[w(F_0^2 - F_c^2)^2] / \Sigma wF_0^4]^{1/2}; w^{-1} = [\sigma^2(F_0^2) + (Ap)^2 + Bp], \text{ where } p = [\max(F_0^2, 0) + 2F_c^2] / 3.$

Table S15 Comparing rare-earth alkyl complexes supported by imidazolin-2-iminato ligands

Matthias Tamm	M-N1	M-N1-C1	Ours	M-N1	M-N1-C1
M = Sc	1.9520(18)	178.90(18)	M = Sc, R = Me	1.956(4)	178.6(4)
M = Lu	2.089(3)	176.4(2)	M = Sc, R = CI	1.9711(13)	178.45(11)
M = Y	2.1255(13)	176.85(12)	M = Y, R = Me	2.1035(15)	178.12(14)
M = Gd	2.1643(13)	170.85(12)	M = Gd, R = Me	2.147(2)	178.91(19)

Ours M = Sc, R = Me M = Y, R = Me M = Gd, R = MeM = Sc, R = CI

8. The analytical and spectral characterization data of products

2-(2-Methoxyphenyl)bicyclo[2.2.1]heptane (3aa)

(C₁₄H₁₈O) colorless oil; 39.2 mg, 97% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.24 (d, J = 9.4 Hz, 1H), 7.21 – 7.13 (m, 1H), 6.92 (t, J = 6.8 Hz, 1H), 6.86 (d, J = 8.2 Hz, 1H), 3.84 (s, 3H), 3.08 – 2.92 (m, 1H), 2.38 (s, 1H), 2.34 (s, 1H), 1.85 – 1.79 (m, 1H), 1.70 – 1.46 (m, 4H), 1.44 – 1.39 (m, 1H), 1.36 – 1.26 (m, 1H), 1.21 (d, J = 9.6, 1H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 157.2, 135.9, 126.2, 125.7, 120.0, 110.1, 55.3, 41.1, 40.4, 38.7, 36.9, 36.3, 30.4, 29.1. IR (film, cm⁻¹): 2949, 2868, 2135, 1598, 1490, 1459, 1354, 1289, 1238, 1106, 1032, 747, 714. HRMS (ESI-TOF) calcd for C₁₄H₁₉O⁺ ([M]+H⁺) = 203.1430, found 203.1431. (Consistent with the data in previous literature)^[10].

2-(2-Methoxy-5-methylphenyl)bicyclo[2.2.1]heptane (3ba)

(C₁₅H₂₀O) colorless oil; 40.2 mg, 93% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.02 (s, 1H), 6.95 (d, J = 8.2 Hz, 1H), 6.74 (d, J = 8.2 Hz, 1H), 3.80 (s, 3H), 2.98 – 2.94 (m, 1H), 2.34 (s, 1H), 2.32 (s, 1H), 2.30 (s, 3H), 1.82 – 1.76 (m, 1H), 1.62 – 1.45 (m, 4H), 1.41 – 1.37 (m, 1H), 1.33 – 1.26 (m, 1H), 1.20 (d, J = 11.6 Hz, 1H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 155.2, 135.7, 129.1, 126.6, 126.3, 110.2, 55.5, 41.2, 40.4, 38.7, 36.9, 36.3, 30.5, 29.1, 20.8. IR (film, cm⁻¹): 2947, 2867, 1607, 1496, 1457, 1351, 1311, 1239, 1170, 1146, 1121, 1036, 923, 881, 802, 749, 562. HRMS (ESI-TOF) calcd for C₁₅H₂₁O⁺ ([M]+H⁺) = 217.1587, found 217.1587.

2-(2-Methoxy-4-methylphenyl)bicyclo[2.2.1]heptane (3ca)

 $(C_{15}H_{20}O)$ colorless oil; 42.8 mg, 99% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.11 (d, J = 7.8 Hz, 1H), 6.74 (d, J = 7.8 Hz, 1H), 6.68 (s, 1H), 3.83 (s, 3H), 2.97 – 2.94 (m, 1H), 2.35 (s, 3H), 2.32 (s, 2H), 1.82 – 1.76 (m, 1H), 1.66 – 1.46 (m, 4H), 1.44 – 1.37 (m, 1H), 1.33 – 1.27 (m, 1H), 1.20 (d, J = 12.2 Hz, 1H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 157.2, 136.0, 133.0, 125.6, 120.5, 111.3, 55.4, 41.3, 40.2, 38.7, 36.9, 36.3, 30.5, 29.1, 21.4. IR (film, cm⁻¹): 2947, 2867, 1611, 1578, 1502, 1456, 1310, 1286, 1252, 1193, 1119, 1042, 927, 806, 765, 725, 589. HRMS (ESI-TOF) calcd for C₁₅H₂₁O⁺ ([M]+H⁺) = 217.1587, found 217.1586.

2-(5-(Tert-butyl)-2-methoxyphenyl)bicyclo[2.2.1]heptane (3da)

(C₁₈H₂₆O) colorless oil; 50.6 mg, 98% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.26 (s, 1H), 7.15 (d, *J* = 8.6, 1H), 6.77 (d, *J* = 8.6 Hz, 1H), 3.81 (s, 3H), 3.00 – 2.97 (m, 1H), 2.38 (s, 1H), 2.32 (s, 1H), 1.82 – 1.76 (m, 1H), 1.68 – 1.45 (m, 5H), 1.44 – 1.36 (m, 1H), 1.32 (s, 9H), 1.21 (d, *J* = 9.6 Hz, 1H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 155.0, 142.4, 135.1, 123.0, 122.4, 109.5, 55.4, 41.2, 40.6, 38.7, 36.9, 36.3, 34.2, 31.6, 30.4, 29.1. IR (film, cm⁻¹): 2950, 2868, 1606, 1498, 1460, 1392, 1361, 1310, 1243, 1208, 1135, 1106, 1036, 921, 888, 808, 647. HRMS (ESI-TOF) calcd for C₁₈H₂₇O⁺ ([M]+H⁺) = 259.2056, found 259.2055.

2-(5-Fluoro-2-methoxyphenyl)bicyclo[2.2.1]heptane (3ea)

 $(C_{14}H_{17}FO)$ colorless oil; 41.9 mg, 95% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 6.94 – 6.91 (m, 1H), 6.83 – 6.78 (m, 1H), 6.75 – 6.71 (m, 1H), 3.80 (s, 3H), 3.01 – 2.88 (m, 1H), 2.31 (d, *J* = 4.4 Hz, 2H), 1.83 – 1.77 (m, 1H), 1.59 – 1.35(m, 5H), 1.32 – 1.25 (m, 1H), 1.21 (d, *J* = 9.8, 1H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 158.2, 155.9, 153.3, 138.1, 113.2, 112.9, 111.6, 111.4, 110.8, 110.7, 55.9, 41.2, 38.8, 36.8, 36.2, 30.3, 28.9. ¹⁹F{¹H} NMR (376 MHz, Chloroform-*d*) δ –124.19. IR (film, cm⁻¹): 2950, 2870, 1598, 1492, 1462, 1423, 1354, 1273, 1243, 1200, 1178, 1149, 1101, 1035, 982, 941, 866, 840, 802, 748, 699. HRMS (ESI-TOF) calcd for C₁₄H₁₇FONa ⁺ ([M]+Na⁺) = 243.1156, found 243.1158.

2-(5-Chloro-2-methoxyphenyl)bicyclo[2.2.1]heptane (3fa)

 $(C_{14}H_{17}CIO)$ colorless oil; 43.6 mg, 92% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.15 (d, J = 2.6 Hz, 1H), 7.15 – 7.07 (m, 1H), 6.73 (d, J = 8.6 Hz, 1H), 3.80 (s, 3H), 2.94 – 2.91 (m, 1H), 2.35 – 2.28 (m, 2H), 1.82 – 1.76 (m, 1H), 1.66 – 1.55 (m, 2H), 1.49 (d, J = 9.8 Hz, 1H), 1.45 – 1.34 (m, 2H), 1.31 – 1.25 (m, 1H), 1.21 (d, J = 9.8 Hz, 1H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 155.9, 137.9, 125.9, 125.7, 125.1, 111.2, 55.6, 40.9, 40.5, 38.7, 36.8, 36.3, 30.3, 28.9. IR (film, cm⁻¹): 2948, 2868, 1593, 1484, 1459, 1405, 1350, 1310, 1238, 1174, 1126, 1032, 968, 911, 879, 848, 803, 724, 643, 621, 555. GC-MS (EI): Calcd for C₁₄H₁₇CIO = 236.09, found 236.05.
2-(5-Bromo-2-methoxyphenyl)bicyclo[2.2.1]heptane (3ga)

(C₁₄H₁₇BrO) colorless oil; 43.6 mg, 80% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.29 – 7.21 (m, 2H), 6.69 (d, J = 8.6 Hz, 1H), 3.79 (s, 3H), 2.94 – 2.90 (m, 1H), 2.31 (s, 2H), 1.81 – 1.75 (m, 1H), 1.66 – 1.55 (m, 2H), 1.48 (d, J = 9.8 Hz, 1H), 1.45 - 1.33 (m, 2H), 1.31 - 1.24 (m, 1H), 1.21 (d, J = 9.8 Hz, 1H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 156.4, 138.4, 128.8, 112.7, 111.8, 55.5, 40.9, 40.5, 38.6, 36.8, 36.3, 30.4, 28.9. **IR** (film, cm⁻¹): 2949, 2968, 1589, 1482, 1458, 1399, 1349, 1277, 1238, 1174, 1123, 1023, 907, 879, 844, 802, 721, 620, 522. **HRMS** (ESI-TOF) calcd for $C_{14}H_{17}BrONa^+$ ([M]+Na⁺) = 303.0355, found 303.0360.

