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Materials and Methods 

Materials 

 Monomers were purchased from Tokyo Chemical Industry and passed through a thin 

pad of alumina right before polymerization. Poly(styrene-alt-methyl methacrylate) was 

purchased from Polymer Source (P1604-SMMAalt). For benchmark compositional analysis, 

living anion polymerized poly(methyl methacrylate) (M) and polystyrene (S) were purchased 

from Shodex (Mn=178,00) and Tosoh (Mn=102,00), respectively. Free-radical polymerized 

poly(ethyl methacrylate) (E) was purchased from Polymer Source. Reversible addition and 

fragmentation chain transfer (RAFT) agent, 2-(dodecylthiocarbonothioylthio)-2-

methylpropionic acid (DDMAT), was purchased from Aldrich. Azobis(isobutyronitrile) 

(AIBN) was purchased from Fujifilm Wako Pure Chemical Corporation, purified by 

recrystallization from methanol, and stored at 0 oC. Monomers were purchased from Tokyo 

Chemical Industry and passed through alumina column right before use. All the other high 

purity chemicals were purchased from Fujifilm Wako Pure Chemical Corporation and used 

without further purification.  

 

A synthetic procedure of random copolymers via free-radical copolymerization 

 A typical polymerization procedure is given here. In an open vial, n-butyl acrylate 

(B) (1.15 mL; 8 mmol), styrene (S) (0.23 mL; 2 mmol) and dimethyl 2,2′-azobis(isobutyrate) 

(23 mg; 0.1 mmol in toluene 0.1 mL) were placed. After sealing the vial with a septum, 
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nitrogen gas was bubbled just for one minute. The reaction mixture was stirred for an hour at 

60 oC, and then dropped into methanol/water = 9/1 (v/v). The precipitated polymer was dried 

overnight under vacuum and subjected to pyrolysis-MS measurements for dataset preparation. 

High-temperature polymerization (150 oC) was conducted without addition of the 

initiator/toluene solution. No unexpected or unusually high safety hazards were encountered. 

 

A synthetic procedure of B/S random copolymers via living radical copolymerization 1 

 To a round flask reactor, DDMAT 72.9 mg (0.2 mmol) and AIBN 9.9 mg (0.06 

mmol) were placed. Styrene 2.29 mL (20 mmol), n-butyl acrylate 2.87 mL (20 mmol) and 

1,4-dioxane (2 mL) were all combined, bubbled with nitrogen gas for 30 mins and then 

transfer to the degassed reactor at room temperature. The system was heated up to 70 oC to 

start polymerization. Small portions of the polymerization solution were taken out at 5, 10, 

25, 58 h. The withdrawn solutions were subjected to 1H NMR for conversion calculation and 

pyrolysis-MS for direct sequencing. The left solutions were dropped into methanol/water 

=9/1 (v/v). The precipitated polymers were dried under vacuum at 100 oC for 24 h and 

subjected to 1H and 13C NMR for triad sequencing. 

 

Sample preparation procedures for the benchmark test of the E/M/S ternary polymer film 

 A typical procedure for preparing ternary films is here given. A polymer mixture 

solution was prepared by dissolving 2.0 mg of each E/M/S in 294 mg of 1,4-dioxane (totally 

2 wt% solution). The solution was then dropped in a copper pan. The solution weight was 

quickly measured, typically around 10 mg. The polymer weight is calculated by the solution 
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weight and polymer concentration, typically around 0.20 mg. The pan was left in atmosphere 

overnight, yielding a drop casted film for pyrolysis-MS measurement. 

Pyrolysis-MS measurements 

Polymer samples were pyrolyzed on a heater (ionRocket; Biochromato) at heating 

rate of 50 oC/min from 50 oC to 500 oC after two minutes preheating period at 50 oC. One 

sample thus took 12 mins measurement time. The pyrolyzed gases were continuously ionized 

by excited He gas with DART-ion source (DART-OS; IonSense). MS spectra were recorded 

with LCMS-2020 (Shimadzu) in positive-ion mode at 50 scan/min, yielding 550 spectra per 

a sample. The mass range was 50-1500 m/z and the interval scale was 0.05 m/z with mass 

resolution of 2000. The spectra were output in CDF file format, converted to Numpy format 

with a Python module, netCDF4. The spectra were further formatted for data size reduction 

as described in “Spectra formatting” section. The formatted spectral datasets used in this 

study are presented as Data S1-S5. All the data processing were conducted on Python3.7 on 

a Windows 11 laptop computer with a processing unit of AMD Ryzen9 4900HS without 

external GPU assistance. The total processing time depended on the dataset size and further 

specified mass range, which was not beyond 3 hours in this study. 
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Computational Methods 

Mathematical notations 

The notation mostly follows the common convention in signal processing. ℝ+
𝑁×𝑀 

and ℝ𝑁×𝑀 represent a non-negative real matrix and real matrix, respectively, with 𝑁 × 𝑀 

dimensions. For a matrix 𝑿 ∈ ℝ𝑁×𝑀 , 𝑿𝑛: ∈ ℝ1×𝑀, 𝑿:𝑚 ∈ ℝ𝑁×1, 𝑋𝑛𝑚 ∈ ℝ  respectively 

represent the nth row vector, mth column vector, and (n, m)-element of the matrix 𝑿. 𝑿𝑇 

represents a transposed matrix of 𝑿. ‖𝑿‖𝐹 represents Frobenius norm of 𝑿. ‖𝑿𝑛:‖1 and 

‖𝑿𝑛:‖2 respectively represent ℓ1- and ℓ2-norm of nth row vector of 𝑿. For a square matrix 

of 𝑿 , 𝑇𝑟(𝑿)  represents the trance of 𝑿 . 𝟏𝑁 , 𝟏𝟏𝑁  and 𝑰𝑁  respectively represent a N-

dimensional all-ones vector, (N, N)-dimensional all-ones matrix and N-dimensional identity 

matrix.  

 

Spectra formatting 

 For simplicity, in the main text, we described as if pyrolysis-MS was 1D-spectrum 

and dataset was 𝑿 ∈ ℝ+
𝑁×𝐷

  (N: sample number, D: channel number). However, as 

described in pyrolysis-MS measurement section, a single pyrolysis-MS was 2D-spectrum 

consisting of 550 1D-spectra recorded at different temperatures. The first 100 spectra 

corresponded to the preheating period. The mass range was 50-1500 m/z with intervals of 

0.05 m/z. The original matrix size for a single sample was thus 550 × 29001. The absolute 

peak-intensities of DART pyrolysis-MS are sensitively affected by sample weights and 

ambient environments, especially humidity. As we collected data over a year in a room 

without controlling humidity in Japan, there should be a huge fluctuation in the relative 
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humidity (20-100%), making direct comparison of spectral intensities among different 

samples invalid. The spectral intensities were thus scaled by an internal standard peak and 

sample weight. As an internal standard, we used a background peak at 391 m/z contained in 

the first 100 spectra from preheating period, attributable to a proton adduct of di(2-

ethylhexyl)phthalate, which is a plasticizer continuously released from plastics and 

equilibrated in a room. After scaling the spectral intensities by the internal standard peaks 

and sample weights, the first 100 spectra were removed from the data matrix. The spectral 

dimension per a sample became 450 × 29001. As such high temperature resolution (1 oC) 

is unnecessary, the spectra were averaged into T-temperature bands (typically 𝑇 ∈ [10, 20]). 

Since the mass resolution in our setup was not high enough to precisely measure mass with 

0.05 m/z accuracy, the m/z intervals were doubled to 0.1 m/z and then gaussian filter was 

applied; smoothing sequential 4 channels (0.4 m/z) with standard deviation of 2 channels (0.2 

m/z). For further reducing data size, we specified the mass range depending on the dataset 

(see Table S2). In this study, we used 5 datasets: S/B binary triad sequencing (Fig. 1A), 

benchmark compositional analysis of E/M/S ternary polymer films (Fig. 2A), M/S binary 

triad sequencing (Fig. 3), M/S/B ternary triad sequencing (Fig. S8), and S/B binary pentad 

sequencing (Fig. 4A). For the benchmark dataset of 24 samples, the mass range was limited 

to 50-1000 m/z, since a region over 1000 m/z showed very subtle peaks only, deriving a 

20 × 9501 matrix for a single sample and 460 × 9501 matrix for the entire dataset. For 

triad sequencing of S/B binary, M/S binary and M/S/B ternary, the mass range was limited to 

50-500 m/z, as the fragment distribution longer than triads cannot be expressed with 5 bases 

(see Fig. S1). For pentad sequencing of S/B, mass range was limited to 100-670 m/z, for 
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covering up to pentads (the largest pentad is BBBBB at 641 m/z for proton adduct and 658 

m/z for ammonium ion adduct). For sequencing, temperature range was further specified 

within 200-450 oC and averaged into T=10 (for triad sequencing) and T=15 (for pentad 

sequencing). Each spectrum was ℓ1 -normalized and the resulting spectral dataset, 𝑿̃ ∈

ℝ+
𝑁𝑇×𝐷

  (N: sample number, T: temperature-band number, D: channel number), was 

subjected to the first NMF (see Fig. S4). The ℓ1-norms of all the NT-spectra were preserved 

in a diagonal matrix of 𝑳𝑿̃ ∈ ℝ+
𝑁𝑇×𝑁𝑇 for recovering the spectral intensities after the first 

NMF: if the normalized 𝑿̃ was factorized into 𝑿̃ ≈ 𝑨̃𝑺, then the output 𝑨̃ was replaced 

with 𝑳𝑿̃𝑨̃ for recovering the absolute intensities. 

 

Designing outline of RQMS algorithm 

The RQMS algorithm is outlined in Fig. S4 as a flowchart. The RQMS algorithm is 

composed of three main parts: the two NMFs described in the main text and a filter for 

automatically identifying and removing contaminants/backgrounds fragments from the 

system based on canonical correlation analysis2 (CCA). In the following sections, the 

mathematical derivations and pseudo-codes of the first NMF, CCA-filter and second NMF 

are described in this order. 

 

Derivations of the first NMF 

For simplicity, we wrote 𝑿 ≈ 𝑨𝑺 in the main text and above section, where 𝑿 ∈

ℝ+
𝑁×𝐷  and 𝑨 ∈ ℝ+

𝑁×𝑀  are sample-wise spectra and fragment abundances (FAs). 

