Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2023

Supporting Information for

Electrosynthesis of Bridged or Fused Sulfonamides through Complex Radical Cascade Reactions: Divergence in Medium-Sized Ring Formation

Yan Zhang, *^a Zhenzhi Cai,^a Chunhang Zhao, ^a Hanliang Zheng, ^a Lutz Ackermann*^b

^a Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, and Drug Discovery & Innovation Center, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, 321004 Jinhua P. R. China *zhangyan001@zjnu.edu.cn

^b Institut für Organische und Biomolekulare Chemie, Georg–August–Universität Göttingen Tammannstraße 2, 37077 Göttingen, Germany *Lutz.Ackermann@chemie.uni–goettingen.de

Table of Contents

1.	General Remarks	S2
2.	Scope	S3
3.	Optimization	S4
4.	General Procedures	S6
5.	Characterization Data	S8
6.	Derivatization of the products 4	S40
5.	Mechanistic Studies	S41
6.	Density Functional Theory (DFT) Computations	S42
7.	NMR Spectra	S52

1. General Remarks

NMR spectra were recorded on BRUKER AVANCE III 400 or BRUKER AVANCE III 600. CDCl₃ was used as the solvent. Chemical shifts were referenced relative to residual solvent signal (CDCl₃: ¹H NMR: δ 7.26 ppm, ¹³C NMR: δ 77.16 ppm). The following abbreviations are used to describe peak patterns where appropriate: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Coupling constants (*J*) are reported in Hertz (Hz). Electrospray-ionization (ESI) mass spectra were obtained on AB Sciex LC 30A-Triple TOF 4600 apparatus. All systems are equipped with time-of-flight (TOF) analyzers. Melting points were measured with micro melting point apparatus. Platinum electrodes (10 mm × 25 mm × 0.25 mm, 99.9%; obtained from ChemPur® Karlsruhe, Germany) and graphite felt (GF) electrodes (10 mm × 25 mm × 6 mm, SIGRACELL® GFA 6 EA, obtained from SGL Carbon, Wiesbaden, Germany) were connected using stainless steel adapters. Unless otherwise noted, some materials (or alternatively chemicals) obtained from commercial suppliers were used directly without further purification. 1,6-enynes **1** were prepared according to the literatures.^[1,2]

2. Scope

 Table S–1. Scope of 1,6-Enynes 2 and Sodium Sulfinate 1.

3. Optimization

O, O Ph	+ Me	$GF \begin{bmatrix} I \\ I$	Pt IUIV) IM) Me		Ph SS=0
	2a 1a	RT, 4 mA, 4	h	3aa	Ö
Entry	Solvent	Electrolyte	T / °C	additive	Yield/%
1	MeCN	Et ₄ NClO ₄	rt	Na ₂ CO ₃	0
2	HFIP	Et ₄ NClO ₄	rt	Na ₂ CO ₃	38
3	MeCN/H ₂ O (3:1)	Et ₄ NClO ₄	rt	-	13
4	MeCN/H ₂ O (3:1)	Et ₄ NClO ₄	rt	Na ₂ CO ₃	33
5	MeCN/HFIP (3:1:)	Et ₄ NClO ₄	rt	Na ₂ CO ₃	60
6	MeCN/HFIP/H ₂ O (3:1:0.2)	Et ₄ NClO ₄	rt	Na ₂ CO ₃	69
7	HFIP/H ₂ O (20:1)	Et ₄ NClO ₄	rt	Na ₂ CO ₃	71
8	HFIP/H ₂ O (10:1)	Et ₄ NClO ₄	rt	Na ₂ CO ₃	42
9	HFIP/H ₂ O (20:1)	Et ₄ NClO ₄	rt	-	46
10	HFIP/H ₂ O (20:1)	Et ₄ NClO ₄	rt	K ₂ CO ₃	28
11	HFIP/H ₂ O (20:1)	Et ₄ NClO ₄	rt	Na ₂ HPO ₄	30
12	HFIP/H ₂ O (20:1)	Et ₄ NClO ₄	40	Na ₂ CO ₃	63
13	HFIP/H ₂ O (20:1)	Et ₄ NClO ₄	60	Na ₂ CO ₃	23
14	HFIP/H ₂ O (20:1)	LiOTf	rt	Na ₂ CO ₃	23
15	HFIP/H ₂ O (20:1)	LiClO ₄	rt	Na ₂ CO ₃	24
16	HFIP/H ₂ O (20:1)	<i>n</i> -Bu ₄ NBF ₄	rt	Na ₂ CO ₃	28
17	HFIP/H ₂ O (20:1)	<i>n</i> -Bu ₄ NBF ₆	rt	Na ₂ CO ₃	21
18	HFIP/H ₂ O (20:1)	<i>n</i> -Bu ₄ NClO ₄	rt	Na ₂ CO ₃	20
19 ^{<i>a</i>}	HFIP/H ₂ O (20:1)	Et ₄ NClO ₄	rt	Na ₂ CO ₃	41
20^b	HFIP/H ₂ O (20:1)	Et ₄ NClO ₄	rt	Na ₂ CO ₃	22
21^c	HFIP/H ₂ O (20:1)	Et ₄ NClO ₄	rt	Na ₂ CO ₃	0