2-(5-lodo-2-methoxyphenyl)bicyclo[2.2.1]heptane (3ha)

 $(C_{14}H_{17}IO)$ colorless oil; 61.7 mg, 94% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 (d, J = 8.4 Hz, 2H), 6.59 (d, J = 8.2 Hz, 1H), 3.79 (s, 3H), 2.99 – 2.83 (m, 1H), 2.31 (d, J = 4.4, 1.6 Hz, 2H), 1.81 – 1.75 (m, 1H), 1.66 – 1.52 (m, 2H), 1.48 (d, J = 9.6, 1H), 1.45 – 1.33 (m, 2H), 1.31 – 1.26 (m, 1H), 1.24 – 1.18 (m, 1H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 157.1, 138.8, 134.9, 134.6, 112.4, 82.9, 55.4, 40.9, 40.4, 38.6, 36.8, 36.2, 30.3, 28.9. IR (film, cm⁻¹): 2947, 2866, 1583, 1480, 1492, 1457, 1393, 1347, 1280, 1236, 1173, 1123, 1030, 954, 880, 843, 800, 720, 609, 551, 468. **HRMS** (ESI-TOF) calcd for C₁₄H₁₈IO⁺ ([M]+H⁺) = 329.0397, found 329.0383.

2-(4-Methoxy-[1,1'-biphenyl]-3-yl)bicyclo[2.2.1]heptane (3ia)

3ia

(C₂₀H₂₂O) colorless oil; 55.1 mg, 99% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 – 7.52 (m, 2H), 7.48 – 7.34 (m, 4H), 7.34 - 7.28 (m, 1H), 6.91 (d, J = 8.4 Hz, 1H), 3.87 (s, 3H), 3.05 - 3.01 (m, 1H), 2.43 (d, J = 3.8 Hz, 1H), 3.87 (s, 3H), 3.05 - 3.01 (m, 2H), 3.43 (d, J = 3.8 Hz, 1H), 3.87 (s, 3H), 3.872.34 (d, J = 4.4 Hz, 1H), 1.84 (t, J = 11.8 Hz, 1H), 1.69 – 1.56 (m, 3H), 1.43 (t, J = 10.4 Hz, 1H), 1.32 (t, J = 10.6 Hz, 1H), 1.27 – 1.19 (m, 1H). ¹³C{¹H} NMR (101 MHz, Chloroform-d) δ 156.9, 141.6, 136.2, 133.1, 128.6, 126.9, 126.4, 124.8, 124.8, 110.4, 55.5, 55.5, 41.1, 40.5, 38.7, 36.9, 36.4, 30.4, 29.1. IR (film, cm⁻¹): 3031, 2947, 2867, 2834, 1604, 1483, 1459, 1351, 1240, 1124, 1064, 1028, 890, 813, 762, 697, 599, 549. HRMS (ESI-TOF) calcd for $C_{20}H_{22}ONa^+$ ([M]+ Na⁺) = 301.1563, found 301.1573.

(3-(Bicyclo[2.2.1]heptan-2-yl)-4-methoxyphenyl)(methyl)sulfane (3ja)

(C₁₅H₂₀OS) yellow oil; 49.2 mg, 99% yield, ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.22 (d, *J* = 2.4 Hz, 1H), 7.14 (d, *J* = 8.4, 1H), 6.78 (d, *J* = 8.4 Hz, 1H), 3.81 (s, 3H), 3.02 – 2.87 (m, 1H), 2.45 (s, 3H), 2.35 (s, 1H), 2.32 (s, 1H), 1.81 – 1.77 (m, 1H), 1.64 – 1.54 (m, 2H), 1.51 (d, *J* = 9.6 Hz, 1H), 1.49 – 1.41 (m, 1H), 1.41 – 1.35 (m, 1H), 1.29 (d, *J* = 12.4, 1H), 1.21 (d, *J* = 9.8, 1H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 156, 136.7, 127.8, 127.1, 126.8, 110.7, 55.5, 40.9, 40.4, 38.6, 36.8, 36.3, 30.3, 28.9, 18.3. **IR** (film, cm⁻¹): 2947, 2867, 1590, 1485, 1458, 1337, 1293, 1236, 1175, 1132, 1095, 1031, 966, 918, 882, 803, 727, 641, 585, 559, 471. **HRMS** (ESI-TOF) calcd for C₁₅H₂₁OS + ([M]+H⁺) = 249.1308, found 249.1309.

(E)-2-(2-Methoxy-5-(prop-1-en-1-yl)phenyl)bicyclo[2.2.1]heptane (3ka)

(C₁₇H₂₂O) colorless oil; 47.0 mg, 97% yield, ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.19 (s, 1H), 7.13 – 7.08 (m, 1H), 6.76 (d, *J* = 8.4 Hz, 1H), 6.35 (d, *J* = 15.6 Hz, 1H), 6.12 – 6.06 (m, 1H), 3.81 (s, 3H), 2.95 – 2.93 (m, 1H), 2.35 (d, *J* = 4.0 Hz, 1H), 2.32 – 2.35 (m, 1H), 1.86 (d, *J* = 6.6 Hz, 3H), 1.80 – 1.76 (m, 1H), 1.65 – 1.51 (m, 5H), 1.51 – 1.44 (m, 1H), 1.42 – 1.35 (m, 1H), 1.31 – 1.25 (m, 1H), 1.20 (d, *J* = 10 Hz, 1H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 156.4, 135.8, 130.9, 130.0, 123.6, 123.3, 123.0, 110.1, 55.4, 55.4, 41.0, 40.40, 38.6, 36.8, 36.3, 30.4, 29.0, 18.3. **IR** (film, cm⁻¹): 2948, 2868, 1691, 1601, 1494, 1456, 1353, 1310, 1242, 1169, 1143, 1117, 1032, 961, 888, 815, 785, 760, 552. **HRMS** (ESI-TOF) calcd for C₁₇H₂₃O⁺ ([M]+H⁺) = 243.1743, found 243.1741.

2-(5-Allyl-2-methoxyphenyl)bicyclo[2.2.1]heptane (3la)

(C₁₇H₂₂O) colorless oil; 48 mg, 99% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.02 (s, 1H), 6.95 (d, *J* = 8.2 Hz, 1H), 6.75 (d, *J* = 8.2 Hz, 1H), 6.01 – 5.91 (m, 1H), 5.13 – 4.98 (m, 2H), 3.79 (s, 3H), 3.32 (d, *J* = 6.6 Hz, 2H), 2.95 (t, *J* = 9.2 Hz, 1H), 2.39 – 2.25 (m, 2H), 1.80 – 1.74 (m, 1H), 1.64 – 1.44 (m, 4H), 1.42 – 1.34 (m, 1H), 1.31 – 1.25 (m, 1H), 1.18 (d, *J* = 9.8 Hz, 1H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 155.6, 138.1, 135.8, 131.3, 126.1, 125.8, 115.1, 110.1, 55.4, 41.1, 40.4, 39.7, 38.6, 36.8, 36.2, 30.4, 29.0. IR (film, cm⁻¹): 2948, 2868, 2833, 1638, 1605, 1495, 1459, 1353, 1241, 1171, 1146, 1119, 1035, 993, 911, 808, 785, 762, 644. HRMS (ESI-TOF) calcd for C₁₇H₂₃O⁺ ([M]+H⁺) = 243.1743, found 243.1743.

2-(Bicyclo[2.2.1]heptan-2-yl)-3-methoxynaphthalene (3ma)

(C₁₈H₂₀O) colorless oil; 44.9 mg, 89% yield, ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.76 – 7.70 (m, 2H), 7.59 (s, 1H), 7.38 (t, *J* = 8.2, Hz, 1H), 7.32 (t, *J* = 8.2, Hz, 1H), 7.09 (s, 1H), 3.95 (s, 3H), 3.10 – 3.07 (m, 1H), 2.56 – 2.46 (m, 1H), 2.38 – 2.36 (m, 1H), 1.89 - 1.83 (m, 1H), 1.69 – 1.54 (m, 4H), 1.50 – 1.42 (m, 1H), 1.38 – 1.32 (m, 1H), 1.25 (d, *J* = 9.8 Hz, 1H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 156.5, 137.4, 132.8, 128.6, 127.3, 126.0, 125.3, 124.2, 123.4, 104.7, 55.3, 55.3, 41.0, 40.9, 38.5, 37.0, 36.1, 30.3, 29.1. IR (film, cm⁻¹): 2947, 2867, 1630, 1600, 1499, 1466, 1429, 1396, 1361, 1327, 890, 813, 762, 697, 599, 549. HRMS (ESI-TOF) calcd for C₁₈H₂₁O⁺ ([M]+H⁺) = 253.1587, found 253.1586.

2,2'-(2,5-Dimethoxy-1,4-phenylene)bis(bicyclo[2.2.1]heptane) (3na)

 $(C_{22}H_{30}O_2)$ colorless solid; 64.6 mg, 99% yield, melting point: 92 – 98 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 6.76 (s, 2H), 3.82 (s, 6H), 3.00 – 2.96 (m, 2H), 2.40 – 2.29 (m, 4H), 1.83 – 1.78 (m, 2H), 1.64 – 1.54 (m, 6H), 1.52 – 1.46 (m, 2H), 1.44 – 1.37 (m, 2H), 1.30 (d, *J* = 11.2 Hz, 2H), 1.24 – 1.19 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 151.0, 133.5, 109.7, 56.4, 41.5, 41.4, 40.3, 40.2, 39.0, 38.9, 36.8, 36.4, 30.4, 28.9. IR (film, cm⁻¹): 2947, 2867, 1590, 1485, 1458, 1337, 1293, 1236, 1175, 1132, 1095, 1031, 966, 918, 882, 803, 727, 641, 585, 559, 471. HRMS (ESI-TOF) calcd for C₂₂H₃₁O₂ + ([M]+H⁺) = 327.2319, found 327.2314.