However, in real implementation, 𝑿̃ ∈ ℝ+
𝑁𝑇×𝐷 should be subjected to the first NMF rather 
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than 𝑿 ∈ ℝ+
𝑁×𝐷

 (see Fig. S5). The first NMF is thus 𝑿̃ ≈ 𝑨̃𝑺 factorizing a dataset matrix 

𝑿̃  into spectrum-wise FA 𝑨̃ ∈ ℝ+
𝑁𝑇×𝑀  and M-fragments basis spectra 𝑺 ∈ ℝ+

𝑀×𝐷 . The 

derivation mostly followed the previously proposed NMF by Shiga et al. 3 with ARD 4 and 

soft orthogonal constraint (ARD-SO-NMF). For a while, identical and independent 

distributed (i.i.d.) Gaussian noise with 𝜎2-variance was assumed in a probabilistic model 

generating 𝑿̃ from 𝑨̃𝑺: 

𝑝(𝑿̃|𝑨̃, 𝑺, 𝜎2) = ∏∏
1

√2𝜋𝜎2

𝑀

𝑚=1

𝑒𝑥𝑝 {−
(𝑿̃𝑖𝑚 − (𝑨̃𝑺)𝑖𝑚)2

2𝜎2
}

𝑁𝑇

𝑖=1

. 

To automatically determine the fragment number M, automatic relevance determination 

(ARD) based on sparse modeling was introduced, assuming exponential distribution for prior 

distribution of 𝑨̃ column-wisely parameterized by 𝝀 ∈ ℝ𝑀, i.e.:  

𝑝(𝐴̃𝑖𝑚|𝜆𝑚) =
1

𝜆𝑚
exp (−

𝐴̃𝑖𝑚

𝜆𝑚
)  𝑠. 𝑡. 𝜆𝑚 > 0, (𝑖 = 1,… ,𝑁𝑇,𝑚 = 1,… ,𝑀), 

𝑝(𝑨̃|𝝀) =  ∏∏ 𝑝(𝐴̃𝑖𝑚|𝜆𝑚)

𝑀

𝑚=1

𝑁𝑇

𝑖=1

. 

Note that half-gaussian distribution is also available as the prior distribution of 𝑨̃ instead of 

exponential distribution, as presented in 3. Assuming sparseness on 𝑨̃  is reasonable as a 

certain fragment is only generated in specific samples and temperature bands. As greater 𝜆𝑚 

tolerates greater ‖𝐴̃:𝑚‖
1
= ∑ 𝐴̃𝑖𝑚

𝑁𝑇
𝑖=1  , 𝜆𝑚  represents the importance of the mth fragment 

throughout the dataset. ARD starts with a large integer M and then deletes components when 

their 𝜆𝑚 becomes close to zero while updating, outputting a model with suitable component 

number. The total probabilistic model becomes: 
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𝑝(𝑿̃, 𝑨̃, 𝑺) = 𝑝(𝑿̃|𝑨̃, 𝑺, 𝜎2)𝑝(𝑨̃|𝝀)𝑝(𝑺)𝑝(𝝀|𝑎, 𝑏) 

where uniform distribution for 𝑝(𝑺) on the hypersphere of ‖𝑺𝑚:‖2 = 1 𝑓𝑜𝑟 𝑚 = 1,… ,𝑀, 

and inverse-gamma distribution for 𝑝(𝝀|𝑎, 𝑏) parameterized by (𝑎, 𝑏) are assumed, i.e., 

𝑝(𝝀|𝑎, 𝑏) =  ∏ 𝑝(𝜆𝑚|𝑎, 𝑏)

𝑀

𝑚=1

=
𝑏𝑎

Γ(𝑎)
𝜆𝑚

−(𝑎+1) exp (−
𝑏

𝜆𝑚
) 𝑓𝑜𝑟 𝑚 = 1,… ,𝑀 

where 𝑎 is a hyperparameter very close to 1 adjusting sparsity, here fixed 𝑎 = 1 + 10−16 

and Γ(∙)  represents the gamma function. Empirically, 𝑏  was determined from the 

relationship to expectation of 𝐴̃𝑖𝑚(13): 

𝐸(𝐴̃𝑖𝑚) =
𝑏

𝑎 − 1
. (1) 

This was further correlated to 𝐸(𝑋𝑖𝑑) by 

𝐸(𝑋̃𝑖𝑑) = ∑ 𝐸(𝐴̃𝑖𝑚)𝐸(𝑆𝑚𝑑)

𝑀

𝑚=1

= 𝑀 ⋅ 𝐸(𝐴̃𝑖𝑚)𝐸(𝑆𝑚𝑑). 

By approximating 𝐸(𝑋̃𝑖𝑑)  as the mean of 𝑋̃  (𝜇𝑋)  and substituting 𝐸(𝑆𝑚𝑑) = √𝐷 , this 

becomes: 

𝜇𝑋 = 𝑀
𝑏

(𝑎 − 1)√𝐷
 

Then, 𝑏 can be determined as: 

𝑏 =
𝜇𝑋(𝑎 − 1)√𝐷

𝑀
. (2) 

A negative-log likelihood function now becomes 
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𝐿(𝑿̃, 𝑨̃, 𝑺, 𝝀) = − log[𝑝(𝑿̃|𝑨̃, 𝑺)𝑝(𝑨̃|𝝀)𝑝(𝝀|𝑎, 𝑏)]

=
1

2𝜎2
‖𝑿̃ − 𝑨̃𝑺‖

𝐹

2
+

𝐷𝑁𝑇

2
𝑙𝑜𝑔2𝜋𝜎2 + (𝑁𝑇 + 𝑎 + 1) ∑ 𝑙𝑜𝑔𝜆𝑚

𝑀

𝑚=1

+ ∑
1

𝜆𝑚
(𝑏 + ∑𝐴̃𝑖𝑚

𝑁𝑇

𝑖=1

)

𝑀

𝑚=1

+ 𝑀(𝑙𝑜𝑔Γ(𝑎) − 𝑎𝑙𝑜𝑔𝑏). 

As this function is convex over 𝝀, the updating rule for 𝝀 can be determined so that 
𝜕𝐿

𝜕𝝀
≡

𝟎, i.e.: 

𝜆𝑚 =
𝑏 + ∑ 𝐴̃𝑖𝑚

𝑁𝑇
𝑖=1

𝑁𝑇 + 𝑎 + 1
, 𝑓𝑜𝑟 𝑚 = 1,… ,𝑀 (3) 

The derivation so far has completely followed ARD-SO-NMF derivation reported by Shiga 

et. al. 3. The i.i.d. assumption is, however, significantly violated in MS data as noise variance 

of a channel correlates with its signal intensity. The noise distribution does not follow Poisson 

distribution neither 5. We propose to estimate a noise matrix E∈ ℝ𝑁𝑇×𝐷 from the residuals 

of ordinary least square regression based on natural isotope peaks. The estimated noise of 

𝑑th channel throughout the dataset becomes: 

𝑬:𝑑 = 𝑿̃:𝑑 − 𝑴(𝑑)(𝑴(𝑑)𝑇𝑴(𝑑))
−1

𝑴(𝑑)𝑇𝑿̃:𝑑, 𝑓𝑜𝑟 𝑑 = 1,… , 𝐷, (4) 

where 𝑴(𝑑) = 𝑿̃:[𝑑−30,𝑑−20, 𝑑−10, 𝑑+10, 𝑑+20,𝑑+30]. As m/z intervals are 0.1 m/z, the channel 

set, [𝑑 − 30, 𝑑 − 20,  𝑑 − 10,  𝑑 + 10,  𝑑 + 20, 𝑑 + 30] , should include ±3  m/z isotope 

peaks. To intuitively understand this concept, consider a noiseless MS dataset where intensity 

ratio of isotopic peaks is precisely identical to natural isotope-abundance, and thus constant 

throughout all the spectra. The regression residuals thus become zeros. Conversely, in a real 

dataset, the intensity ratio of isotopic peaks is no longer constant among spectra owing to 
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signal noise, yielding non-zero 𝑬 reflecting the deviations from natural isotope-abundance 

ratios. A channel-wise covariance matrix 𝑹 ∈ ℝ+
𝐷×𝐷

 is thus obtained by 𝑹 =
1

𝑁𝑇
𝑬𝑻𝑬. The 

likelihood function is then rewritten as 

𝑝(𝑿̃|𝑨̃,  𝑺, 𝑹) =
1

√2𝜋
𝐷𝑁𝑇

√|𝑹|
𝑁𝑇 exp {−𝑇𝑟 [(𝑿̃ − 𝑨̃𝑺)𝑹−1(𝑿̃ − 𝑨̃𝑺)

𝑇
]}. 

Note that 𝑹  is a constant matrix, not necessitating updates. The entire negative log-

likelihood function now becomes 

𝐿(𝑿̃, 𝑨̃, 𝑺, 𝝀) = − log[𝑝(𝑿̃|𝑨̃, 𝑺, 𝑹)𝑝(𝑨̃|𝝀)𝑝(𝝀|𝑎, 𝑏)]

= 𝑇𝑟 [(𝑿̃ − 𝑨̃𝑺)𝑹−1(𝑿̃ − 𝑨̃𝑺)
𝑇
] +

𝐷𝑁𝑇

2
𝑙𝑜𝑔2𝜋 +

𝑁𝑇

2
𝑙𝑜𝑔|𝑹|

+ (𝑁𝑇 + 𝑎 + 1) ∑ 𝑙𝑜𝑔𝜆𝑚

𝑀

𝑚=1

+ ∑
1

𝜆𝑚
(𝑏 + ∑𝐴̃𝑖𝑚

𝑁𝑇

𝑖=1

)

𝑀

𝑚=1

+ 𝑀(𝑙𝑜𝑔Γ(𝑎) − 𝑎𝑙𝑜𝑔𝑏). 

By simplifying about 𝝀 using Eq. 3 and dropping constant terms, this can be rewritten as: 

𝐿(𝑿̃, 𝑨̃, 𝑺, 𝝀) = 𝑇𝑟 [(𝑿̃ − 𝑨̃𝑺)𝑹−1(𝑿̃ − 𝑨̃𝑺)
𝑇
] + (𝑁𝑇 + 𝑎 + 1) ∑ 𝑙𝑜𝑔𝜆𝑚

𝑀

𝑚=1

. 

The objective function is minimized in a framework of hierarchical alternating least square 

(HALS) 6, a vector-wise updating methods known as the fastest NMF compatible with 

orthogonal constraints 7. For convenience, the following column-vector notations are used: 

𝒂𝑚 ≡ 𝑨̃:𝑚 ∈ ℝ+
𝑁𝑇×1, 𝒔𝑚 ≡ 𝑺𝑚:

𝑇 ∈ ℝ+
𝐷×1, 𝑓𝑜𝑟 𝑚 = 1, . . , 𝑀. 