Table S–2. Optimization of the electrooxidative radical cyclization for the synthesis of the fused sulfonamide **3aa**.

Standard conditions: Undivided cell, GF anode, Pt cathode, constant current = 4 mA, **2a** (0.30 mmol), **1a** (0.60 mmol, 2.0 equiv), eletrolyte (0.1 M), solvent (4 mL), additive (1.0 equiv), under 30 °C, 4 h, 2.0 Fmol⁻¹. Yield of the isolated product. ^{*a*} eletrolyte (0.05 M). ^b GF(+)|Ni(-) instead of GF(+)|Pt(-). ^c Pt(+)|Pt(-) instead of GF(+)|Pt(-).

0, 0 S 2e'	PMP + Me	O II S ONa _ 1a	GF Pt HFIP/H ₂ O (20:1) 40 °C, 4 mA, 4 h	4e	Ts PMP
Entry	Solvent	Electrolyte	e T∕℃	additive	Yield/%
1	MeCN	Et ₄ NClO ₄	rt	Na ₂ CO ₃	trace
2	HFIP	Et ₄ NClO ₄	rt	Na ₂ CO ₃	20
3	MeCN/H ₂ O (10:1)	Et ₄ NClO ₄	rt	Na ₂ CO ₃	26
4	HFIP/H ₂ O (20:1)	Et ₄ NClO ₄	rt	Na ₂ CO ₃	51
5	$MeCN/HFIP/H_2O$ (3:1:10.0 eq.)	Et ₄ NClO ₄	rt	Na ₂ CO ₃	24
6	HFIP/H ₂ O (20:1)	Et ₄ NClO ₄	40	Na ₂ CO ₃	43
7	HFIP/H ₂ O (20:1)	Et ₄ NClO ₄	60	Na ₂ CO ₃	34
8	HFIP/H ₂ O (20:1)	Et ₄ NClO ₄	40	-	58
9	HFIP/H ₂ O (20:1)	Et ₄ NClO ₄	40	K_2CO_3	28
10	HFIP/H ₂ O (20:1)	Et ₄ NClO ₄	40	Na ₂ HPO ₄	20
11	HFIP/H ₂ O (20:1)	<i>n</i> -Bu ₄ NBF ₄	40	-	25
12	HFIP/H ₂ O (20:1)	<i>n</i> -Bu ₄ NBF ₆	40	-	21
13	HFIP/H ₂ O (20:1)	n-Bu ₄ NClO	4 40	-	26
14	HFIP/H ₂ O (20:1)	-	40	-	20
15 ^b	HFIP/H ₂ O (20:1)	Et ₄ NClO ₄	40	-	14

Table S–3. Optimization of electrooxidative synthesis of the product containing 9-membered ring 4e.^[a]

^a Standard conditions: Undivided cell, GF anode, Pt cathode, constant current = 4 mA, **2a** (0.30 mmol), **1a** (0.60 mmol, 2.0 equiv), eletrolyte (0.1 M), solvent (4 mL), under 40 °C, 4 h. Yield of the isolated product. b GF(+)|Ni(-) instead of GF(+)|Pt(-).