2-(2,5-Dimethoxyphenyl)bicyclo[2.2.1]heptane (3oa)

 $(C_{15}H_{20}O_2)$ colorless oil; 46.0 mg, 99% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 6.82 (d, J = 3.0 Hz, 1H), 6.76 (d, J = 8.6 Hz, 1H), 6.67 – 6.64 (m, 1H), 3.78 (d, J = 4.2 Hz, 6H), 2.97 – 2.94 (m,1H), 2.34 – 2.30 (m, 2H), 1.83 – 1.77 (m, 1H), 1.61 – 1.52 (m, 3H), 1.49 – 1.36 (m, 2H), 1.32 – 1.26 (m, 1H), 1.22 – 1.18 (m, 1H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 153.3, 151.6, 137.5, 113.3, 110.8, 109.2, 55.9, 55.6, 41.1, 40.5, 38.8, 36.8, 36.3, 30.4, 28.9. IR (film, cm⁻¹): 2949, 2868, 2831, 1589, 1493, 1463, 1425, 1352, 1281, 1178, 1157, 1111, 1056, 1030, 974, 922, 875, 838, 796, 747, 731, 705, 634. HRMS (ESI-TOF) calcd for $C_{15}H_{21}O_2^+$ ([M]+H⁺) = 233.1536, found 233.1536.

(3-(Bicyclo[2.2.1]heptan-2-yl)-4-methoxyphenyl)trimethylsilane (3pa)

 $(C_{17}H_{26}OSi)$ colorless oil; 54.3 mg, 99% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 – 7.29 (m, 2H), 6.86 (d, *J* = 7.8 Hz, 1H), 3.84 (s, 3H), 3.01 – 2.98 (m, 1H), 2.44 – 2.27 (m, 2H), 1.83 – 1.77 (m, 1H), 1.64 – 1.60 (m, 2H), 1.55 – 1.47 (m, 2H), 1.45 – 1.37 (m, 1H), 1.35 – 1.30 (m, 1H), 1.24 – 1.20 (m, 1H), 0.27 (s, 9H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 158.0, 135.0, 131.6, 130.5, 130.3, 109.6, 55.1, 41.0, 40.4, 38.5, 36.9, 36.2, 30.4, 29.1. IR (film, cm⁻¹): 2950, 2869, 2835, 1591, 1566, 1493, 1460, 1388, 1344, 1292, 1275, 1263, 1241, 1211, 1165, 1149, 1134, 1104, 1034, 972, 932, 915, 861, 836, 808, 757, 725, 691, 650, 609, 581, 557, 534, 470. GC-MS (EI): Calcd for C₁₇H₂₆OSi = 274.18, found 274.25.

3-(Bicyclo[2.2.1]heptan-2-yl)-4-methoxy-N,N-dimethylaniline (3qa)

 $(C_{16}H_{23}NO)$ colorless oil; 14.2 mg, 29% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.08 (d, J = 8.6 Hz, 1H), 6.85 (d, J = 3.0 Hz, 1H), 6.68 (dd, J = 8.8, 3.0 Hz, 1H), 3.78 (s, 3H), 3.25 – 3.19 (m, 1H), 2.62 (s, 6H), 2.34 (s, 1H), 2.22 (s, 1H), 1.88 – 1.82 (m, 1H), 1.73 – 1.69 (m, 1H), 1.60 – 1.55 (m, 2H), 1.53 – 1.50 (m, 1H), 1.43 – 1.39 (m, 1H), 1.33 – 1.29 (m, 1H), 1.26 – 1.22 (m, 1H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 155.9, 146.1, 145.5, 120.9, 113.0, 109.9, 46.0, 43.2, 40.8, 40.5, 36.8, 36.7, 31.1, 28.5. IR (film, cm⁻¹): 2949, 2868, 2820, 2776, 1724, 1658, 1605, 1576, 1497, 1452, 1424, 1351, 1289, 1233, 1189, 1155, 1101, 1042, 975, 944, 921, 872, 838, 809, 750, 690, 518. HRMS (ESI-TOF) calcd for C₁₆H₂₄NO + ([M]+H⁺) = 246.1852, found 246.1853.

2,5-Di(bicyclo[2.2.1]heptan-2-yl)-4-methoxy-N,N-dimethylaniline (3ra)

(C₂₃H₃₃NO) colorless oil; 37.3 mg, 55% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.04 (s, 1H), 6.77 (s, 1H), 3.82 (s, 3H), 3.34 – 3.15 (m, 1H), 2.97 – 2.93 (m, 1H), 2.64 (s, 6H), 2.41 – 2.28 (m, 3H), 2.23 (s, 1H), 1.90 – 1.82 (m, 1H), 1.80 – 1.70 (m, 2H), 1.64 – 1.49 (m, 7H), 1.42 – 1.37 (m, 1H), 1.35 – 1.24 (m, 4H), 1.22 – 1.18 (m, 1H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 153.6, 145.0, 141.5, 133.1, 55.6, 46.1, 43.3, 41.3, 40.9, 40.3, 38.6, 37.0, 36.8, 36.7, 36.3, 31.1, 30.3, 29.0, 28.5, 26.9. IR (film, cm⁻¹): 2947, 2867, 2817, 2772, 1607, 1501, 1452, 1395, 1352, 1296, 1261, 1238, 1208, 1190, 1169, 1113, 1093, 1046, 1019, 949, 924, 907, 838, 799, 634. HRMS (ESI-TOF) calcd for C₂₃H₃₄NO⁺ ([M]+H⁺) = 340.2635, found 340.2638.

7-(Bicyclo[2.2.1]heptan-2-yl)-2,3-dihydrobenzofuran (3sa)

3sa

(C₁₅H₁₈O) colorless oil; 34.3 mg, 80% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.04 – 7.01 (m, 2H), 6.80 (t, *J* = 7.4 Hz, 1H), 4.55 (t, *J* = 8.8 Hz, 2H), 3.20 (t, *J* = 8.8 Hz, 2H), 2.87 – 2.83 (m, 1H), 2.41 – 2.22 (m, 2H), 1.77 – 1.71 (m, 1H), 1.64 – 1.57 (m, 2H), 1.54 – 1.52 (m, 2H), 1.39 – 1.36 (m, 1H), 1.29 – 1.26 (m, 1H), 1.21 – 1.16 (m, 1H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 157.8, 129.4, 126.0, 124.4, 121.8, 120.0, 70.6, 41.6, 40.8, 37.8, 36.7, 36.1, 30.3, 30.0, 29.0. IR (film, cm⁻¹): 3036, 2949, 2868, 1593, 1477, 1451, 1364, 1314, 1299, 1262, 1209, 1178, 1159, 1062, 1024, 1002, 979, 946, 869, 757, 742. HRMS (ESI-TOF) calcd for C₁₅H₁₉O⁺ ([M]+H⁺) = 215.1430, found 215.1431. (Consistent with the data in previous literature)^[10].

1-Methoxy-2-phenethylbenzene (3ab)

 $(C_{15}H_{16}O)$ colorless oil; 8.5 mg, 20% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.26 – 7.17 (m, 3H), 7.17 – 7.07 (m, 4H), 7.05 – 7.00 (m, 1H), 6.80 (t, *J* = 7.4 Hz, 2H), 3.76 (s, 3H), 2.90 – 2.74 (m, 4H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 157.4, 142.4, 130.2, 129.8, 128.4, 128.2, 127.1, 125.7, 120.3, 110.2, 55.2, 55.2, 36.1, 32.4. IR (film, cm⁻¹): 3061, 3026, 3001, 2926, 2856, 2835, 1601, 1587, 1493, 1460, 1438, 1324, 1289, 1177, 1110, 1073, 1051, 1031, 929, 805, 750, 698. HRMS (ESI-TOF) calcd for C₁₅H₁₇O ⁺ ([M]+H⁺) = 213.1274, found 213.1275. (Consistent with the data in previous literature)^[10].

1-(Hexan-2-yl)-2-methoxybenzene (3ac)

(C₁₃H₂₀O) colorless oil; 8.8 mg, 23% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.21 – 7.10 (m, 2H), 6.96 – 6.89 (m, 1H), 6.85 (d, *J* = 8.0 Hz, 1H), 3.82 (s, 3H), 3.17 (q, *J* = 7.0 Hz, 1H), 1.63 – 1.56 (m, 1H), 1.54 – 1.46 (m, 1H), 1.32 – 1.16 (m, 4H), 1.18 (d, *J* = 7.0 Hz, 3H), 0.86 (t, *J* = 7.0 Hz, 3H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 156.9, 136.2, 126.7, 126.3, 120.5, 110.4, 55.4, 36.8, 31.6, 29.8, 22.8, 20.9, 14.0. IR (film, cm⁻¹): 3029, 2957, 2928, 2857, 2836, 1599, 1585, 1492, 1462, 1439, 1375, 1356, 1288, 1173, 1147, 1102, 1052, 1033, 802, 750, 497. HRMS (ESI-TOF) calcd for C₁₃H₂₀OK⁺ ([M]+K⁺) = 231.1146, found 231.1139. (Consistent with the data in previous literature)^[10].