The key of HALS is representing the residual, 𝑿̃ − 𝑨̃𝑺, as 𝑿̃(𝑚) − 𝒂𝑚𝒔𝑚
𝑇 (𝑚 = 1,… ,𝑀), 

where 𝑿̃(𝑚) = 𝑿̃ − 𝑨̃𝑺 + 𝒂𝑚𝒔𝑚
𝑇 .  The negative-log likelihood now can be written 
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separately by M-components as: 

𝐿 (𝑿̃, 𝒂𝑚, 𝒔𝑚, 𝜆𝑚(𝒂𝑚))

= 𝑇𝑟 [(𝑿̃(𝑚) − 𝒂𝑚𝒔𝑚
𝑇)𝑹−1(𝑿̃(𝑚) − 𝒂𝑚𝒔𝑚

𝑇)
𝑇
] + (𝑁𝑇 + 𝑎 + 1)𝑙𝑜𝑔𝜆𝑚, 

𝑓𝑜𝑟 𝑚 = 1, … ,𝑀. 

The orthogonal constraints on rows of 𝑺  can be included in 𝐿  as a penalty term of 

𝑤𝑂𝜉𝑚𝒔𝑚
𝑇 𝒔(𝑚)  where 𝒔(𝑚) ≡ ∑ 𝒔𝑗

𝑀
𝑗≠𝑚  . This represents non-orthogonality between the mth 

component and all the others; 𝜉𝑚 is a Lagrange multiplier when the orthogonal constraint 

is best-satisfied under the strict non-negative constraints, which is further soften by 

hyperparameter 𝑤𝑂  ∈ [0, 1] . Higher 𝑤𝑂  imposes the stronger orthogonal constraints on 

the rows of 𝑺 . Note that even if 𝑤𝑂 = 1  is given, the rows of 𝑺  would not be strictly 

orthogonal, as 𝜉𝑚 has been estimated without nonnegative-constraints 7. The full objective 

function to be minimized was finally derived as: 

𝐿(𝑿̃, 𝒂𝑚, 𝒔𝑚, 𝜆𝑚(𝒂𝑚))

= 𝑇𝑟 [(𝑿̃(𝑚) − 𝒂𝑚𝒔𝑚
𝑇)𝑹−1(𝑿̃(𝑚) − 𝒂𝑚𝒔𝑚

𝑇)
𝑇
] + (𝑁𝑇 + 𝑎 + 1)𝑙𝑜𝑔𝜆𝑚

+ 𝑤𝑂 𝜉𝑚𝒔𝑚
𝑇 𝒔(𝑚). 

The gradients of 𝐿 over 𝒂𝑚 and 𝒔𝑚 are, respectively,  

𝜕𝐿

𝜕𝒂𝑚
= (𝒂𝑚𝒔𝑚

𝑇 − 𝑿̃(𝑚))𝑹−1𝒔𝑚 +
1

𝜆𝑚
𝟏𝑁𝑇, 

𝜕𝐿

𝜕𝒔𝑚
= 𝑹−1 (𝒔𝑚𝒂𝑚

𝑇 − 𝑿̃(𝑚)𝑇)𝒂𝑚 + 𝑤𝑂 𝜉𝑚𝒔(𝑚). 

The 𝒂𝑚 and 𝒔𝑚 minimizing 𝐿 are obtained by setting the gradients zeros: 
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𝒂𝑚 =
𝑿̃(𝑚)𝑹−1𝒔𝑚 −

1
𝜆𝑚

 𝟏𝑁𝑇

𝒔𝑚
𝑇 𝑹−1𝒔𝑚

, (5) 

𝒔𝑚 = 𝑿̃(𝑚)𝑇𝒂𝑚 − 𝑤𝑂 𝜉𝑚𝑹𝒔(𝑚). (6) 

Note that the scaling factor for 𝒔𝑚 was dropped as 𝒔𝑚 will be normalized after each update. 

The updated 𝒂𝑚 and 𝒔𝑚 are projected to non-negative orthant after each update by, e.g.,  

𝒂𝑚 ←
𝒂𝑚 + |𝒂𝑚|

2
, 

where |𝒂𝑚| represents a vector having absolute values of 𝒂𝑚 elements. The estimation of 

𝜉𝑚 is done by multiplying 𝒔(𝑚)𝑇𝑹 to Eq. 6 from the left side with using the strict orthogonal 

constraint of 𝒔(𝑚)𝑇𝒔𝑚 = 0 and 𝑤𝑂 = 1, deriving 

−𝒔(𝑚)𝑇𝑿̃(𝑚)𝑇𝒂𝑚 + 𝜉𝑚𝒔(𝑚)𝑇𝑹𝒔(𝑚) = 0, 

𝜉𝑚 =
𝒔(𝑚)𝑇𝑿̃(𝑚)𝑇𝒂𝑚

𝒔(𝑚)𝑇𝑹𝒔(𝑚)
(7) 

Using based on Eq. 1-7, we propose the following code. 

 

Algorithm 1: Pseudo-code of the first NMF 

Input: ℓ1-normalized data matrix: 𝑿̃ ∈ ℝ+
𝑁𝑇×𝐷, orthogonal constraint weight: 𝑤𝑂, initial 

component number: 𝑀, iteration number: 𝑖𝑡𝑟, margining threshold: 𝑡 ∈ [0.9, 0.99]. 

Output: spectra-wise fragment abundance: 𝑨̃ ∈ ℝ+
𝑁𝑇×𝑀, M-fragment spectra: 𝑺 ∈ ℝ+

𝑀×𝐷. 

Initialization 

  initialize 𝑨̃ by Eq. 1 

  initialize 𝑺 by random selection of M-row vectors from 𝑿̃ and ℓ2-normalization. 
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  calculate 𝑏 by Eq. 2 

  initialize 𝝀 by Eq. 3 

  calculate 𝑬 by Eq. 4 and 𝑹 =
1

𝑁𝑇
𝑬𝑻𝑬 

Repeat until convergence criteria are satisfied: 

  for 𝑚 = 1, . . . , 𝑀: 

    calculate 𝒔(𝑚) ← ∑ 𝒔𝑗
𝑀
𝑗≠𝑚  and calculate 𝜉𝑚 by Eq. 7 

    update 𝒔𝑚 by Eq. 6. 

    project 𝒔𝑚 to the non-negative orthant 

    ℓ2-normalize 𝒔𝑚 

  for 𝑚 = 1, . . . , 𝑀: 

    update 𝒂𝑚 by Eq. 5 

    project 𝒂𝑚 to the non-negative orthant 

  # Merging very similar components 

  for 𝑘 = 1, … ,𝑀 − 1: 

    for 𝑚 = 𝑘 + 1,… ,𝑀: 

      if 𝒔𝑘
𝑇𝒔𝑚 > 𝑡: 

        𝒂𝑘 ← 𝒂𝑘 + 𝒂𝑚, 𝒂𝑚 ← 𝟎  

      if 𝒂𝑘
𝑇𝒂𝑚 > 𝑡‖𝒂𝑘‖‖𝒂𝑚‖: 

        𝒔𝑘 ← 𝒔𝑘 +
‖𝒂𝑚‖1

‖𝒂𝑘‖1
𝒔𝑚,  𝑠 = ‖𝒔𝑘‖2,  𝒔𝑘 ←

𝑺𝑘

𝑠
 

        𝒂𝑘 ← 𝑠𝒂𝑘, 𝒂𝑚 ← 𝟎  

  update 𝝀 by Eq. 3 
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return 𝑨̃ and 𝑺 

 

Note that after each update of 𝑨̃ and 𝑺, the components having similar spectra or abundance 

distribution over the dataset are merged, reducing the component number down. By merging 

the components based on not only their spectra but also abundance distribution, a series of 

fragments peaks belonging to an identical codon would be unified in a single spectrum, 

deriving more interpretable outputs. 

 

Derivation of the canonical correlation analysis filter (CCA-filter) 

 Backgrounds and/or contaminants are potentially included in the M-components 

output from the first NMF, which may distort the analytic results. We here describe our 

development of CCA-filter, automatically identifying and removing the contaminated 

components from the M-components. After removing M’-contaminants,  𝑨̃ ∈ ℝ+
𝑁𝑇×𝑀

 and 

𝑺 ∈ ℝ+
𝑀×𝐷  are respectively reduced to 𝑨̃ ∈ ℝ+

𝑁𝑇×(𝑀−𝑀′)
  and 𝑺 ∈ ℝ+

(𝑀−𝑀′)×𝐷 . For 

simplicity, in the main text and following second NMF derivation, 𝑀 rather than 𝑀 − 𝑀′ 

is consistently used for representing the component number. 

 To use CCA-filter, a background spectrum 𝑿𝐵𝐺 ∈ ℝ+
𝑇×𝐷

 needs to be included in 

a dataset before the first NMF is applied. If some contaminants are expected, e.g., residual 

solvents in cast-film samples, they can be mixed and measured in a single spectrum, which 

can be used as 𝑿𝐵𝐺 . Conceptually, CCA-filter finds out M’-spectra from ℓ2-normalized 𝑺 ∈

ℝ+
𝑀×𝐷, of which peak patterns are also included in 𝑿𝐵𝐺 . Assume we would like to examine 

m-th component if it is contaminant or fragment generated from the samples. The first step 
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is classifying M-spectral set 𝑺  into two groups: spectral sets 𝒀 ∈ ℝ+
𝑀𝑠𝑖𝑚×𝐷

  and 𝒁 ∈

ℝ+
𝑀𝑑𝑖𝑠×𝐷 , respectively similar and dissimilar to 𝑺𝑚: . Here, 𝑀𝑠𝑖𝑚  and 𝑀𝑑𝑖𝑠  are the 

numbers of similar and dissimilar spectra, respectively. The classification is based on cosine 

similarity. After the classification, the following inequalities should be hold: 

𝑺𝑚:𝒀𝑚′:
𝑇 ≥ 𝑡1, 𝑓𝑜𝑟 𝑚

′ = 1,… ,𝑀𝑠𝑖𝑚, 

𝑺𝑚:𝒁𝑚′:
𝑇 < 𝑡1, 𝑓𝑜𝑟 𝑚

′ = 1,… ,𝑀𝑑𝑖𝑠, 

where 𝑡1 ∈ [0, 1] is a threshold, in this study fixed at 𝑡1 = 0.2. Note that 𝑺𝑚: is always 

classified into 𝒀 , and put at the top row of 𝒀 . The dissimilar spectral set 𝒁  is further 

combined with 𝑿𝐵𝐺: 

𝒁 ← (
𝒁

𝑿𝐵𝐺
). 