4. General Procedures

(A) General Procedure for Electrooxidative Radical Cyclization: Access to Fused Cyclic Sulfonamides.

The electrocatalysis was carried out in an undivided cell under air with a graphite felt (GF) anode (10 mm \times 15 mm \times 6 mm) and a platinum cathode (10 mm \times 15 mm \times 0.25 mm). Sodium sulfonates ArSO₂Na **1** (0.6 mmol, 2.0 equiv), 1,6-enynes **2** (0.3 mmol, 1.0 equiv), Na₂CO₃ (0.3 mmol, 1.0 equiv) and Et₄NClO₄ (92 mg, 0.1 M) were dissolved in a mixture of HFIP and H₂O (20:1, 4 mL). Electrocatalysis was performed at room temperature with a constant current of 4.0 mA maintained for 4 h. The GF anode was washed with ethyl acetate (3 \times 3 mL) in an ultrasonic bath and transfered to the round bottom flask with the crude reaction solution. Silica was added to the flask and all volatiles were evaporated under vacuum. Purification was performed by flash column chromatography on silica gel using petroleum ether/ EtOAc as the eluent to give the corresponding products **3**.

(B) General Procedure for Electrooxidative Radical Cyclization: Access to Bridged Sulfonamides.

The electrocatalysis was carried out in an undivided cell under air with a graphite felt (GF) anode (10 mm \times 15 mm \times 6 mm) and a platinum cathode (10 mm \times 15 mm \times 0.25 mm). Sodium sulfonates ArSO₂Na **1** (0.6 mmol, 2.0 equiv), 1,6-enynes **2** (0.3 mmol, 1.0 equiv) and Et₄NClO₄ (92 mg, 0.1 M) were dissolved in a mixture of HFIP and H₂O (20:1, 4 mL). Electrocatalysis was performed at room temperature with a constant current of 4.0 mA maintained for 4 h. The GF anode was washed with ethyl acetate (3 \times 3 mL) in an ultrasonic bath and transfered to the round bottom flask with the crude reaction solution. Silica was added to the flask and all volatiles were evaporated under

vacuum. Purification was performed by flash column chromatography on silica gel using petroleum ether/ EtOAc as the eluent to give the corresponding products **4**.

5. Characterization Data

8-Methyl-2-(phenylsulfonyl)-2,3,3a,4-tetrahydro-1*H*-benzo[6,7]thiepino[3,4-

c]pyrrole 5,5-dioxide (3aa)

The general procedure (A) was followed using **1a** (107 mg, 0.60 mmol), **2a** (70.5 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3aa** (82.8 mg, 71%) as a white solid **M.p.**: 184–186 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.1 Hz, 1H), 7.88–7.86 (m, 2H), 7.68–7.64 (m, 1H), 7.61– (d, *J* = 14.8 Hz, 2H), 7.22 (d, *J* = 8.1 Hz, 1H), 7.10 (s, 1H), 6.44 (d, *J* = 1.9 Hz, 1H), 4.23 (dt, *J* = 14.4, 1.6 Hz, 1H), 4.07 (dt, *J* = 14.5, 1.6 Hz, 1H), 3.75 (dd, *J* = 9.4, 7.5 Hz, 1H), 3.55 (dd, *J* = 13.2, 4.2 Hz, 1H), 3.45–3.31 (m, 2H), 3.10 (t, *J* = 9.1 Hz, 1H), 2.40 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 144.6, 142.0, 136.6, 135.8, 133.5, 132.4, 129.5, 128.4, 127.8, 127.4, 123.2, 55.7, 54.1, 52.3, 38.8, 21.4. **HR–MS** (ESI) *m*/*z* calc. for C₁₉H₂₀NO₄S₂ [M+H]⁺: 390.0828, found: 390.0826.