1-Methoxy-2-(octan-2-yl)benzene (3ad)

(C₁₅H₂₄O) colorless oil; 10.1 mg, 20% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.22 – 7.11 (m, 2H), 6.93 (t, *J* = 7.4 Hz, 1H), 6.85 (d, *J* = 8.0 Hz, 1H), 3.82 (s, 3H), 3.18 (q, *J* = 7.2 Hz, 1H), 1.64 – 1.58 (m, 1H), 1.54 – 1.46 (m, 1H), 1.35 – 1.20 (m, 8H), 1.19 (d, *J* = 7.0 Hz, 3H), 0.87 (t, *J* = 6.8 Hz, 3H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 156.9, 136.2, 126.6, 126.3, 120.5, 110.4, 55.3, 37.1, 31.8, 31.6, 29.4, 27.6, 22.6, 20.9, 14.1. IR (film, cm⁻¹): 3029, 2956, 2925, 2854, 1599, 1585, 1491, 1462, 1439, 1375, 1357, 1288, 1174, 1146, 1104, 1052, 1033, 927, 801, 749, 497. HRMS (ESI-TOF) calcd for C₁₅H₂₅O ⁺ ([M]+H⁺) = 221.1900, found 221.1901. (Consistent with the data in previous literature)^[10].

(2-Methoxyphenethyl)trimethylsilane (3ae)

 $(C_{12}H_{20}OSi)$ colorless oil; 6.7 mg, 16% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.16 (t, J = 7.8 Hz, 2H), 6.88 (t, J = 7.4 Hz, 1H), 6.83 (d, J = 8.0 Hz, 1H), 3.82 (s, 3H), 2.64 – 2.58 (m, 2H), 0.85 – 0.79 (m, 2H), 0.02 (s, 9H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 157.1, 133.6, 128.7, 126.5, 120.3, 110.0, 29.7, 24.1, 16.8, -1.7. IR (film, cm⁻¹)): 2997, 2952, 2925, 2854, 1599, 1492, 1463, 1440, 1289, 1176, 1139, 1092, 1051, 1033, 994, 906, 861, 835, 748, 690. HRMS (ESI-TOF) calcd for C₁₂H₂₁OSi ⁺ ([M]+H⁺) = 209.1356, found 209.1350. (Consistent with the data in previous literature)^[10].

1-Methoxy-2-(2-methyloctyl)benzene (6aa)

(C₁₆H₂₆O) colorless oil; 40.6 mg, 99% yield, ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.18 (t, *J* = 7.8 Hz, 1H), 7.11 (d, *J* = 7.4 Hz, 1H), 6.97 – 6.80 (m, 2H), 3.82 (s, 3H), 2.68 (dd, *J* = 13.2, 5.9 Hz, 1H), 2.37 (dd, *J* = 13.2, 8.3 Hz, 1H), 1.85 – 1.72 (m, 1H), 1.41 – 1.26 (m, 9H), 1.22 – 1.13 (m, 1H), 0.91 (t, *J* = 6.6 Hz, 3H), 0.85 (d, *J* = 6.6 Hz, 3H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 157.7, 130.8, 130.2, 126.7, 120.0, 110.2, 55.2, 55.1, 37.7, 37.0, 33.3, 31.9, 29.5, 27.0, 22.7, 19.5, 14.1. **IR** (film, cm⁻¹): 2953, 2923, 2854, 1611, 1501, 1461, 1376, 1251, 1229, 1182, 1135, 1038, 884, 802, 714, 463. **HRMS** (ESI-TOF) calcd for C₁₆H₂₇O ⁺ ([M]+H⁺) = 235.2056, found 235.2051. (Consistent with the data in previous literature)^[10].

1-Methoxy-3-methyl-2-(2-methyloctyl)benzene (6ba)

(C₁₇H₂₈O) colorless oil; 45.2 mg, 96% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.06 (t, J = 7.8 Hz, 1H), 6.77 (d, J = 7.6 Hz, 1H), 6.71 (d, J = 8.2 Hz, 1H), 3.79 (s, 3H), 2.63 (dd, J = 13.2, 5.8 Hz, 1H), 2.46 (dd, J = 13.2, 8.6 Hz, 1H), 2.30 (s, 3H), 1.76 – 1.71 (m, 1H), 1.40 – 1.14 (m, 10H), 0.89 (t, J = 6.6 Hz, 3H), 0.82 (d, J = 6.6 Hz, 3H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 157.9, 137.8, 129.0, 125.9, 122.5, 107.9, 55.3, 55.2, 37.3, 33.4, 33.3, 31.9, 29.6, 27.2, 22.7, 19.9, 19.5, 14.1. IR (film, cm⁻¹): 2953, 2924, 2854, 1582, 1467, 1376, 1313, 1261, 1178, 1119, 769, 692. HRMS (ESI-TOF) calcd for C₁₇H₂₉O + ([M]+H⁺) = 249.2213, found 249.2208.

1-Methoxy-4-methyl-2-(2-methyloctyl)benzene (6ca)

 $(C_{17}H_{28}O)$ colorless oil; 46.2 mg, 96% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 6.96 (d, J = 8.2 Hz, 1H), 6.91 (d, J = 2.4 Hz, 1H), 6.74 (d, J = 8.2 Hz, 1H), 3.78 (s, 3H), 2.62 (dd, J = 13.2, 5.8 Hz, 1H), 2.36 – 2.29 (m, 1H), 2.28 (s, 3H), 1.79 – 1.71 (m, 1H), 1.39 – 1.23 (m, 9H), 1.20 – 1.10 (m, 1H), 0.90 (t, J = 6.6 Hz, 3H), 0.84 (d, J = 6.6 Hz, 3H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 155.6, 131.6, 130.0, 129.2, 126.9, 110.2, 55.4, 55.3, 37.6, 37.0, 33.4, 31.9, 29.5, 27.0, 22.7, 20.5, 20.4, 19.5, 14.1. IR (film, cm⁻¹): 2953, 2923, 2854, 1611, 1501, 1461, 1376, 1251, 1229, 1182, 1135, 1038, 802. HRMS (ESI-TOF) calcd for C₁₇H₂₉O⁺ ([M]+H⁺) = 249.2213, found 249.2209.

2-Methoxy-1-methyl-3-(2-methyloctyl)benzene (6da)

(C₁₇H₂₈O) colorless oil; 47.7 mg, 96% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.05 – 6.89 (m, 3H), 3.72 (s, 3H), 2.66 (dd, *J* = 13.4, 5.8 Hz, 1H), 2.35 (dd, *J* = 13.4, 8.5 Hz, 1H), 2.30 (s, 3H), 1.81 – 1.73 (m, 1H), 1.39 – 1.24 (m, 9H), 1.20 – 1.14 (m, 1H), 0.88 (t, *J* = 6.8 Hz, 3H), 0.84 (d, *J* = 6.6 Hz, 3H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 157.0, 134.5, 130.8, 128.8, 128.5, 123.5, 60.2, 37.5, 37.1, 34.1, 31.9, 29.5, 27.1, 22.6, 19.6, 16.2, 14.1. IR (film, cm⁻¹): 2954, 2923, 2853, 1465, 1376, 1258, 1212, 1168, 1086, 1016, 812, 766. HRMS (ESI-TOF) calcd for C₁₇H₂₉O ⁺ ([M]+H⁺) = 249.2213, found 249.2210. (Consistent with the data in previous literature)^[10].

4-Fluoro-1-methoxy-2-(2-methyloctyl)benzene (6ea)

(C₁₆H₂₅FO) colorless oil; 50.0 mg, 99% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 6.90 – 6.78 (m, 2H), 6.76 – 6.72 (m, 1H), 3.78 (s, 3H), 2.62 (dd, *J* = 13.2, 6.0 Hz, 1H), 2.32 (dd, *J* = 13.2, 8.3 Hz, 1H), 1.87 – 1.67 (m, 1H), 1.37 – 1.19 (m, 9H), 1.19 – 1.12 (m, 1H), 0.88 (t, *J* = 6.8 Hz, 3H), 0.83 (d, *J* = 6.6 Hz, 3H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 157.9, 155.6, 153.8, 153.8, 132.1, 132.0, 117.4, 117.2, 112.4, 112.1, 111.0, 110.9, 55.8, 37.6, 36.9, 33.2, 31.9, 29.5, 27.0, 22.6, 19.5, 14.1. ¹⁹F{¹H} NMR (376 MHz, Chloroform-*d*) δ –124.98. IR (film, cm⁻¹): 2955, 2925, 2854, 1601, 1496, 1463, 1424, 1377, 1259, 1217, 1036, 802, 713. HRMS (ESI-TOF) calcd for C₁₆H₂₅FONa + ([M]+Na⁺) = 275.1782, found 275.1790.

4-Chloro-1-methoxy-2-(2-methyloctyl)benzene (6fa)

(C₁₆H₂₅ClO) colorless oil; 40.3 mg, 75% yield, ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.12 – 7.10 (m, 1H), 7.05 (d, *J* = 2.8 Hz, 1H), 6.74 (d, *J* = 8.8 Hz, 1H), 3.78 (s, 3H), 2.61 (dd, *J* = 13.2, 5.8 Hz, 1H), 2.30 (dd, *J* = 13.2, 8.4 Hz, 1H), 1.83 – 1.66 (m, 1H), 1.37 – 1.20 (m, 9H), 1.20 – 1.10 (m, 1H), 0.89 (t, *J* = 6.8 Hz, 3H), 0.82 (d, *J* = 6.6 Hz, 3H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 156.3, 132.1, 130.4, 126.3, 124.8, 111.3, 55.5, 37.5, 36.9, 33.2, 31.9, 29.5, 27.0, 22.6, 19.4, 14.1. **IR** (film, cm⁻¹): 2954, 2923, 2853, 1595, 1487, 1461, 1406, 1376, 1304, 1243, 1176, 1134, 1032, 879, 802, 724, 645. **HRMS** (ESI-TOF) calcd for C₁₆H₂₅CIOK ⁺ ([M]+K⁺) = 307.1226, found 307.1222.