𝒀 and 𝒁 are then mean-subtracted: 

𝒀̅ = 𝒀(𝑰𝐷 −
1

𝐷
𝟏𝟏𝐷) ∈ ℝ𝑀𝑠𝑖𝑚×𝐷 , (8) 

𝒁̅ =  𝒁 (𝑰𝐷 −
1

𝐷
𝟏𝟏𝐷) ∈ ℝ(𝑀𝑑𝑖𝑠+𝑇)×𝐷 . (9) 

CCA is then applied to the two spectral set. Generally, the purpose of CCA is to generate a 

pair of spectra most similar to each other from two different spectral sets by linear 

combination, here 𝒀̅ and 𝒁̅. Let two coefficient vectors be 𝒖 ∈ ℝ𝑀𝑠𝑖𝑚  and 𝒗 ∈ ℝ𝑀𝑑𝑖𝑠+𝑇 

for 𝒀̅ and 𝒁̅, respectively. The new mixed spectra are defined by 𝒚 ≡  𝒖𝑇𝒀̅ ∈ ℝ1×𝐷 and 

𝒛 ≡  𝒗𝑇𝒁̅ ∈ ℝ1×𝐷 . The similarity of these two spectra is evaluated with correlation 

coefficient: 
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𝜌 =
𝒖𝑇𝑽𝑦𝑧𝒗

√𝒖𝑇𝑽𝑦𝑦𝒖√𝒗𝑇𝑽𝑧𝑧𝒗
, 

where 𝑽𝑌𝑌 = 𝒀̅𝒀̅𝑇/𝐷,𝑽𝑍𝑍 = 𝒁̅𝒁̅𝑇/𝐷,𝑽𝑌𝑍 = 𝒀̅𝒁̅𝑇/𝐷. The CCA problem now becomes: 

(𝒖∗, 𝒗∗) = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝒖,𝒗

𝜌. 

The optimum (𝒖∗
𝒗∗
)  ∈ ℝ𝑀𝑠𝑖𝑚+𝑀𝑑𝑖𝑠+𝑇  are given as the solution of generalized eigenvalue 

problem: 

(
𝑶 𝑽𝑦𝑧

𝑽𝑦𝑧
𝑇 𝑶

)(
𝑼

𝑽
) = (

𝑽𝑦𝑦 𝑶

𝑶 𝑽𝑧𝑧
) (

𝑼

𝑽
)(

𝜌1

⋱
𝜌𝑀𝑠𝑖𝑚+𝑀𝑑𝑖𝑠+𝑇

) (10) 

where (𝑼
𝑽
)  consists of all the eigen column-vectors (𝒖∗

𝒗∗
)  in a descending order of the 

corresponding eigenvectors, i.e., 𝜌1 ≥ 𝜌2 ≥ ⋯ ≥ 𝜌𝑀𝑠𝑖𝑚+𝑀𝑑𝑖𝑠+𝑇 . Each eigen value 

represents the correlation coefficient of the paired spectra of 𝒚  and 𝒛 , synthesized via 

corresponding eigen vectors (𝒖∗
𝒗∗
). Again, all the basis spectra similar to the examined 𝑺𝑚: 

are contained in 𝒀, while the background T-spectra are contained in 𝒁. If 𝒀 and 𝒁 can 

generate very similar spectra, 𝑺𝑚:  is suspected of being derived from backgrounds or 

contaminations. Practically, we collect all the eigenvectors (𝒖∗
𝒗∗
) of which eigenvalues satisfy 

𝜌 > 𝑡2 for given 𝑡2 ∈ [0.9, 0.99]. If the first element of 𝒖∗ corresponding to the coefficient 

of 𝑺𝑚:  significantly contributes to 𝒖∗ , i.e., if 
|𝑢∗

1|

‖𝒖∗‖1
≥ 𝑡3  for 𝑡3 ∈ [0, 1] , then the m-th 

component is judged as a background/contamination component and removed from the 

system. The whole process is summarized in Algorithm 2. 

 

Algorithm 2: CCA-filter 
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Input: ℓ1 -normalized basis-spectra of the 1stNMF output; 𝑺 ∈ ℝ+
𝑀×𝐷 , a background 

spectrum; 𝑿𝐵𝐺 ∈ ℝ+
𝑇×𝐷 , thresholds: 𝑡1 ∈ [0, 1], 𝑡2 ∈ [0, 1], 𝑡3 ∈ [0, 1] , in this study 

(𝑡1, 𝑡2, 𝑡3) = (0.2, 0.9, 0.5) is consistently used. 

Output: a list of the components judged as background components. 

for 𝑚 = 1,… ,𝑀: 

  for 𝑚′ = 1,… ,𝑀: 

    classify 𝑺𝑚′: into 𝒀 if 𝑺𝑚:𝑺𝑚′:
𝑇 ≥ 𝑡1 else into 𝒁 

𝒁 ← ( 𝒁
𝑿𝐵𝐺

)  

calculate 𝒀̅ and 𝒁̅ by Eq. 8-9 

calculate 𝑽𝑌𝑌 = 𝒀̅𝒀̅𝑇/𝐷,𝑽𝑍𝑍 = 𝒁̅𝒁̅𝑇/𝐷,𝑽𝑌𝑍 = 𝒀̅𝒁̅𝑇/𝐷 

obtain 𝑼∗ = (𝒖∗
1, … , 𝒖∗

𝑀𝑠𝑖𝑚+𝑀𝑑𝑖𝑠+𝑇) and (𝜌1, . . , 𝜌𝑀𝑠𝑖𝑚+𝑀𝑑𝑖𝑠+𝑇) by solving Eq. 10 

find Q such that 𝜌𝑄 ≥ 𝑡2 𝑎𝑛𝑑 𝜌𝑄+1 < 𝑡2 

for 𝑞 = 1,… , 𝑄: 

  if  
|𝑼∗

1𝑞|

‖𝑼∗
:𝑞‖1

≥ 𝑡3, add the component m in a background list 

return background list 

 

All the components attributed to backgrounds/contaminants are then removed from the 

columns of 𝑨̃ and rows of 𝑺. 

 

Non-negative least square fitting 

In the following section, we frequently use non-negative least square (NNLS) fitting. This 
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finds the best non-negative coefficient vector 𝒙 ∈ ℝ+
𝑛  for approximating 𝒚 ∈ ℝ𝑚  as a 

linear combination of n-column vectors of a constant matrix 𝚽 ∈ ℝ𝑚×𝑛, i.e., 

𝒙∗ = argmin
𝒙

‖𝒚 − 𝚽𝒙‖2 , 𝑠. 𝑡. 𝒙 ≥ 𝟎. 

Various algorithms have been proposed to quickly solve this problem, including alternating 

direction multiplier methods (ADMM) 8. We here use ADMM-NNLS proposed by Fu. et. al. 

9, and use a notation of 𝒙∗ = 𝑁𝑁𝐿𝑆(𝒚,𝚽). For each of L-vectors set, 𝒀 = [𝒚1, . . , 𝒚𝐿], the 

corresponding coefficient vector 𝒙𝑙
∗ (𝑙 = 1, . . , 𝐿) is separately calculated by: 

𝒙𝑙
∗ = 𝑁𝑁𝐿𝑆(𝒀:𝑙, 𝚽) 𝑓𝑜𝑟 𝑙 = 1, . . , 𝐿 

This is simply written in a matrix form as: 

𝑿∗ = 𝑁𝑁𝐿𝑆(𝒀,𝚽) 

where 𝑿∗ = [𝒙1
∗, . . , 𝒙𝐿

∗]  is the set of optimal non-negative coefficient vectors. Also, a 

similar problem with sum-to-one constraints: 

𝒙∗ = argmin
𝒙

‖𝒚 − 𝚽𝒙‖2 , 𝑠. 𝑡. 𝒙 ≥ 𝟎, 𝒙𝑇𝟏𝒏 = 1. 

can be solved by ADMM as proposed by Fu. et. al. 9. This is called fully constrained least 

square (FCLS) 10, whose solution is written as: 

𝒙𝑙
∗ = 𝐹𝐶𝐿𝑆(𝒀:𝑙, 𝚽) 𝑓𝑜𝑟 𝑙 = 1, . . , 𝐿, 

or in a matrix form: 

𝑿∗ = 𝐹𝐶𝐿𝑆(𝒀,𝚽). 

 

Derivation of the second NMF 

The first NMF outputs spectrum-wise fragment abundance (FA) 𝑨̃ ∈ ℝ𝑁𝑇×𝑀 , which is 
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converted to 𝑨 ∈ ℝ+
𝑁×𝑀

 by sample-wise T-spectra integration (Fig. S4), as temperature-

independency of FA is unnecessary for compositional analysis. NMF still should be applied 

to 𝑿̃ ∈ ℝ+
𝑁𝑇×𝐷  rather than 𝑿 ∈ ℝ+

𝑁×𝐷 , i.e., 𝑿 ≈ 𝑨𝑺  for straightforwardly deriving 𝑨 , 

as the temperature-dependent spectral modulation facilitates identifying fragment-spectra 𝑺 

(Fig. S5). The second NMF is applied to 𝑨 , i.e., 𝑨 ≈ 𝑪𝑩 . The factorized 𝑪 ∈ ℝ+
𝑁×𝐾 

represents K-polymers weight fraction in N-samples, and 𝑩 ∈ ℝ+
𝐾×𝑀  represents FAs of 

pure K-polymers. To emphasize the row stochastic condition of 𝑪, the rows of 𝑨 is ℓ1-

normalized in advance 11: 

𝑨 ← 𝑳𝑨
−1𝑨, 

where 𝑳𝑨 = 𝑑𝑖𝑎𝑔(‖𝑨1:‖1, … , ‖𝑨𝑁:‖1), which is later used for determining spectral norm of 

basis FAs, 𝑩. We evaluate the approximate residuals by Riemann metrics, i.e., 

𝐷𝑮(𝑨|𝑪𝑩) = 𝑇𝑟[(𝑨 − 𝑪𝑩)𝑮(𝑨 − 𝑪𝑩)𝑇], 

where 𝑮 = 𝑺𝑺𝑇 ∈ ℝ+
𝑀×𝑀

 12. Note that rows of 𝑺 should be ℓ2-normalized in advance for 

calculating 𝑮 . A lower triangular matrix 𝑳 ∈ ℝ𝑀×𝑀  is obtained via Cholesky 

decomposition, 𝑮 = 𝑳𝑳𝑻 13. The metrics can be rewritten as: 