8-Methyl-2-tosyl-2,3,3a,4-tetrahydro-1*H*-benzo[6,7]thiepino[3,4-*c*]pyrrole 5,5-dioxide (3ab) 5,5-

The general procedure (A) was followed using **1a** (107 mg, 0.60 mmol), **2b** (74.7 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3ab** (88.3 mg, 73%) as a white solid. **M.p.**: 193–195 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.1 Hz, 1H), 7.76 (d, *J* = 8.2 Hz, 2H), 7.38 (d, *J* = 8.1 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 1H), 7.10 (s, 1H), 6.44 (s, 1H), 4.21 (d, *J* = 14.5 Hz, 1H), 4.06 (d, *J* = 14.5 Hz, 1H), 3.73 (dd, *J* = 9.3, 7.5 Hz, 1H), 3.55 (dd, *J* = 12.7, 3.6 Hz, 1H), 3.43–3.32 (m, 2H), 3.08 (t, *J* = 9.0 Hz, 1H), 2.46 (s, 3H), 2.41 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 144.6, 144.4, 142.3, 136.6, 133.5, 132.8, 132.5, 130.1, 128.4, 127.9, 127.5, 123.1, 55.9, 54.2, 52.4, 38.8, 21.7, 21.5. **HR**–**MS** (ESI) *m/z* calc. for C₂₀H₂₂NO₄S₂ [M+H]⁺: 404.0985, found: 404.0984.

2-((4-Methoxyphenyl)sulfonyl)-8-methyl-2,3,3a,4-tetrahydro-1*H*benzo[6,7]thiepino[3,4-*c*]pyrrole 5,5-dioxide (3ac)

The general procedure (A) was followed using **1a** (107 mg, 0.60 mmol), **2c** (79.5 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3ac** (75.4 mg, 60%) as a yellow soild. **M.P.**: 201–203 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.1 Hz, 1H), 7.81 (d, *J* = 8.8 Hz, 2H), 7.22 (d, *J* = 8.1 Hz, 1H), 7.10 (s, 1H), 7.04 (d, *J* = 8.9 Hz, 2H), 6.44 (d, *J* = 1.3 Hz, 1H), 4.20 (d, *J* = 14.5 Hz, 1H), 4.05 (d, *J* = 14.5 Hz, 1H), 3.90 (s, 3H), 3.72 (dd, *J* = 9.3, 7.5 Hz, 1H), 3.55 (dd, *J* = 12.7, 3.6 Hz, 1H), 3.44–3.36 (m, 2H), 3.07 (t, *J* = 9.0 Hz, 1H), 2.41 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 163.6, 144.6, 142.4, 136.7, 133.4, 132.6, 130.0, 128.4, 127.5, 127.4, 123.1, 114.7, 56.0, 55.8, 54.2, 52.4, 38.8, 21.5. **HR–MS** (ESI) *m/z* calc. for C₂₀H₂₂NO₅S₂ [M+H]⁺: 420.0934, found: 420.0928.

2-((4-(Tert-butyl)phenyl)sulfonyl)-8-methyl-2,3,3a,4-tetrahydro-1*H*benzo[6,7]thiepino[3,4-*c*]pyrrole 5,5-dioxide (3ad)

The general procedure (A) was followed using **1a** (107 mg, 0.60 mmol), **2d** (87.3 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3ad** (72.1 mg, 54%) as a white solid. **M.p.**: 232–234 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.1 Hz, 1H), 7.78 (d, *J* = 8.4 Hz, 2H), 7.58 (d, *J* = 8.5 Hz, 2H), 7.22 (d, *J* = 8.1 Hz, 1H), 7.10 (s, 1H), 6.45 (d, *J* = 1.3 Hz, 1H), 4.22 (d, *J* = 14.4 Hz, 1H), 4.08 (d, *J* = 14.5 Hz, 1H), 3.74 (dd, *J* = 9.3, 7.5 Hz, 1H), 3.56 (dd, *J* = 12.8, 3.7 Hz, 1H), 3.44–3.35 (m, 2H), 3.11 (t, *J* = 9.2 Hz, 1H), 2.40 (s, 3H), 1.36 (s, 9H). ¹³**C NMR** (151 MHz, CDCl₃) δ 157.3, 144.6, 142.4, 136.6, 133.4, 132.6, 130.3, 128.4, 127.7, 127.5, 126.5, 123.1, 56.0, 54.2, 52.3, 38.8, 35.4, 31.2, 21.4. **HR–MS** (ESI) *m/z* calc. for C₂₃H₂₈NO₄S₂ [M+H]⁺: 446.1454, found: 446.1451.