4-Bromo-1-methoxy-2-(2-methyloctyl)benzene (6ga)

 $(C_{16}H_{25}BrO)$ colorless oil; 31.3 mg, 50% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.27 – 7.24 (m, 1H), 7.19 (d, *J* = 2.6 Hz, 1H), 6.70 (d, *J* = 8.8 Hz, 1H), 3.78 (s, 3H), 2.61 (dd, *J* = 13.2, 5.8 Hz, 1H), 2.29 (dd, *J* = 13.2, 8.4 Hz, 1H), 1.80 – 1.63 (m, 1H), 1.39 – 1.20 (m, 9H), 1.20 – 1.10 (m, 1H), 0.89 (t, *J* = 6.8 Hz, 3H), 0.82 (d, *J* = 6.7 Hz, 3H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 156.8, 133.3, 132.6, 129.3, 112.3, 111.9, 55.4, 37.4, 36.9, 33.2, 31.9, 29.5, 26.9, 22.6, 19.4, 14.1. IR (film, cm⁻¹): 2954, 2923, 2853, 1591, 1486, 1461, 1275, 1135,1032, 886, 864, 801, 723, 625. HRMS (ESI-TOF) calcd for C₁₆H₂₅BrONa + ([M]+Na⁺) = 335.0981, found 335.0969.

4-lodo-1-methoxy-2-(2-methyloctyl)benzene (6ha)

(C₁₆H₂₅IO) colorless oil; 33.9 mg, 47% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.42 (m, 1H), 7.37 (d, *J* = 2.4 Hz, 1H), 6.59 (d, *J* = 8.6 Hz, 1H), 3.77 (s, 3H), 2.58 (dd, *J* = 13.2, 5.8 Hz, 1H), 2.27 (dd, *J* = 13.2, 8.4 Hz, 1H), 1.76 – 1.67 (m, 1H), 1.41 – 1.21 (m, 9H), 1.20 – 1.09 (m, 1H), 0.89 (t, *J* = 6.8 Hz, 3H), 0.81 (d, *J* = 6.6 Hz, 3H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 157.6, 139.1, 135.4, 133.1, 112.5, 82.5, 55.3, 55.3, 37.3, 36.9, 33.2, 31.9, 29.5, 26.9, 22.6, 19.4, 14.1. IR (film, cm⁻¹): 2953, 2922, 2852, 1585, 1484, 1460, 1242, 1174, 1137, 1030, 801. HRMS (ESI-TOF) calcd for C₁₆H₂₆IO⁺ ([M]+H⁺) = 361.1023, found 361.1021.

1,4-Dimethoxy-2-(2-methyloctyl)benzene (6ia)

 $(C_{17}H_{28}O_2)$ colorless oil; 49.7 mg, 94% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 6.77 – 6.75 (m, 1H), 6.70 – 6.67 (m, 2H), 3.76 (s, 6H), 2.62 (dd, *J* = 13.2, 5.8 Hz, 1H), 2.32 (dd, *J* = 13.2, 8.4 Hz, 1H), 1.84 – 1.66 (m, 1H), 1.39 – 1.22 (m, 9H), 1.19 – 1.11 (m, 1H), 0.88 (t, *J* = 6.8 Hz, 3H), 0.83 (d, *J* = 6.6 Hz, 3H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 153.2, 152.1, 131.6, 117.2, 111.2, 110.6, 55.9, 55.6, 37.8, 37.0, 33.4, 31.9, 29.5, 27.0, 22.6, 19.5, 14.1. IR (film, cm⁻¹): 2923, 2853, 1590, 1497, 1462, 1376, 1280, 1221, 1178, 1157, 1130, 1049, 1028, 875, 797, 710. HRMS (ESI-TOF) calcd for C₁₇H₂₉O₂ + ([M]+H⁺) = 265.2162, found 265.2158.

2-(2,5-Dimethoxybenzyl)bicyclo[2.2.1]heptane (6ja)

 $(C_{16}H_{22}O_2)$ colorless oil; 48.8 mg, 99% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 6.83 – 6.63 (m, 3H), 3.78 (d, *J* = 2.8 Hz, 6H), 2.51 (dd, *J* = 13.8, 8.4 Hz, 1H), 2.43 (dd, *J* = 13.8, 8.4 Hz, 1H), 2.22 (s, 1H), 1.99 (s, 1H), 1.82 – 1.75 (m, 1H), 1.53 – 1.43 (m, 3H), 1.40 – 1.37 (m, 1H), 1.19 – 1.06 (m, 4H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 153.2, 152.0, 131.6, 116.8, 111.0, 110.3, 55.9, 55.8, 55.6, 55.6, 55.5, 41.8, 40.5, 37.9, 36.8, 35.1, 29.9, 28.9. IR (film, cm⁻¹): 2944, 2866, 1590, 1496, 1460, 1281, 1178, 1157, 1117, 1049, 874, 795, 709, 482. HRMS (ESI-TOF) calcd for C₁₆H₂₃O₂ + ([M]+H⁺) = 247.1693, found 247.1688.

2-(4-(Bicyclo[2.2.1]heptan-2-yl)-2,5-dimethoxybenzyl)bicyclo[2.2.1]heptane (6jb)

 $(C_{23}H_{32}O_2)$ colorless oil; 67.4 mg, 90% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 6.76 (s, 1H), 6.65 (s, 1H), 3.80 (s, 6H), 3.00 – 2.96 (m, 1H), 2.51 (ddd, J = 13.6, 8.4, 4.8 Hz, 1H), 2.41 (ddd, J = 13.6, 8.4, 4.8 Hz, 1H), 2.34 (s, 2H), 2.22 (s, 1H), 2.00 (s, 1H), 1.85 – 1.72 (m, 2H), 1.67 – 1.52 (m, 4H), 1.52 – 1.44 (m, 4H), 1.43 – 1.38 (m, 2H), 1.33 – 1.28 (m, 1H), 1.25 – 1.20 (m, 1H), 1.18 – 1.08 (m, 4H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 151.3, 150.9, 133.9, 127.6, 113.4, 109.7, 56.4, 56.3, 56.2, 42.2, 41.4, 40.5, 40.3, 39.0, 38.9, 38.0, 36.8, 36.5, 36.4, 36.4, 35.1, 30.4, 30.0, 28.9, 28.9. IR (film, cm⁻¹): 2945, 2866, 1501, 1458, 1399, 1352, 1203, 1047, 862, 735, 484. HRMS (ESI-TOF) calcd for $C_{23}H_{33}O_2^+$ ([M]+H⁺) = 341.2475, found 341.2465.

1-Methoxy-2-(2-methylhexyl)benzene (6ab)

(C₁₄H₂₂O) colorless oil; 40.0 mg, 97% yield, ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.18 (t, J = 7.8 Hz, 1H), 7.11 (d, J = 7.4 Hz, 1H), 6.97 – 6.80 (m, 2H), 3.82 (s, 3H), 2.68 (dd, J = 13.2, 5.9 Hz, 1H), 2.37 (dd, J = 13.2, 8.3 Hz, 1H), 1.85 – 1.72 (m, 1H), 1.41 – 1.26 (m, 9H), 1.22 – 1.13 (m, 1H), 0.91 (t, J = 6.7 Hz, 3H), 0.85 (d, J = 6.6 Hz, 3H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 157.7, 130.8, 130.2, 126.7, 120.0, 110.2, 55.2, 55.1, 37.7, 36.7, 33.3, 29.3, 22.9, 19.5, 14.1. **IR** (film, cm⁻¹): 2956, 2925, 2856, 1600, 1492, 1462, 1377, 1289, 1259, 1241, 1175, 1089, 1015, 799, 749, 725. **HRMS** (ESI-TOF) calcd for C₁₄H₂₃O⁺ ([M]+H⁺) = 207.1743, found 207.1741. (Consistent with the data in previous literature)^[11].

(3-(2-Methoxyphenyl)propyl)trimethylsilane (6ac)

 $(C_{13}H_{22}OSi)$ colorless oil; 30.2 mg, 68% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.21 – 7.12 (m, 2H), 6.95 – 6.83 (m, 2H), 3.83 (s, 3H), 2.64 (t, *J* = 7.8 Hz, 2H), 1.69 – 1.57 (m, 2H), 0.65 – 0.50 (m, 2H), 0.00 (s, 9H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 157.4, 131.2, 129.8, 126.7, 120.2, 110.2, 55.2, 34.1, 24.4, 16.8, 1.0, -1.6, -1.7. IR (film, cm⁻¹): 2953, 1600, 1493, 1463, 1242, 1174, 1092, 1014, 797, 748, 691. HRMS (ESI-TOF) calcd for C₁₃H₂₃OSi ⁺ ([M]+H⁺) = 223.1513, found 223.1516.

(3-(2-Methoxyphenyl)-2-methylpropyl)trimethylsilane (6ad)

 $(C_{14}H_{24}OSi)$ colorless oil; 43 mg, 91% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.18 (t, J = 7.8 Hz, 1H), 7.08 (d, J = 7.4 Hz, 1H), 6.95 – 6.78 (m, 2H), 3.81 (s, 3H), 2.67 (dd, J = 13.0, 5.6 Hz, 1H), 2.36 (dd, J = 13.0, 8.6 Hz, 1H), 1.98 – 1.91 (m, 1H), 0.87 (d, J = 6.6 Hz, 3H), 0.67 (dd, J = 14.8, 5.6 Hz, 1H), 0.49 (dd, J = 14.8, 8.2 Hz, 1H), 0.02 (s, 9H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 157.6, 130.9, 130.2, 126.8, 120.0, 110.1, 55.1, 41.3, 29.9, 25.1, 22.8, -0.7. IR (film, cm⁻¹): 2951, 1600, 1492, 1462, 1438, 1373, 1291, 1242, 1176, 1122, 1050, 1031, 860, 836, 750, 726, 692. HRMS (ESI-TOF) calcd for C₁₄H₂₅OSi⁺ ([M]+H⁺) = 237.1669, found 237.1670. (Consistent with the data in previous literature)^[10].