𝐷𝑮(𝑨|𝑪𝑩) = 𝑇𝑟[(𝑨 − 𝑪𝑩)𝑳𝑳𝑻(𝑨 − 𝑪𝑩)𝑇] = 𝑇𝑟 [(𝑨̂ − 𝑪𝑩̂)(𝑨̂ − 𝑪𝑩̂)
𝑇
] = ‖𝑨̂ − 𝑪𝑩̂‖

𝐹

2
 

where 𝑨̂ = 𝑨𝑳 ∈ ℝ𝑁×𝑀, 𝑩̂ = 𝑩𝑳 ∈ ℝ𝐾×𝑀. Thus, conducting NMF, 𝑨 ≈ 𝑪𝑩, with residuals 

evaluation in Riemann metrics is equivalent to factorizing 𝑨̂ ≈ 𝑪𝑩̂ in Euclidean space. The 

optimization problem now becomes: 

min
 𝑪,𝑩̂

1

2
‖𝑨̂ − 𝑪𝑩̂‖

𝐹

2
+

𝛼

2
𝑣𝑜𝑙(𝑩̂) +

𝛽

2
𝑛𝑜𝑛𝑜𝑟𝑡ℎ(𝑩̂) , (11) 

𝑠. 𝑡. 𝑩̂ = 𝑩𝑳,𝑩 ≥ 0, 𝑪 ≥ 0, 𝑪𝟏𝐾 = 𝟏𝑁 . 
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where 𝑣𝑜𝑙(𝑩̂)  is the volume term of the simplex spanned by row vectors of 𝑩̂  14, 

𝑛𝑜𝑛𝑜𝑟𝑡ℎ(𝑩̂) is a non-orthogonality term of row vectors of 𝑩̂ 15, and 𝛼 > 0, 1 > 𝛽 > 0 

are balancing parameters. The volume-minimization term, 𝑣𝑜𝑙(𝑩̂), is introduced by Fu et al. 

14: 

𝑣𝑜𝑙(𝑩̂) = log|det(𝑩̂𝑩̂𝑇 + 𝜏𝑰𝐾)| = log|det(𝑯)|, 

where 𝑯(𝑩̂) = 𝑩̂𝑩̂𝑇 + 𝜏𝑰𝐾  and 𝜏  is a small regularization parameter, here fixed at 𝜏 =

10−8. This volume term ensures ground-truth identifiability under “sufficiently scattered” 

condition 14. Roughly speaking in chemistry words, if every component has several high-

purity samples in a dataset, over 50 wt% at least, the unique solution 𝑪∗ coincides with the 

true composition. As this criterion is often violated in practical datasets, we found that 

introducing 𝑛𝑜𝑛𝑜𝑟𝑡ℎ(𝑩̂)  would be helpful, particularly for biased dataset (Fig. S2, 

here, 𝛼 = 𝛽 = 0.1). The non-orthogonality term is defined for penalizing non-diagonal non-

zero elements 15, i.e.: 

𝑛𝑜𝑛𝑜𝑟𝑡ℎ(𝑩̂) = 𝑇𝑟 (𝜦(𝑩̂𝑩̂𝑇 − 𝑑𝑖𝑎𝑔(𝑩̂𝑩̂𝑇))), 

where 𝜦 ∈ ℝ𝐾×𝐾 is a symmetric Lagrange multiplier matrix. Importantly, the orthogonal 

constraints are imposed on 𝑩̂  rather than 𝑩 , restricting heavy peak-overlapping among 

different polymers in the original spectral space, rational in MS. In contrast, the non-negative 

constraints are imposed on 𝑩 rather than 𝑩̂, as 𝑳 and thus 𝑩̂ may take negative elements. 

Fu et. al. 14 reported that volume-minimized factorization is very sensitive to outliers, and 

suggested to discount the importance of outliers by introducing a weight matrix 14: 
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𝑤𝑛 =
𝑝

2
(‖𝑨̂𝑛: − 𝑪𝑛:𝑩̂‖

2
+ 𝜀)

𝑝−2
2

(12) 

𝑾 = 𝑑𝑖𝑎𝑔(𝑤1, …𝑤𝑁) 

where 𝑝 ∈ (0,2] and 𝜀 is a small regularization positive number. Smaller 𝑝 more strongly 

discounts the samples with large fitting error. In this work, 𝑝 ∈ {1, 1.5}  and 𝜀 = 10−8 

were used. With 𝑾, the optimization problem is rewritten as: 

min
 𝑪,𝑩̂

1

2
𝑇𝑟 [𝑾(𝑨̂ − 𝑪𝑩̂)(𝑨̂ − 𝑪𝑩̂)

𝑇
] +

𝛼

2
𝑣𝑜𝑙(𝑩̂) +

𝛽

2
𝑛𝑜𝑛𝑜𝑟𝑡ℎ(𝑩̂), 

𝑠. 𝑡. 𝑩̂ = 𝑩𝑳,𝑩 ≥ 0, 𝑪 ≥ 0, 𝑪𝟏𝐾 = 𝟏𝑁 . 

We solved this optimization by updating 𝑪 and 𝑩̂ alternatively based on block coordinate 

descent (BCD) theory 16. Assume we have (𝑪(𝑡), 𝑩̂(𝑡)) after tth updating. The initial 𝑩̂(0) 

can be selected out from the N-rows of 𝑨̂ via vertex component analysis (VCA) 17. As the 

penalty terms are not related to 𝑪, updating 𝑪 based on a fixed 𝑩̂(𝑡) is straightforward by 

using the forementioned ADMM-FCLS, i.e.: 

𝑪(𝑡+1)𝑇 = 𝐹𝐶𝐿𝑆 (𝑨̂𝑇 , 𝑩̂(𝑡)𝑇) . (13) 

Note that 𝑾 is a diagonal matrix and thus negligible for updating 𝑪. Now we focus on 

updating 𝑩̂ based on the fixed 𝑪(𝑡). To efficiently obtain the updating rule from 𝑩̂(𝑡) to 

𝑩̂(𝑡+1), majorizer function of 𝑣𝑜𝑙(𝑩̂) is introduced. After tth update, based on fixed 𝑯(𝑡) =

𝑯(𝑩̂(𝑡)), the following tangent inequality holds: 

log|det(𝑯)| ≤ log|det(𝑯(𝑡))| + 𝑇𝑟 [(𝛁𝑯(𝑡) log|det(𝑯)|)
𝑇
(𝑯 − 𝑯(𝑡))], 

here 𝛁𝑯(𝑡) log|det(𝑯)|  is the gradient of log|det(𝑯)|  over 𝑯  at 𝑯(𝑡) . As 
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𝛁𝑯(𝑡) log|det(𝑯)| = 𝑯(𝑡)−𝑇
, 𝑣𝑜𝑙(𝑩̂) can be majorized as: 

𝑣𝑜𝑙(𝑩̂) = log|det(𝑯)| ≤ 𝑇𝑟 [𝑯(𝑡)−1
𝑯] + 𝑐𝑜𝑛𝑠𝑡 = 𝑇𝑟[𝑭(𝑡)𝑩̂𝑩̂𝑇] + 𝑐𝑜𝑛𝑠𝑡, 

where 𝑭(𝑡) = 𝑯(𝑡)−1
  and 𝑐𝑜𝑛𝑠𝑡  is a constant term not related to 𝑩̂ . After replacing 

𝑣𝑜𝑙(𝑩̂) with the majorizer 𝑇𝑟[𝑭𝑩̂𝑩̂𝑇], all the penalty terms are combined as: 

𝛼

2
𝑣𝑜𝑙(𝑩̂) +

𝛽

2
𝑛𝑜𝑛𝑜𝑟𝑡ℎ(𝑩̂) ≤

𝛼

2
𝑇𝑟(𝑭(𝑡)𝑩̂𝑩̂𝑇) +

𝛽

2
𝑇𝑟(𝜦(𝑡)𝑩̂𝑩̂𝑇) + 𝑐𝑜𝑛𝑠𝑡

=
1

2
𝑇𝑟(𝑽𝑩̂𝑩̂𝑇) + 𝑐𝑜𝑛𝑠𝑡, 

where 𝑽 = 𝛼𝑭(𝑡)+𝛽𝜦(𝑡).  𝑩̂(𝑡+1) is then updated by solving the following problem: 

 𝑩̂(𝑡+1) = arg min
 𝑩̂

1

2
𝑇𝑟 [𝑾(𝑨̂ − 𝑪(𝑡)𝑩̂)(𝑨̂ − 𝑪(𝑡)𝑩̂)

𝑇
] +

1

2
𝑇𝑟(𝑽𝑩̂𝑩̂𝑇) (14) 

𝑠. 𝑡. 𝑩̂ = 𝑩𝑳,𝑩 ≥ 0. 

To simplify the complicated constraints, 𝑩̂ = 𝑩𝑳 is embedded into the objective function 

by using Lagrangian multiplier 𝒁 ∈ ℝ𝐾×𝑀 in a framework of ADMM: 

(𝑩(𝑡+1), 𝑩̂(𝑡+1)) = arg min
 𝑩,𝑩̂

max
𝒁

{𝑓(𝑩̂) + 𝑇𝑟[𝒁𝑇(𝑩̂ − 𝑩𝑳)] −
1

2𝜇
‖𝒁 − 𝒁′‖𝐹

2}, 

𝑠. 𝑡. 𝑩 ≥ 0, 

where 𝑓(𝑩̂) ≡
1

2
𝑇𝑟 [𝑾(𝑨̂ − 𝑪(𝑡)𝑩̂)(𝑨̂ − 𝑪(𝑡)𝑩̂)

𝑇
] +

1

2
𝑇𝑟(𝑽𝑩̂𝑩̂𝑇)  and 𝜇  is a 

hyperparameter for ADMM (in this work, 𝜇 = 1 is consistently used.). Here, 𝒁′ represents 

𝒁 in the previous cycle. The objective function is maximized over 𝒁 when 

𝒁 = 𝒁′ +  𝜇(𝑩̂ − 𝑩𝑳). (15) 

The maximized objective function over 𝒁 now becomes 
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𝑔(𝑩, 𝑩̂; 𝒁) ≡ 𝑓(𝑩̂) +
𝜇

2
‖𝑩̂ − 𝑩𝑳 +

1

𝜇
𝒁‖

𝐹

2

, 𝑩 ≥ 0, 

which is then minimized over (𝑩, 𝑩̂). (𝑩, 𝑩̂, 𝒁) is thus cyclically updated via Algorithm3. 