2-((4-Fluorophenyl)sulfonyl)-8-methyl-2,3,3a,4-tetrahydro-1*H*benzo[6,7]thiepino[3,4-*c*]pyrrole 5,5-dioxide (3ae)

The general procedure (A) was followed using **1a** (107 mg, 0.60 mmol), **2e** (75.9 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3ae** (91.6 mg, 75%) as a white solid. **M.p.**: 201–203 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.0 Hz, 1H), 7.89 (dd, *J* = 8.8, 5.0 Hz, 2H), 7.25(dd, *J* = 17.6, 9.2 Hz, 3H), 7.10 (s, 1H), 6.44 (d, *J* = 1.7 Hz, 1H), 4.22 (d, *J* = 14.4 Hz, 1H), 4.05 (d, *J* = 14.5 Hz, 1H), 3.74 (dd, *J* = 9.3, 7.6 Hz, 1H), 3.56 (dd, *J* = 13.2, 4.3 Hz, 1H), 3.47–3.41 (m, 1H), 3.38 (d, *J* = 13.2 Hz, 1H), 3.09 (t, *J* = 9.1 Hz, 1H), 2.40 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 165.6 (d, *J* = 256.5 Hz), 144.7, 141.8, 136.6, 133.5, 132.4, 130.5, 130.4, 128.4, 127.4, 123.3, 116.8 (d, *J* = 22.2 Hz), 55.5, 54.1, 52.3, 38.9, 21.4. ¹⁹**F NMR** (377 MHz, CDCl₃) δ –103.99. **HR**–**MS** (ESI) *m/z* calc. for C₁₉H₁₉FNO4S₂ [M+H]⁺:408.0734, found: 408.0734.

2-((4-Chlorophenyl)sulfonyl)-8-methyl-2,3,3a,4-tetrahydro-1*H*benzo[6,7]thiepino[3,4-*c*]pyrrole 5,5-dioxide (3af)

The general procedure (A) was followed using **1a** (107 mg, 0.60 mmol), **2f** (80.7 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3af** (88.8 mg, 70%) as a white solid. **M.p.**: 235–237 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.1 Hz, 1H), 7.82 (d, *J* = 8.5 Hz, 2H), 7.57 (d, *J* = 8.4 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 1H), 7.11 (s, 1H), 6.45 (s, 1H), 4.24 (d, *J* = 14.4 Hz, 1H), 4.07 (d, *J* = 14.4 Hz, 1H), 3.74 (dd, *J* = 8.0, 8.0 Hz, 1H), 3.56 (dd, *J* = 13.3, 4.4 Hz, 1H), 3.52–3.47 (m, 1H), 3.39 (d, *J* = 12.8 Hz, 1H), 3.10 (t, *J* = 9.1 Hz, 1H), 2.42 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 144.7, 141.7, 140.2, 136.7, 134.6, 133.6, 132.4, 129.9, 129.2, 128.5, 127.6, 123.4, 55.6, 54.1, 52.3, 38.9, 21.5. **HR–MS** (ESI) *m/z* calc. for C₁₉H₁₉ClNO₄S₂ [M+H]⁺: 424.0439, found: 424.0435.