2-(2-Methoxybenzyl)bicyclo[2.2.1]heptane (6ae)

 $(C_{15}H_{20}O)$ colorless oil; 42.8 mg, 99% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.24 – 7.08 (m, 2H), 7.05 – 6.65 (m, 2H), 3.83 (s, 3H), 2.55 (dd, *J* = 13.8, 8.4 Hz, 1H), 2.47 (dd, *J* = 13.8, 7.2 Hz, 1H), 2.23 (s, 1H), 2.00 (s, 1H), 1.85 – 1.78 (m, 1H), 1.53 – 1.45 (m, 3H), 1.44 – 1.38 (m, 1H), 1.18 – 1.10 (m, 4H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 157.6, 130.3, 130.2, 126.7, 120.1, 110.1, 55.2, 41.8, 40.5, 38.0, 36.8, 36.7, 35.1, 30.1, 28.9. IR (film, cm⁻¹): 2945, 2866, 1600, 1492, 1456, 1437, 1289, 1239, 1174, 1136, 1107, 1083, 1050, 1031, 925, 803, 748, 715, 578, 484. HRMS (ESI-TOF) calcd for C₁₅H₂₁O⁺ ([M]+H⁺) = 217.1587, found 217.1586. (Consistent with the data in previous literature)^[10].

1-Methoxy-2-((3-methylcyclopentyl)methyl)benzene (6af)

 $(C_{14}H_{20}O)$ colorless oil; 40.6 mg, 99% yield, >98% *cis.* ¹H NMR (400 MHz, Chloroform-*d*) δ 7.22 – 7.09 (m, 2H), 6.94 – 6.79 (m, 2H), 3.81 (s, 3H), 2.71 – 2.53 (m, 2H), 2.23 – 2.15 (m, 1H), 1.96 – 1.79 (m, 2H), 1.79 – 1.64 (m, 2H), 1.38 – 1.29 (m, 1H), 1.23 – 1.14 (m, 1H), 0.98 (d, *J* = 6.4 Hz, 3H), 0.83 – 0.74 (m, 1H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 157.4, 130.7, 130.2, 126.6, 120.1, 110.1, 55.2, 55.1, 42.4, 40.5, 36.6, 34.4, 33.5, 31.7, 21.1. IR (film, cm⁻¹): 2944, 2863, 1600, 1492, 1461, 1289, 1240, 1176, 1134, 1050, 1032, 749,535. HRMS (ESI-TOF) calcd for C₁₄H₂₁O + ([M]+H⁺) = 205.1587, found 205.1591.

1-(2-Cyclohexylpropyl)-2-methoxybenzene (6ag)

(C₁₆H₂₄O) colorless oil; 37.6 mg, 81% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.17 (t, *J* = 7.8 Hz, 1H), 7.09 (d, *J* = 7.4 Hz, 1H), 6.92 – 6.79 (m, 2H), 3.81 (s, 3H), 2.76 (dd, *J* = 13.2, 5.2 Hz, 1H), 2.29 (dd, *J* = 13.2, 9.2 Hz, 1H), 1.83 – 1.70 (m, 3H), 1.70 – 1.60 (m, 3H), 1.28 – 1.04 (m, 6H), 0.77 (d, *J* = 6.8 Hz, 3H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 157.6, 130.7, 130.7, 126.6, 120.5, 110.2, 55.1, 42.6, 38.6, 34.7, 30.7, 28.5, 26.9, 26.8, 15.7. IR (film, cm⁻¹): 2921, 2850, 1600, 1492, 1460, 1376, 1289, 1240, 1176, 1116, 1080, 1050, 1031, 888, 749, 727, 498. HRMS (ESI-TOF) calcd for C₁₆H₂₅O + ([M]+H⁺) = 233.1900, found 233.1901.

1-(3-Cyclohexyl-2-methylpropyl)-2-methoxybenzene (6ah)

 $(C_{17}H_{26}O)$ colorless oil; 45.8 mg, 93% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.17 (t, J = 7.8 Hz, 1H), 7.09 (d, J = 7.4 Hz, 1H), 6.94 – 6.76 (m, 2H), 3.80 (s, 3H), 2.67 (dd, J = 13.2, 5.4 Hz, 1H), 2.27 (dd, J = 13.2, 8.6 Hz, 1H), 1.96 – 1.82 (m, 1H), 1.76 – 1.61 (m, 5H), 1.41 – 1.34 (m, 1H), 1.29 – 1.14 (m, 4H), 1.09 – 1.02 (m, 1H), 0.91 – 0.74 (m, 5H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 157.6, 130.8, 130.2, 126.7, 120.0, 110.1, 55.1, 45.3, 37.9, 34.9, 33.9, 33.1, 30.0, 26.8, 26.5, 26.4, 19.8. IR (film, cm⁻¹): 3001, 2923, 2857, 1600, 1513, 1492, 1460, 1438, 1288, 1240, 1176, 1113, 1033, 928, 805, 749, 481. HRMS (ESI-TOF) calcd for C₁₇H₂₇O⁺ ([M]+H⁺) = 247.2056, found 247.2055.

1-Methoxy-2-(2-methyl-3-phenylpropyl)benzene (6ai)

(C₁₇H₂₀O) colorless oil; 34.6 mg, 72% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 – 7.26 (m, 1H), 7.25 (d, *J* = 1.8 Hz, 1H), 7.21 – 7.13 (m, 4H), 7.10 (d, *J* = 7.4 Hz, 1H), 6.93 – 6.81 (m, 2H), 3.80 (s, 3H), 2.74 – 2.68 (m, 2H), 2.47 – 2.37 (m, 2H), 2.15 – 2.16 (m, 1H), 0.81 (d, *J* = 6.6 Hz, 3H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 157.7, 141.6, 130.8, 129.7, 129.1, 128.0, 126.9, 125.5, 120.1, 110.3, 55.1, 43.5, 37.5, 35.5, 19.2. IR (film, cm⁻¹): 3025, 2953, 2922, 1600, 1492, 1457, 1375, 1289, 1241, 1178, 1119, 1045, 1029, 803, 747, 699, 495. HRMS (ESI-TOF) calcd for C₁₇H₂₁O⁺ ([M]+H⁺) = 241.1587, found 241.1588.

2-[3-(2-Methoxyphenyl)-2-methylpropyl]naphthalene (6aj)

(C₂₁H₂₂O) colorless oil; 57.5 mg, 99% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 – 7.77 (m, 2H), 7.70 (d, *J* = 8.1 Hz, 1H), 7.51 – 7.35 (m, 3H), 7.31 (d, *J* = 7.0 Hz, 1H), 7.21 (t, *J* = 7.8 Hz, 1H), 7.16 (d, *J* = 7.4 Hz, 1H), 6.97 – 6.79 (m, 2H), 3.75 (s, 3H), 3.26 (dd, *J* = 13.6, 4.8 Hz, 1H), 2.80 (dd, *J* = 13.0, 6.4 Hz, 1H), 2.71 (dd, *J* = 13.6, 9.4 Hz, 1H), 2.59 (dd, *J* = 13.0, 7.8 Hz, 1H), 2.39 – 2.21 (m, 1H), 0.87 (d, *J* = 6.6 Hz, 3H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 157.7, 137.8, 133.9, 132.1, 130.9, 129.7, 128.5, 127.1, 127.1, 126.4, 125.3, 125.2, 125.1, 124.2, 120.1, 110.2, 55.0, 40.6, 38.4, 34.7, 19.7. IR (film, cm⁻¹): 2921, 2850, 1600, 1492, 1460, 1376, 1289, 1240, 1176, 116, 1080, 1050, 1031, 749, 727, 498. HRMS (ESI-TOF) calcd for C₂₁H₂₃O⁺ ([M]+H⁺) = 291.1743, found 291.1750.

1-Methoxy-2-(3-phenylpropyl)benzene (6ak)

 $(C_{16}H_{18}O)$ colorless oil; 18.6 mg, 82% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 – 7.25 (m, 2H), 7.25 – 7.08 (m, 5H), 6.96 – 6.78 (m, 2H), 3.82 (s, 3H), 2.79 – 2.53 (m, 4H), 2.06 – 1.79 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 157.4, 142.6, 130.7, 129.7, 128.4, 128.2, 126.9, 125.5, 120.2, 110.1, 55.2, 35.7, 31.3, 29.9. IR (film, cm⁻¹): 3025, 2927, 2855, 1600, 1493, 1459, 1241, 1176, 1111, 1032, 748, 698, 490. HRMS (ESI-TOF) calcd for C₁₆H₁₉O ⁺ ([M]+H⁺) = 227.1430, found 227.1433. (Consistent with the data in previous literature)^[12].

1-Methoxy-2-[3-(o-tolyl)propyl]benzene (6al)

(C₁₇H₂₀O) colorless oil; 20.4 mg, 85% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.24 – 7.03 (m, 6H), 6.93 – 6.80 (m, 2H), 3.82 (s, 3H), 2.78 – 2.57 (m, 4H), 2.28 (s, 3H), 2.00 – 1.79 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 157.4, 140.8, 135.9, 130.6, 130.0, 129.7, 128.6, 126.9, 125.7, 125.7, 120.3, 110.1, 55.2, 33.1, 30.2, 30.0, 19.2. IR (film, cm⁻¹): 2924, 2854, 1603, 1492, 1461, 1242, 1111, 1035, 849, 751, 698, 440. HRMS (ESI-TOF) calcd for C₁₇H₂₁O + ([M]+H⁺) = 241.1587, found 241.1583.