 

Algorithm 2: ADMM for solving the optimization of Eq. 14 

input: 𝑩(𝑡), 𝑩̂(𝑡) , hyperparameter 𝜇  (𝜇 = 1  consistently used in this study), function 

𝑔(𝑩, 𝑩̂) 

output: 𝑩(𝑡+1), 𝑩̂(𝑡+1) 

initialize: 𝑞 = 0, 𝑩𝑞 ← 𝑩(𝑡), 𝑩̂𝑞 ← 𝑩̂(𝑡), 𝒁𝑞 ← 𝟎 

repeat until convergence: 

  𝑩̂𝑞+1 = argmin
 𝑩̂

𝑔(𝑩̂; 𝑩𝑞 , 𝒁𝑞), solved by Eq. 16 as described below 

  𝑩𝑞+1 = argmin
 𝑩≥𝟎

𝑔(𝑩; 𝑩̂𝑞+1, 𝒁𝑞), solved by Eq. 17 as described below 

  𝒁𝑞+1 = 𝒁𝑞 +  𝜇(𝑩̂𝑞+1 − 𝑩𝑞+1𝑳) (Eq. 15) 

  𝑞 ← 𝑞 + 1  

𝑩(𝑡+1) ← 𝑩𝑞 , 𝑩̂
(𝑡+1) ← 𝑩̂𝑞.  

Return 𝑩(𝑡+1), 𝑩̂(𝑡+1) 

 

As the objective function 𝑔(𝑩̂; 𝑩𝑞 , 𝒁𝑞)  has a simple quadratic form without constraints 

about 𝑩̂, 𝑩̂𝑞+1 can be determined in a closed form by setting the derivative of 𝑔 zero, i.e.: 

𝜕𝑔

𝜕𝑩̂
= (𝑪(𝑡)𝑇𝑾𝑪(𝑡+1) + 𝑽 + 𝜇𝑰𝐾) 𝑩̂ − 𝑪(𝑡)𝑇𝑾𝑨̂ − 𝑩𝑞𝑳 +

1

𝜇
𝒁 ≡ 𝟎 
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𝑩̂𝑞+1 = (𝑪(𝑡)𝑇𝑾𝑪(𝑡) + 𝑽 + 𝜇𝑰𝐾)
−1

(𝑪(𝑡)𝑇𝑾𝑨̂ + 𝑩𝑞𝑳 −
1

𝜇
𝒁) . (16) 

As 𝑔(𝑩; 𝑩̂𝑞+1, 𝒁𝑞) has a simple quadratic form about 𝑩 with non-negative constrains, the 

NNLS algorithm can be directly applied, i.e.: 

𝑩𝑞+1
𝑇 = 𝑁𝑁𝐿𝑆 ((𝑩̂𝑞+1 +

1

𝜇
𝒁)

𝑇

, 𝑳𝑇) . (17) 

Updating rules for (𝑩̂, 𝑩, 𝑪) to solve the original optimization problem (Eq. 11) have been 

obtained so far, but updating rule for the multiplier matrix 𝑽 = 𝛼𝑭(𝑡) +𝛽𝜦(𝑡)  remains 

unknown. 𝑭(𝑡) is directly calculated from 𝑩̂(𝑡): 

𝑭(𝑡) = (𝑩̂(𝑡)𝑩̂(𝑡)𝑇 + 𝜏𝑰𝐾)
−1

. (18) 

𝜦(𝑡) is estimated from strict orthogonal conditions, i.e., 𝑩̂𝑩̂𝑇 = 𝑑𝑖𝑎𝑔(𝑩̂𝑩̂𝑇) ≡ 𝑫, 𝛽 = 1 

and 

𝜕𝑓(𝑩̂; 𝑪(𝑡))

𝜕𝑩̂
= 𝑪(𝑡)𝑇𝑾(𝑪(𝑡)𝑩̂ − 𝑨̂) + (𝛼𝑭(𝑡) + 𝜦(𝑡))𝑩̂ ≡ 0. (19) 

The multiplier matrix 𝜦(𝑡) at the strcit condition is obtained by multiplying 𝑩̂𝑇 from the 

right side of Eq. 19: 

𝑪(𝑡)𝑇𝑾(𝑪(𝑡)𝑫 − 𝑨̂𝑩̂𝑇) + (𝛼𝑭(𝑡) + 𝜦(𝑡))𝑫 ≡ 0, 

𝜦(𝑡) = 𝑪(𝑡)𝑇𝑾(𝑨̂𝑩̂𝑇𝑫−1 − 𝑪(𝑡)) −  𝛼𝑭(𝑡). (20) 

By combining Eq. 18 and Eq. 20, updating rule of 𝑽 is obtained as: 

𝑽 = 𝛼(1 − 𝛽) (𝑩̂(𝑡)𝑩̂(𝑡)𝑇 + 𝜏𝑰𝐾)
−1

+ 𝛽𝑪(𝑡)𝑇𝑾(𝑨̂𝑩̂𝑇𝑫−1 − 𝑪(𝑡)). (21) 

The volume penalty term is interpretable as a shrinking force imposed on the simplex 
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spanned by the rows of 𝑩̂ 18. Conversely, the orthogonal term is an expanding force, as 

evident from Eq. 21; the weight 𝛽 ∈ [0, 1] buffers the first term of volume-minimization. 

As the residual-minimization term, ‖𝑨̂ − 𝑪𝑩̂‖
𝐹

2
, is also interpretable as expanding force 18, 

solving the original problem of Eq. 11 is conceptually identical to finding the equilibrium 

point of the three expanding and shrinking forces imposed on the simplex. Based on the 

updating rules, we propose the following algorithm to solve the second NMF. 

 

Algorithm 3: Pseudo-code for the second NMF for solving Eq. 11 

Input: output of the first NMF (sample-wise FA: 𝑨 ∈ ℝ+
𝑁×𝑀  , fragment spectra: 𝑺 ∈

ℝ+
𝑀×𝐷), basis polymer number: K, weights for penalty terms: (𝛼, 𝛽), weight for outliers: p 

Output: polymer weight fraction: 𝑪 ∈ ℝ+
𝑁×𝐾, FAs of basis polymers per unit weight: 𝑩 ∈

ℝ+
𝐾×𝑀  

Initialization 

calculate 𝑳 via Cholesky decomposition of 𝑺𝑺𝑇 

set 𝑨̂ = 𝑨𝑳 

initialize 𝑩̂(0) by selecting out K-rows from 𝑨̂ via VCA algorithm 

set 𝑩(0) = 𝑩̂(0)𝑳−1 

initialize 𝑪(0) 𝑏𝑦 𝑪(0)𝑇 = 𝐹𝐶𝐿𝑆(𝑨̂𝑇 , 𝑩̂(0)𝑇) 

initialize 𝑾 by Eq. 12 

initialize 𝑽 based on 𝑩(0) and 𝑪(0) by Eq. 21 

Repeat until convergence criteria is satisfied: 
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  update 𝑩̂, 𝑩 by algorithm 3 

  update 𝑪 by Eq. 13 

  update 𝑾,𝑽 by Eq. 12 and S18, respectively 

return 𝑪 ∈ ℝ+
𝑁×𝐾 and 𝑩 

As row vectors of 𝑨 have been ℓ1-normalized in advance, the factorized 𝑩 are also row 

stochastic in noiseless cases 11. We still need to recover the norms of row vectors of 𝑩 based 

on 𝑳𝑨, which are the preserved norms of 𝑨 rows before being normalized. For the norm-

recovered 𝑳𝑨𝑨, the following equation holds: 

𝑳𝑨𝑨 ≈ 𝑳𝑨𝑪𝑩 = 𝑳𝑨𝑪(𝑳𝑩′
−1𝑩′) = (𝑳𝑨̃𝑪𝑳𝑩′

−1)𝑩′ = 𝑪′𝑩′, 

where 𝑩′ = 𝑳𝑩′𝑩 is the norm-recovered variant of 𝑩, 𝑳𝑩′ = 𝑑𝑖𝑎𝑔(‖𝑩′
1:‖1, … , ‖𝑩′

𝑁:‖1) 

is the spectral norm of the basis spectral, and 𝑪′ = 𝑳𝑨̃𝑪𝑳𝑩′
−1 is the fraction of the norm-

recovered basis 𝑩′. Because the row-stochastic conditions of 𝑪′ still should be hold if the 

spectral intensities of raw spectra 𝑿̃  have been properly corrected (see the section of 

“Spectra Formatting”), 𝑳𝑩′ can be determined so that 𝑪′𝟏𝐾 = 𝟏𝑁 would be best satisfied. 

For sequencing, monomer composition ratio would be also useful to determine 𝑳𝑩′ 

particularly when the intensity correction of 𝑿̃ is difficult and row-stochastic conditions of 

𝑪′ are unreliable. The reconstructed basis spectra 𝑷 with absolute intensities in original D-

dimensional spectral space thus can be obtained as 𝑷 = 𝑩′𝑺 (simply written as 𝑷 = 𝑩𝑺 in 

the main text), which showed good consistency both in spectral shapes and absolute 

intensities with the observed basis spectra in benchmark test (Fig 2A). 
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Sequential projection of a target pyrolysis-MS spectrum 

Here, we describe how to project a targeted 2D MS spectrum, 𝑿̃𝑡 ∈ ℝ+
𝑇×𝐷  of a target 

copolymer onto the subspaces spanned by the rows of 𝑺 ∈ ℝ+
𝑀×𝐷

 and subsequently 𝑩 ∈

ℝ+
𝐾×𝑀. The first projection onto 𝑺-subspace can be simply done via NNLS fitting: 

𝑨̃𝑡
𝑇
= 𝑁𝑁𝐿𝑆 (𝑹−

1
2𝑿̃𝑡

𝑇
, 𝑹−

1
2𝑺𝑇), 

where noise covariance 𝑹 =
1

𝑁𝑇
𝑬𝑻𝑬 ∈ ℝ𝐷×𝐷 adjusts channel-wise importance based on a 

noise-matrix E ∈ ℝ𝑁𝑇×𝐷  estimated from isotope peaks. The spectrum-wise FA 𝑨̃𝑡  is 

integrated along the temperature axis to be converted into 𝑨𝑡 ∈ ℝ+
1×𝑀 , which is 

subsequently projected onto 𝑩-subspace: 

𝑪𝑡
𝑇 = 𝑁𝑁𝐿𝑆(𝑳𝑇𝑨𝑡

𝑇 , 𝑳𝑇𝑩𝑇), 

𝑪𝑡 ←
𝑪𝑡

‖𝑪𝑡‖1
, 

where 𝑪𝑡 ∈ ℝ+
1×𝐾  is the fraction of K-basis polymers and 𝑳 ∈ ℝ𝑀×𝑀  is obtained by 

Cholesky decomposition of 𝑺𝑺𝑇 . Importantly, 𝑪𝑡  is scale-invariant owing to ℓ1 -

normalization. This means the weight of the target polymer subjected to pyrolysis-MS is 

unnecessary, allowing direct sequencing without chemical purification. In contrast, sample 

weights included in dataset and used for learning 𝑺 and 𝑩 should be accurately measured, 

as they influence the absolute intensities of the estimated basis spectra, i.e., 𝑷 = 𝑩𝑺 ∈

ℝ+
𝐾×𝐷. 