8-Methyl-2-((4-(trifluoromethyl)phenyl)sulfonyl)-2,3,3a,4-tetrahydro-1*H*-benzo[6,7]thiepino[3,4-*c*]pyrrole 5,5-dioxide (3ag)

The general procedure (A) was followed using **1a** (107 mg, 0.60 mmol), **2g** (90.9 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3ag** (87.7 mg, 64%) as a white solid. **M.p.**: 252–254 °C. ¹**H NMR** (400 MHz, DMSO) δ 8.09–8.02 (m, 4H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.30 (d, *J* = 8.2 Hz, 1H), 7.26 (s, 1H), 6.55 (s, 1H), 4.30 (d, *J* = 14.9 Hz, 1H), 4.02 (d, *J* = 14.9 Hz, 1H), 3.84 (dd, *J* = 8.7, 8.7 Hz, 1H), 3.73 (dd, *J* = 14.6, 4.9 Hz, 1H), 3.57 (dd, *J* = 14.5, 12.0 Hz, 1H), 3.24–3.17 (m, 1H), 3.06 (t, *J* = 9.9 Hz, 1H), 2.35 (s, 3H). ¹³**C NMR** (151 MHz, DMSO) δ 144.4, 142.7, 140.0, 137.4, 134.1, 133.4 (q, *J* = 33.2 Hz), 132.2, 129.0, 128.5, 127.2 (q, *J* = 3..0 Hz), 126.6, 123.9 (q, *J* = 273.3 Hz), 122.7, 54.6, 52.7, 52.2, 39.1, 21.2. ¹⁹**F NMR** (565 MHz, DMSO) δ –61.68. **HR**–**MS** (ESI) *m/z* calc. for C₂₀H₁₉F₃NO₄S₂ [M+H]⁺: 458.0702, found: 458.0700.

Methyl-4-((8-methyl-5,5-dioxido-3a,4-dihydro-1*H*-benzo[6,7]thiepino[3,4*c*]pyrrol-2(3*H*)-yl)sulfonyl)benzoate (3ah)

The general procedure (A) was followed using **1a** (107 mg, 0.60 mmol), **2h** (87.9 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3ah** (95.2 mg, 71%) as a white solid. **M.p.**: 95–97 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.23 (d, *J* = 8.2 Hz, 2H), 7.91 (d, *J* = 8.2 Hz, 2H), 7.79 (d, *J* = 8.0 Hz, 2H), 7.40 (d, *J* = 8.0 Hz, 2H), 3.99 (s, 3H), 3.89 (d, *J* = 14.3 Hz, 1H), 3.79 (d, *J* = 16.0 Hz, 1H), 3.75 (dd, *J* = 10.4, 7.2 Hz, 1H), 3.24–3.20 (m, 2H), 3.11–3.00 (m, 2H), 2.49 (s, 3H). ¹³C **NMR** (151 MHz, CDCl₃) δ 165.7, 145.5, 145.0, 139.6, 136.1, 134.4, 130.5, 130.3, 128.1, 127.9, 109.1, 58.6, 53.0, 52.9, 51.5, 37.4, 21.8. **HR–MS** (ESI) *m*/*z* calc. for C₂₁H₂₂NO₆S₂ [M+H]⁺: 448.0883, found: 448.0880.

8-Methyl-2-((4-nitrophenyl)sulfonyl)-2,3,3a,4-tetrahydro-1*H*benzo[6,7]thiepino[3,4-*c*]pyrrole 5,5-dioxide (3ai)

The general procedure (A) was followed using **1a** (107 mg, 0.60 mmol), **2i** (74.0 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3ai** (83.3 mg, 61%) as a white solid. **M.p.**: >250 °C. ¹**H NMR** (400 MHz, DMSO) δ 8.44 (d, *J* = 8.7 Hz, 1H), 8.18 (d, *J* = 8.3 Hz, 1H), 8.12 (d, *J* = 8.7 Hz, 1H), 7.99(d, *J* = 8.4 Hz, 1H), 7.84 (dd, *J* = 8.0, 2.4 Hz, 1H), 7.30 (d, *J* = 8.1 Hz, 1H), 7.25 (s, 1H), 6.54 (s, 1H), 4.29 (t, *J* = 12.8 Hz, 1H), 4.02 (t, *J* = 15.4 Hz, 1H), 3.84 (dd, *J* = 17.1, 8.1 Hz, 1H), 3.74 (dd, *J* = 14.6, 4.6 Hz, 1H), 3.60–3.52 (m, 1H), 3.26–3.14 (m, 1H), 3.10–3.01 (m, 1H), 2.35 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 150.6, 144.4, 142.5, 137.4, 134.1, 132.2, 130.8, 129.6, 128.5, 126.6, 125.3, 122.8, 54.6, 53.2, 52.8, 39.1, 21.2. **HR–MS** (ESI) *m/z* calc. for C₁₉H₁₉N₂O₆S₂ [M+H]⁺: 435.0679, found: 435.0680.