1-Methoxy-2-[3-(m-tolyl)propyl]benzene (6am)

 $(C_{17}H_{20}O)$ colorless oil; 19.5 mg, 75% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.25 – 7.09 (m, 3H), 7.08 – 6.93 (m, 3H), 6.93 – 6.76 (m, 2H), 3.82 (s, 3H), 2.68 – 2.61 (m, 4H), 2.33 (s, 3H), 2.00 – 1.81 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 157.4, 142.5, 137.7, 130.7, 129.7, 129.2, 128.0, 126.8, 126.3, 125.4, 120.2, 110.1, 55.2, 35.6, 31.3, 29.9, 21.4. IR (film, cm⁻¹): 2925, 2855, 1601, 1492, 1461, 1288, 1241, 1176, 1119, 1032, 748, 450. HRMS (ESI-TOF) calcd for C₁₇H₂₁O⁺ ([M]+H⁺) = 241.1587, found 241.1581.

1-Methoxy-2-[3-(p-tolyl)propyl]benzene (6an)

 $(C_{17}H_{20}O)$ colorless oil; 18.0 mg, 75% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 – 7.04 (m, 6H), 6.95 – 6.81 (m, 2H), 3.83 (s, 3H), 2.70 – 2.63 (m, 4H), 2.34 (s, 3H), 2.01 – 1.85 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 157.4, 139.5, 134.9, 130.7, 129.7, 128.8, 128.2, 126.8, 120.2, 110.1, 55.1, 35.2, 31.3, 29.9, 20.9. IR (film, cm⁻¹): 3001, 2924, 2855, 1600, 1513, 1493, 1461, 1289, 1241, 1114, 1034, 806, 750, 543, 482. HRMS (ESI-TOF) calcd for C₁₇H₂₁O⁺ ([M]+H⁺) = 241.1587, found 241.1582.

1-[3-(4-(Tert-butyl)phenyl)propyl]-2-methoxybenzene (6ao)

 $(C_{20}H_{26}O)$ colorless oil; 24.3 mg, 82% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 (d, J = 8.2 Hz, 2H), 7.23 – 7.11 (m, 4H), 6.94 – 6.81 (m, 2H), 3.82 (s, 3H), 2.71 – 2.63 (m, 4H), 1.98 – 1.90 (m, 2H), 1.32 (s, 9H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 157.4, 148.3, 139.5, 130.8, 129.7, 128.0, 126.8, 125.0, 120.3, 110.2, 55.2, 35.1, 34.3, 31.4, 31.2, 30.0. IR (film, cm⁻¹): 2955, 2862, 1600, 1492, 1461,1438, 1240, 1108, 1034, 829, 750, 560. HRMS (ESI-TOF) calcd for C₂₀H₂₇O ⁺ ([M]+H⁺) = 283.2056, found 283.2061. (Consistent with the data in previous literature)^[13].

1-[3-(4-Isopropylphenyl)propyl]-2-methoxybenzene (6ap)

(C₁₉H₂₄O) colorless oil; 20.1 mg, 75% yield, ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.23 – 7.05 (m, 6H), 6.94 – 6.80 (m, 2H), 3.82 (s, 3H), 2.92 – 2.85 (m, 1H), 2.70 – 2.65 (m, 4H), 2.03 – 1.81 (m, 2H), 1.25 (d, *J* = 6.8 Hz, 6H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 157.5, 146.0, 139.9, 130.8, 129.7, 128.2, 126.8, 126.2, 120.3, 110.2, 55.2, 55.2, 35.3, 33.6, 31.3, 29.9, 24.0. **IR** (film, cm⁻¹): 2957, 1600, 1511, 1493, 1461, 1438, 1288, 1241, 1176, 1113, 1052, 1034, 827, 751, 576. **HRMS** (ESI-TOF) calcd for C₁₉H₂₅O⁺ ([M]+H⁺) = 269.1900, found 269.1904.

1-[3-(4-Fluorophenyl)propyl]-2-methoxybenzene (6aq)

 $(C_{16}H_{17}FO)$ colorless oil; 10.3 mg, 42% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 – 7.07 (m, 4H), 6.99 – 6.92 (m, 2H), 6.91 – 6.80 (m, 2H), 3.81 (s, 3H), 2.66 – 2.61 (m, 4H), 1.99 – 1.80 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 129.7, 129.7, 129.6, 126.9, 120.3, 114.9, 114.7, 110.2, 55.2, 34.8, 31.4, 29.7. ¹⁹F{¹H} NMR (377 MHz, Chloroform-*d*) δ -118.23. IR (film, cm⁻¹): 2934, 2858, 1600, 1508, 1493, 1462, 1241, 1220, 1157, 1111, 1033, 829, 751, 494. HRMS (ESI-TOF) calcd for C₁₆H₁₈FO⁺ ([M]+H⁺) = 245.1336, found 245.1344.

1-(3-(3-Bromophenyl)propyl)-2-methoxybenzene (6ar)

(C₁₆H₁₇BrO) colorless oil; 20.8 mg, 68% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 (s, 1H), 7.32 – 7.29 (m, 1H), 7.23 – 7.04 (m, 4H), 6.95 – 6.79 (m, 2H), 3.82 (s, 3H), 2.67 – 2.61 (m, 4H), 1.94 – 1.87 (m, 2H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 157.4, 144.9, 131.4, 130.3, 129.7, 128.7, 127.1, 127.0, 122.2, 120.3, 110.2, 55.2, 35.2, 31.0, 29.7, 29.6. IR (film, cm⁻¹): 2924, 2854, 1596, 1566, 1492, 1463, 1438, 1289, 1241, 1034, 996, 776, 751, 691, 436. HRMS (ESI-TOF) calcd for C₁₆H₁₈BrO⁺ ([M]+H⁺) = 305.0536, found 305.0523.

$Tert-butyl(\{(8R,9S,13S,14S,17S)-2-[3-(2-methoxyphenyl)propyl]-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-17-yl\}oxy)dimethylsilane (6as)$

 $(C_{34}H_{50}O_2Si)$ colorless oil; 32.7 mg, 63% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.25 – 7.11 (m, 3H), 7.00 (d, *J* = 8.0 Hz, 1H), 6.94 (s, 1H), 6.89 (t, *J* = 7.4 Hz, 1H), 6.86 (d, *J* = 8.2 Hz, 1H), 3.83 (s, 3H), 3.70 – 3.62 (m, 1H), 2.90 – 2.79 (m, 2H), 2.76 – 2.65 (m, 2H), 2.65 – 2.54 (m, 2H), 2.35 – 2.33 (m, 1H), 2.27 – 2.18 (m, 1H), 1.97 – 1.87 (m, 4H), 1.71 – 1.63 (m, 1H), 1.54 – 1.14 (m, 8H), 0.91 (s, 9H), 0.75 (s, 3H), 0.05 (s, 3H), 0.04 (s, 3H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 157.4, 139.7, 137.7, 136.5, 130.8, 129.7, 128.9, 126.8, 125.6, 125.2, 120.2, 110.1, 81.7, 55.2, 55.2, 49.7, 44.4, 43.5, 38.7, 37.2, 35.1, 31.2, 30.9, 30.0, 29.6, 27.3, 26.2, 25.8, 23.2, 18.1, 11.3, -4.4, -4.8. IR (film, cm⁻¹): 2928, 2855, 1601, 1494, 1463, 1244, 1139, 1059, 1034, 880, 835, 775, 750. HRMS (ESI-TOF) calcd for C₃₄H₅₁O₂Si + ([M]+H⁺) = 519.3653, found 519.3657.

(Bicyclo[2.2.1]heptan-2-ylmethyl)(cyclohexyl)sulfane (9aa)

(C₁₄H₂₄S) colorless oil; 44.4 mg, 99% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 2.62 – 2.57 (m, 1H), 2.47 (dd, *J* = 12.2, 8.0 Hz, 1H), 2.30 (dd, *J* = 12.2, 8.0 Hz, 1H), 2.20 (s, 1H), 2.12 (s, 1H), 2.00 – 1.91 (m, 2H), 1.77 – 1.73 (m, 2H), 1.63 – 1.54 (m, 2H), 1.48 – 1.41 (m, 3H), 1.34 – 1.22 (m, 6H), 1.17 – 1.04 (m, 4H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 43.6, 42.2, 40.9, 38.1, 36.8, 36.6, 35.1, 33.8, 33.7, 29.8, 28.6, 26.1, 25.8. IR (film, cm⁻¹): 2927, 2852, 1448, 1303, 1263, 1201, 999, 922, 885, 819, 746, 699. HRMS (ESI-TOF) calcd for C₁₄H₂₅S + ([M]+H⁺) = 225.1671, found 225.1669.

Cyclohexyl(2-methyloctyl)sulfane (9ab)

(C₁₅H₃₀S) colorless oil; 34.9 mg, 72% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 2.59 – 2.50 (m, 2H), 2.36 (dd, J = 12.4, 7.4 Hz, 1H), 2.05 – 1.89 (m, 2H), 1.78 – 1.74 (m, 2H), 1.64 – 1.55 (m, 2H), 1.46 – 1.39 (m, 1H), 1.36 – 1.12 (m, 14H), 0.96 (d, J = 6.6 Hz, 3H), 0.88 (t, J = 6.8 Hz, 3H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 44.0, 37.8, 36.3, 33.8, 33.6, 31.8, 29.5, 26.9, 26.1, 25.8, 22.6, 19.5, 14.1. IR (film, cm⁻¹): 2924, 2852, 1449, 1375, 1262, 1201, 999, 886. HRMS (ESI-TOF) calcd for C₁₅H₃₁S⁺ ([M]+H⁺) = 243.2141, found 243.2139.