 



29 

 

 

Prediction of sequence distribution from the monomer reactivity ratio 

We here use the following notations; monomer reactivity ratios for monomer 1 and monomer 

2: 𝑟1 and 𝑟2; molar fraction of monomer 1 in polymerization solution: f; feed molar fraction: 

𝑓0; molar fraction of monomer 1 in instantaneously generated polymers: F; unpolymerized 

total monomer concentration: [𝑀] ; initial monomer concentration: [𝑀]0 ; monomer 

conversion: 𝑐𝑜𝑛𝑣 = 1 −
[𝑀]

[𝑀]0
. As well known, Lewis-Mayo equation 19 predicts monomer 

fraction in instantaneously generated polymers: 

𝐹

1 − 𝐹
=

𝑓

1 − 𝑓

𝑟1𝑓 + (1 − 𝑓)

𝑓 + 𝑟2(1 − 𝑓)
. 

By solving the equation, 𝐹 can be written as a function of 𝑓 under given 𝑟1, 𝑟2: 

𝐹 =
𝑓 + (𝑟1 − 1)𝑓2

(𝑟1 + 𝑟2 − 2)𝑓2 + 2(1 − 𝑟2)𝑓 + 𝑟2
≡ 𝐹(𝑓; 𝑟1, 𝑟2). 

Skeist correlated monomer conversion and f via the following equation 20: 

𝑙𝑜𝑔
[𝑀]

[𝑀]0
= ∫

𝑑𝑓

𝐹(𝑓; 𝑟1, 𝑟2) − 𝑓

𝑓

𝑓0

. 

As the right hand is all about f, the integral can be numerically calculated from a given 𝑓0 

to 𝑓, allowing us to calculate conv given f. Next, we calculate the triad fraction based on 

𝑟1, 𝑟2  and f. According to the first order Markov terminal model 21, triad fraction in 

instantaneously generated (or elongated in living polymerization) polymers, 

{𝑇111, 𝑇112, 𝑇212, 𝑇222, 𝑇221, 𝑇121}, is determined by the following equations: 

𝑇111 = (1 − 𝑃1→2)
2, 
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𝑇112 = 2𝑃1→2(1 − 𝑃1→2), 

𝑇212 = (𝑃1→2)
2, 

𝑇222 = (1 − 𝑃2→1)
2, 

𝑇221 = 2𝑃2→1(1 − 𝑃2→1), 

𝑇121 = (𝑃2→1)
2, 

where 𝑃1→2 =
1

1+𝑟1𝑓/(1−𝑓)
 is the probability of monomer2 adduction to monomer 1 radical, 

and 𝑃2→1 =
1

1+𝑟2(1−𝑓)/𝑓
 is the probability of monomer 1 adduction to monomer 2 radical. 

After separately calculating conv and {𝑇111, 𝑇112, 𝑇212, 𝑇222, 𝑇221, 𝑇121 } based on given 

(𝑓, 𝑟1, 𝑟2), we plotted {𝑇111, 𝑇112, 𝑇212, 𝑇222, 𝑇221, 𝑇121} as a function of conv, as shown in 

Fig. S9. Note that what we can observe is accumulated triad fraction, not instantaneously 

generated triad fraction. We thus further integrated the instantaneously generated triad 

fraction along conversion, so that we can compare the predicted and observed accumulated 

triad fraction in Fig. 4C. To predict the triad fraction of S/B copolymers synthesized at 70 oC 

(Fig. 4C), we used the reported value (𝑟S, 𝑟B) = (0.70, 0.17) at 60 oC22. 

 

Determination of the S/B triad fraction via 1H NMR 

As shown in Fig. S10C, -O-CH2- protons of B-units around 4.1-3.5 ppm are sensitive to the 

adjacent monomer species, splitting into three major peaks, {X, Y, Z} according to the 

literature 21. The triad fraction and peak fraction are correlated by the following equations: 

(
𝑇𝐵𝐵𝐵

𝑇𝐵𝐵𝑆

𝑇𝑆𝐵𝑆

) = (
1 1 − 𝜎 (1 − 𝜎)2

0 𝜎 2𝜎(1 − 𝜎)

0 0 𝜎2

)

−1

(
𝑥
𝑦
𝑧
) ,  
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where (x, y, z) is the peak-area fraction of {X, Y, Z} and 𝜎 = 0.85  is a coisotactic 

parameter21. For determining S-centered triad fraction, 13C NMR is sometimes available. The 

quaternary carbon of the benzene ring is known for being sequence-sensitive. However, as 

shown in Fig. S10B, SSS, SSB, BSB peaks significantly overlap with some hardly 

attributable peaks, hindering quantitative analysis. We thus used only B-centered triad 

fraction determined from 1H NMR, for verifying our RQMS pentad sequencing (Fig. 4B-C). 

Also see the following section for converting RQMS pentad-fractions to B-centered triad 

fraction so that NMR and RQMS are comparable. 

 

Downgrading the S/B pentad-fraction. 

As NMR is not sensitive enough to determine S/B pentad distribution, we downgraded the 

RQMS pentad-sequence results to B-centered triad fractions so that RQMS and NMR results 

are comparable. We first prepared a matrix 𝑻B ∈ ℝ+
9×3 connecting nine basis sequence-

defined copolymers to B-centered 3 triads abundances, as shown in Table S2. We then 

obtained pentad sequencing results, 𝑪𝑡 ∈ ℝ+
1×𝐾 (here 𝐾 = 9) via procedure described in 

the section of “Sequential projection of a target pyrolysis-MS spectrum onto the learned 

subspaces”. The B-centered triad fractions can be obtained as 𝑪𝑡𝑻B after normalization so 

that 𝑪𝑡𝑻B  satisfies row-stochastic conditions. S-centered triads fraction can be similarly 

calculated as well with 𝑻S (table S2), which is not used in this study since S-centered triads 

fraction is not accessible via NMR analysis as mentioned above. 

Supplementary Text 

Definition of sequencing 
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In the main text, “sequencing” is defined sequence distribution analysis. This definition could 

be controversial, since Lutz el. al. suggested to distinguish “sequencing” and “sequence 

analysis” 23. According to their definition, “sequencing” refers to determining uniformly-

defined sequence of a monodispersed polymer ensemble, while “sequence analysis” refers to 

analyzing sequence tendencies of a polydisperse ensemble. The classification is thus based 

on the nature of the objective copolymer ensembles. As our proposed method is applicable 

to either mono/poly-dispersed ensembles, we do not distinguish sequencing and sequence 

distribution analysis in our manuscript. The sequence-defined copolymers would span the 

probability-simplex and thus be located at the vertices, while polydisperse copolymers would 

be located at interior points of the simplex of which coordinates represent the codon 

composition, as described in the main text. Note that we here assume periodically sequenced 

copolymers as sequence-defined copolymers. We do not assume arbitrarily yet uniformly 

sequenced copolymers as an target copolymer ensemble, since such ultimate sequence-

controlled copolymerization has not yet been developed except for unpractical single-

monomer-addition “oligomerization” strategy, e.g., see 24. 
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Supplementary Figures 

Fig. S1. Assumed basis copolymers for RQMS sequencing. (A) Five–basis copolymers for 

binary triad sequencing. All the 23–triads are included in the five basis polymers. Pyrolysis 
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randomly cleaves the polymer chains generating various length of codons not limited to triad. 

Nevertheless, as the generation probability of a shorter codon mainly depends on the structure 

of the one-unit longer codon, the abundances of shorter codons than triad can be written in 

hierarchical chain structure. This means there are only five-basis patterns of triads-dyads-

monads peak series with fixed intensity ratios, whose linear combination can express any 

triads-dyads-monads distributions generated from arbitrarily sequenced copolymers. To 

intuitively understand this, it would be helpful to consider the tetrads included in the five–

basis copolymers. There are 24–tetrads, six of which are not included in the five basis 

polymers. Therefore, when the basis number K is set five, accessible codon length is limited 

to triads. To express all the tetrad possibilities, we need a different basis set of six copolymers 

as shown in (C). In this way, we can suppress rapid increase in K for longer codon analysis 

though the possible number of codon sequences exponentially increases. Note that XXY and 

YXX are different triads which potentially generate different fragments patterns, but can be 

summarized in a single basis-copolymer (XXY)l, because the abundance ratio of XXY and 

YXX is identical in any copolymers. Importantly, setting K = 5 is not necessarily appropriate 

for triad sequencing. For example, consider a monomer combination with monomer 

reactivity ratios of 𝑟𝑋 = 0 and 𝑟𝑌 > 0. In this case, the possible triads are limited to (XY)l, 

(YYX)l, and (YYY)l, as XX dyad is forbidden. K thus should be three, not five. Significantly, 

our developed sequence necessitates no prior knowledge nor assumption about the chemical 

structures of the basis copolymers. Our sequencer only necessitates the number of basis 

copolymers; therefore, statistical determination of the basis number K from the spectral 

dataset could be more effective as shown in (B). As well known, K can be determined based 
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on the differences between the eigenvalues of correlation and covariance matrices; the 

number of the non-zero difference components, marked as i~v, corresponds to K 25. Here, the 

dataset for S/B triad sequencing (Fig. 1A) was used as an example, clearly indicating that K 

should be set as five. (C) The six–basis copolymers for tetrad sequencing. (D) The nine–basis 

copolymers for tetrad sequencing. 
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Fig. S2. Benchmark compositional analysis of the M/S/E ternary films based on a biased 

dataset lacking S-rich samples. The S-rich datapoints beyond 40 wt% S-fraction (green 

points) were not used for leaning 𝑺  and 𝑩 , but were sequentially projected onto the 

subspaces spanned by 𝑺 and 𝑩 pre-learned from blue datapoints. The data deficient areas 

are represented by orange triangles. The weighting parameters, 𝜶 and 𝜷, for balancing the 

penalty terms of volume-minimization and orthogonal constraints in the second NMF (see 

Eq. 11 in “Derivation of the second NMF” and the related sections) are (A) 𝜶 = 𝛽 = 0.1, 

(B) 𝛼 = 0, 𝛽 = 0.1  and (C) 𝛼 = 0.1, 𝛽 = 0 . Only when both constraints are active (A), 

RQMS algorithm output accurate result. 
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Fig. S3. Benchmark compositional analyses of E/M/S ternary films via single-step NMF, 

𝑿 ≈ 𝑪𝑷, with 𝐾 = 3, 𝛼 = 𝛽 = 0.1 (see details of these hyper parameters in the derivation 

of the second NMF section). The estimation errors of both 𝑪 and 𝑷 became much greater 

as compared to Fig. 2A, suggesting the effectiveness of the two-step NMF for RQMS. 
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Fig. S4. 

RQMS algorithm. (A) Flow chart, outputting 𝑪 and 𝑷 based on the input 𝑿̃ ∈ ℝ+
𝑁𝑇×𝐷. In 

the main text, for simplicity, we consistently assume 1D-spectral dataset 𝑿 ∈ ℝ+
𝑁×𝐷 as the 

input. However, a single spectrum of pyrolysis-MS consists of T-spectra recorded at different 

T-temperature bands (see “Spectra formatting” section), and thus, the dataset is  𝑿̃ ∈

ℝ+
𝑁𝑇×𝐷

 rather than 𝑿 ∈ ℝ+
𝑁×𝐷. After the first NMF, spectrum-wise FA 𝑨̃ ∈ ℝ+

𝑁𝑇×𝑀 is 

sample-wisely integrated to sample-wise FA 𝑨 ∈ ℝ+
𝑁×𝑀, as the temperature dependency of 

FA is not important for compositional analysis. Background/contaminated components are 
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removed by our developed CCA-filter (see “Derivation of the CCA-filter” section). To 

conduct the second NMF in Riemann metrics considering the non-orthogonality of 𝑺 (also 

see Fig. S6), the factorization is conducted for 𝑨̂ ≡ 𝑨𝑳 ∈ ℝ𝑁×𝑀, where 𝑳 ∈ ℝ𝑀×𝑀 is the 

lower matrix obtained by Cholesky decomposition of 𝑮 ≡ 𝑺𝑺𝑇  (see “Derivation of the 

second NMF” section). (B) The relationship between 𝑿̃ and 𝑿 are graphically presented. 
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Fig. S5. 

Inputting 𝑿 ∈ ℝ+
𝑁×𝐷  to RQMS algorithm derived a poor result in benchmark 

compositional analysis of E/M/S ternary films, suggesting the first NMF should be applied 

to 𝑿̃ ∈ ℝ+
𝑁𝑇×𝐷, rather than 𝑿 ∈ ℝ+

𝑁×𝐷. All the parameters were set identical to those for 

Fig. 2A, except for setting temperature-band number 𝑇 = 1 (𝑇 = 20 for Fig. 2A). 
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Fig. S6. 

Benchmark compositional analyses of E/M/S ternary films. The residuals of the second NMF 

in RQMS algorithm were evaluated with Riemann metrics, i.e., 𝐷𝑮(𝑨|𝑪𝑩) = 𝑇𝑟[(𝑨 −

𝑪𝑩)𝑮(𝑨 − 𝑪𝑩)𝑇], where (A, B, C) 𝑮 = 𝑺𝑺𝑇 and (D) 𝑮 = 𝑰𝑀 corresponding to Euclidean 

distance. (A, B, C) To show the robustness of the estimated composition 𝑪, the weight of 

orthogonal constraints in the first NMF was varied, i.e., 𝑤𝑜 ∈ {0.1, 0.2, 0.3}.  All the outputs 

were similar and less sensitive to the first NMF model selection. As the best result was 

obtained when  𝑤𝑜 = 0.2, we consistently use this condition in this study. (D) When 𝑮 =
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𝑰𝑀, the estimation was not reliable. Considering non-orthogonality of 𝑺 by introducing 𝑮 

is thus critically important. 
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Fig. S7. 

1H NMR spectrum of commercially available (MS)l copolymer measured in CDCl3. The 

copolymer was synthesized in the presence of ethyl aluminum sesquichloride 26. The methoxy 

protons sensitive to the sequence are presented. According to the literature26, MMM, MMS, 

SMS peaks roughly split, allowing qualitative analysis. As here shown, there was no MMM 

and very little MMS, suggesting highly alternating sequence. We did not conduct further 

quantitative analysis via NMR by decoupling its tacticity.  
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Fig. S8. 

The estimated 13 basis spectra of (BBB)l, (SSS)l, (MMM)l, (BBS)l, (SB)l, (SSB)l, (BBM)l, 

(MB)l, (MMB)l, (SSM)l, (MS)l, (MMS)l, and (MSB)l for M/S/B ternary triad sequencing. 

The coupled peaks with 17 m/z intervals are attributable to proton- and ammonium-adducted 

fragments. 
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Fig. S9. 

S/B instantaneously generated triad-fractions as functions of monomer conversion with the 

initial monomer molar fraction of (A) S0/B0 = 0.7/0.3 and (B) S0/B0 = 0.6/0.4 at 

polymerization temperature of 60 oC (solid lines) and 150 oC (dotted lines). S-centered and 

B-centered triad fractions are separately depicted. Monomer reactivity ratios are (𝑟𝑆, 𝑟𝐵) =

(0.70, 0.17)  and (𝑟𝑆, 𝑟𝐵) = (0.78, 0.34)  at 60 oC and 150 oC polymerization 

temperatures22. Assume we need a copolymer having high SSSBB pentad fraction. As S/B is 
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inherently alternating monomer combination ( 𝑟𝑆 < 1, 𝑟𝐵 < 1 ), achieving high SSSBB 

fraction is challenging. This can be intuitively understood as follows; for yielding high SSS 

fraction, S0 should be sufficiently high, however, which would derive low BBS fraction 

owing to highly selective SBS generation. By increasing temperature from 60 oC to 150 oC, 

this SBS selectivity among B-centered triads is reduced, affording higher BBS generation 

even under high S0 conditions as indicated by allows. This strategy was helpful for BBBSS 

pentad as well. In the dataset for pentad sequencing, we thus included copolymers 

synthesized at 150 oC with the monomer feed ratios around S0/B0=0.6/0.4 (for SSSBB) and 

S0/B0=0.2/0.8 (for BBBSS). For further detailed mathematical procedures, see “Prediction of 

sequence distribution from the monomer reactivity ratio” section. What if your monomer 

combination has no reported values of monomer reactivity ratio? In such case, we still can 

conduct triad sequencing based on a roughly prepared small dataset. Since triad fraction and 

monomer reactivity ratio are correlated via Alfrey-Mayo equation, the monomer reactivity 

ratio can be reversely calculated from the triad fraction27. Based on the estimated monomer 

reactivity ratio, the dataset can be further designed and expanded for more advanced 

sequencing. 
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Fig. S10. 

S/B random copolymer synthesis via RAFT polymerization. Polymerization conditions: 

[S]0/[B]0/[DDMAT]0/[AIBN]0=20/20/0.2/0.06 mmol in 1,4-dioxane 2 mL at 70 oC. (A) 

Monomer-polymer conversion curves of S and B. Small portions of the polymerization 

solution were taken out at 5 h, 10 h, 25 h, 58 h, for investigating sequence modulation along 

main-chains, as shown in Fig. 4B. (B) 13C NMR spectrum of S/B copolymers synthesized 

via RAFT copolymerization from 1/1 monomer feed ratio. Peaks of the sequence-sensitive 

quaternary carbon involved in S units are shown. NMR conditions: 10 wt% copolymer 

solution in CDCl3 at 25 oC; 5 s relaxation time; 9000 scans in 15 h measurement time; 

referencing CDCl3 central peak at 77.0 ppm. The rough peak attribution of SSS, SSB, and 

BSB followed the reported paper21. (C) 1H NMR spectrum of S/B copolymers synthesized 
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via RAFT copolymerization. NMR conditions: 30 s of relaxation delays in CDCl3 at 25 oC. 

The inset shows magnified peaks of sequence-sensitive -O-CH2- protons involved in B 

monomers. The small peak on the right is attributable to -S-CH2- protons involved in 

DDMAT, which is not related to sequence analysis. The overlapped peaks X, Y, Z were 

deconvoluted via Lorentzian peak fitting, yielding peak-area fraction of (x, y, z), which was 

further converted to B-centered triad fractions as described in “Determination of the S/B triad 

fraction via 1H NMR” section. As simple 3-peaks fitting gave huge fitting errors, we here 

used 8 peaks, {X1, X2, Y1, Y2, Y3, Z1, Z2, Z3}, without a good scientific excuse. The green 

and brown are observed and fitted curves, respectively. 
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Table S1.  

Hyperparameters used in this study. 

Dataset Sample 

number 

N 

Temp. range (oC) 

Mass range(m/z) 

First NMF Second NMF 

𝑤𝑜 Merging 

threshold 

Initial M iteration 𝐾 𝛼
= 𝛽 

p 

Data S1 

(Fig. 1A, S/B triad) 

21 [200, 450] 

[50, 500] 

0.2 0.99 30 

 

5000 5 0.05 1 

Data S2 

(Fig. 2A, benchmark) 

24 [50, 450] 

[50, 1000] 

0.1/0.2/0.3 0.99 30 3000 3 0.1 1/1.5 

Data S3 

(Fig. 3, M/S triad) 
30 [200, 450] 

[50, 500] 
0.2 0.99 30 

 
3000 5 0.05 1 

Data S4 

(Fig. S8, M/S/E triad) 

84 [200, 450] 

[50, 500] 

0.2 0.99 60 

 

10000 13 0.05 1 

Data S5 

(Fig. 4, S/B pentad) 

81 [200, 450] 

[100, 670] 

0.2 0.99 60 

 

10000 9 0.01 1 
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Table S2. 

Pentad-to-triad transforming matrices, 𝑻B  and 𝑻S . We used only 𝑻B  for downgrading 

RQMS pentad sequencing results to B-centered triad fraction to be comparable to NMR 

sequencing. 

Sequence-defined 
copolymers 

B-centered triad matrix, 𝑻B S-centered triad matrix, 𝑻S 

BBB BBS SBS SSS SSB BSB 

(BBBBB)l  5 0 0 0 0 0 

(BBBBS)l 2 2 0 0 0 1 

(BBBSS)l 1 2 0 0 2 0 

(BBSBS)l 0 2 1 0 0 2 

(BS)l 0 0 2.5 0 0 2.5 

(SSBSB)l 0 0 2 0 2 1 

(SSSBB)l 0 2 0 1 2 0 

(SSSSB)l 0 0 1 2 2 0 

(SSSSS)l 0 0 0 5 0 0 
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Data S1-S5. 

The full spectral datasets and sample information for Fig. 1A, Fig. 2A, Fig. 3, Fig. S8, and 

Fig. 4C. All the spectra recorded as CDF files have been converted into CSV files, and 

formatted as described in “Spectra Formatting” section, to be ready-to-use. All the spectral 

datasets are available in DOI: 10.26434/chemrxiv-2022-mw76d-v2. 
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