Cyclohexyl(3-phenylpropyl)sulfane (9ac)

(C₁₅H₂₂S) colorless oil; 13.6 mg, 29% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.28 (t, J = 7.4 Hz, 2H), 7.22 – 7.15 (m, 3H), 2.72 (t, J = 7.6 Hz, 2H), 2.65 – 2.60 (m, 1H), 2.55 (t, J = 7.4 Hz, 2H), 1.99 – 1.86 (m, 4H), 1.81 – 1.72 (m, 2H), 1.63 – 1.55 (m, 1H), 1.31 – 1.23 (m, 5H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 141.6, 128.4, 128.3, 125.8, 43.4, 34.9, 33.7, 31.5, 29.5, 26.1, 25.8. IR (film, cm⁻¹): 3026, 2851, 1603, 1459, 1449, 1261, 1202, 1028, 803, 744, 698, 492. HRMS (ESI-TOF) calcd for C₁₅H₂₃S + ([M]+H⁺) = 235.1515, found 235.1510.

(Bicyclo[2.2.1]heptan-2-ylmethyl)(pentyl)sulfane (9ba)

n-C₅H₁₁ S

9ba

 $(C_{13}H_{24}S)$ colorless oil; 42.0 mg, 99% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 2.56 – 2.35 (m, 3H), 2.27 (dd, *J* = 12.4, 7.6 Hz, 1H), 2.30 – 2.20 (m, 1H), 2.12 (d, *J* = 3.8 Hz, 1H), 1.62 – 1.52 (m, 3H), 1.51 – 1.41 (m, 3H), 1.39 – 1.26 (m, 5H), 1.19 – 1.07 (m, 4H), 0.89 (t, *J* = 6.8 Hz, 3H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 41.9, 40.8,

38.9, 38.0, 36.6, 35.1, 32.2, 31.1, 29.8, 29.4, 28.6, 22.3, 13.9. **IR** (film, cm⁻¹): 2947, 2867, 1454, 1378, 1303, 1246, 923, 731. **HRMS** (ESI-TOF) calcd for $C_{13}H_{25}S^+$ ([M]+H⁺) = 213.1671, found 213.1670.

9. References

[1] (a) L. E. Manzer, *J. Am. Chem. Soc.*, 1978, **100**, 8068; (b) S. Harder, *Organometallics*, 2005, **24**, 373.
[2] (a) T. K. Panda, S. Randoll, C. G. Hrib, P. G. Jones, T. Bannenberg and M. Tamm, *Chem. Commun.*, 2007, 5007; (b) A. G. Trambitas, T. K. Panda, J. Jenter, P. W. Roesky, C. Daniliuc, C. G. Hrib, P. G. Jones and M. Tamm, *Inorg. Chem.*, 2010, **49**, 2435.

[3] (a) J. Oyamada, M. Nishiura and Z. Hou, *Angew. Chem. Int. Ed.*, 2011, **50**, 10720; (b) Y.-M. Zhang, M. D. Tortorella, Y.-C. Wang, J.-Q. Liu, Z.-C. Tu, X.-L. Liu, Y. Bai, D.-S. Wen, X. Lu, Y.-Z. Lu and J. J.Talley, *ACS Med. Chem. Lett.*, 2014, **5**, 1162.

[4] J. W. Hopkins, M. Bowdridge, K. N. Robertson, T. S. Cameron, H. A. Jenkins and A. C. Clyburne, *J. Org. Chem.*, 2001, **66**, 5713.

[5] A. Peppas, E. Papadaki, G. Schnakenburg, V. Magrioti, A. L. Philippopoulos, Polyhedron, 2019, 171, 412.

[6] S. Gaillard, X. Bantreil, A. M. Z. Slawin and S. P. Nolan, Dalton Trans., 2009, 6967.

[7] D. Basavaiah, Tetrahedron: Asymmetry, 2006, 17, 1036.

[8] (a) G. M. Sheldrick, *Acta Cryst.*, 2008, **A64**, 112; (b) O.V. Dolomanov, L. J. Bourhis, R.J. Gildea, J. A. K. Howard and H. Puschmann, *J., Appl. Cryst.*, 2009, **42**, 339; (c) G. M. Sheldrick, *Acta Cryst.*, 2015, **A71**, 3; (d) G. M. Sheldrick, *Acta Cryst.*, 2015, **C71**, 3.

[9] A. L. Spek, J., Appl. Cryst., 2003, 36, 7.

[10] J. Oyamada and Z. Hou, Angew. Chem. Int. Ed., 2012, 51, 12828.

[11] L. H. Anne-Marie, T. Thomas, M. Alastair, S. K. Shaista and F. O. Donal, J. Org. Chem., 2008, 73, 6041.

[12] L.-X. Zhao, P. Deng, X. Gong, X.-H. Kang and J.-H. Cheng, ACS Catal., 2022, 12, 7877.

[13] M.Carsten, C. Antonella and K. Dietmar, Int. J. Mass Spectrom., 2006, 255, 195.

[14] J. Oyamada, M. Nishiura and Z. Hou, Angew. Chem. Int. Ed., 2011, 50, 10720.

[15] A. Trambitas, T. Panda and M.Tamm, Z. anorg. allg. Chem., 2010, 636, 2156.

10. Copies of NMR spectra for catalysts and products

26 113 113 09	76 74 71 71 69	08	22 20 20
NNNNNN	0 0 0 0 0	N	- $ -$
			\sim

Figure S23. ¹³C{¹H} NMR spectrum (101 MHz) of A1 in CDCI₃.

Figure S25. ¹³C{¹H} NMR spectrum (101 MHz) of A2 in CDCl₃.

Figure S27. ¹³C{¹H} NMR spectrum (101 MHz) of **B1** in CDCl_{3.}

Figure S29. ¹H NMR spectrum (400 MHz) of C1 in DMSO-*d*₆.

Figure S31. ¹H NMR spectrum (400 MHz) of C2 in DMSO-d₆.

Figure S37. ¹H NMR spectrum (400 MHz) of NHI 2 in CDCl₃.

Figure S39. ¹H NMR spectrum (400 MHz) of NHI 3 in DMSO-*d*₆.

Figure S41. ¹H NMR spectrum (400 MHz) of NHI 4 in CDCl₃.

Figure S43. ¹⁹F{¹H} NMR spectrum (377 MHz) of **NHI 4** in CDCl₃.

Figure S45. ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz) of **Sc-1** in C₆D₆.

Figure S47. 2D ¹H-¹³C HMBC NMR spectrum of Sc-1 in C₆D₆.

Figure S51. $^{13}C{^1H}$ NMR spectrum (101 MHz) of Y-1 in C₆D₆.

Figure S53. ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz) of **Lu-1** in C₆D₆.

Figure S55. ¹³C{¹H} NMR spectrum (101 MHz) of **Sc-2** in C₆D₆.

Figure S57. ¹³C{¹H} NMR spectrum (101 MHz) of Sc-3 in C₆D₆.

Figure S59. ¹³C{¹H} NMR spectrum (101 MHz) of **Sc-4** in C₆D₆.

Figure S61. ¹³C{¹H} NMR spectrum (101 MHz) of Sc-5 in CDCl₃.

 $\frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{120} - \frac{1}{25} - \frac{1}{30} - \frac{1}{35} - \frac{1}{40} - \frac{1}{45} - \frac{1}{50} - \frac{1}{55} - \frac{1}{60} - \frac{1}{65} - \frac{1}{70} - \frac{1}{75} - \frac{1}{80} - \frac{1}{85} - \frac{1}{90} - \frac{1}{95} - \frac{1}{200} - \frac{1}{95} - \frac{1}{200} - \frac{1}{95} - \frac{1}{200} - \frac{1}{100} - \frac{1}{100}$

Figure S73. ¹⁹F{¹H} NMR spectrum (377 MHz) of 3ea in CDCl₃.

Figure S75. ¹³C{¹H} NMR spectrum (101 MHz) of **3fa** in CDCl₃.

Figure S79. ¹³C{¹H} NMR spectrum (101 MHz) of **3ha** in CDCl₃.

Figure S111. ¹³C{¹H} NMR spectrum (101 MHz) of **3sa** in CDCl₃.

Figure S121. ¹³C{¹H} NMR spectrum (101 MHz) of **6aa** in CDCl₃.

Figure S123. ¹³C{¹H} NMR spectrum (101 MHz) of 6ba in CDCI₃.

Figure S125. ¹³C{¹H} NMR spectrum (101 MHz) of **6ca** in CDCl₃.

Figure S127. ¹³C{¹H} NMR spectrum (101 MHz) of 6da in CDCl₃.

 $\begin{array}{c} 7.26\\ 6.6.86\\ 6.6.84\\ 6.6.82\\ 6.6.82\\ 6.6.82\\ 6.6.82\\ 6.6.82\\ 6.6.82\\ 6.6.82\\ 6.6.82\\ 6.6.82\\ 6.6.82\\ 6.6.82\\ 6.6.82\\ 6.6.75\\ 6.6.75\\ 6.6.75\\ 6.6.75\\ 6.6.75\\ 6.6.75\\ 7.11\\ 7.12\\ 7$

0

-10

Figure S151. ¹H NMR spectrum (400 MHz) of *cis*-6af in CDCl₃.

Figure S154. 2D ¹H-¹³C HSQC NMR spectrum of *cis*-6af in CDCl₃.

Figure S158. ¹³C{¹H} NMR spectrum (101 MHz) of **6ag** in CDCl₃.

Figure S176. ¹³C{¹H} NMR spectrum (101 MHz) of 6ap in CDCl₃.

Figure S191. ¹³C{¹H} NMR spectrum (101 MHz) of **9ba** in CDCl₃.