2-((3-Bromophenyl)sulfonyl)-8-methyl-2,3,3a,4-tetrahydro-1*H*benzo[6,7]thiepino[3,4-*c*]pyrrole 5,5-dioxide (3aj)

The general procedure (A) was followed using **1a** (107 mg, 0.60 mmol), **2j** (93.6 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3aj** (100.7 mg, 72%) as a yellow solid. **M.p.**: 184–186 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.02–8.00 (m, 2H), 7.80 (dd, J = 7.9, 1.3 Hz, 2H), 7.46 (dd, J = 7.9, 7.9 Hz, 1H), 7.23 (d, J = 8.0 Hz, 1H), 7.12 (s, 1H), 6.46 (d, J = 1.8 Hz, 1H), 4.25 (d, J = 14.4 Hz, 1H), 4.08 (d, J = 14.4 Hz, 1H), 3.76 (dd, J = 9.3, 7.6 Hz, 1H), 3.57 (dd, J = 13.4, 4.6 Hz, 1H), 3.51–3.46 (m, 1H), 3.37 (dd, J = 13.3, 11.9 Hz, 1H), 3.11 (t, J = 9.1 Hz, 1H), 2.41 (s, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 144.7, 141.6, 137.9, 136.6, 136.5, 133.6, 132.3, 131.0, 130.6, 128.5, 127.5, 126.2, 123.6, 123.4, 55.5, 54.1, 52.3, 38.9, 21.5. **HR–MS** (ESI) *m/z* calc. for C₁₉H₁₉BrNO₄S₂ [M+H]⁺: 467.9937, found: 467.9930.

8-Methyl-2-(o-tolylsulfonyl)-2,3,3a,4-tetrahydro-1*H*-benzo[6,7]thiepino[3,4*c*]pyrrole 5,5-dioxide (3ak)

The general procedure (A) was followed using **1a** (107 mg, 0.60 mmol), **2k** (74.7 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3ak** (82.2 mg, 68%) as a white solid. **M.p.**: 154–156 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.1 Hz, 1H), 7.97 (d, *J* = 7.4 Hz, 1H), 7.52 (dd, *J* = 7.4, 7.4 Hz, 1H), 7.37 (d, *J* = 6.7 Hz, 2H), 7.23 (d, *J* = 8.1 Hz, 1H), 7.13 (s, 1H), 6.48 (d, *J* = 1.3 Hz, 1H), 4.26 (d, *J* = 14.5 Hz, 1H), 4.16 (d, *J* = 14.6 Hz, 1H), 3.74 (dd, *J* = 7.2, 7.2 Hz, 1H), 3.68 (dd, *J* = 15.2, 4.4 Hz, 2H), 3.41 (dd, *J* = 15.1, 13.5 Hz, 1H), 3.20 (t, *J* = 8.8 Hz, 1H), 2.68 (s, 3H), 2.42 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 144.6, 142.4, 138.3, 136.6, 135.9, 133.5, 133.5, 133.0, 132.5, 130.0, 128.4, 127.4, 126.4, 123.1, 55.6, 53.5, 51.6, 39.2, 21.4, 20.7. **HR–MS** (ESI) *m*/z calc. for C₂₀H₂₂NO₄S₂ [M+H]⁺: 404.0985, found: 404.0984.

2-((2-Bromophenyl)sulfonyl)-8-methyl-2,3,3a,4-tetrahydro-1*H*benzo[6,7]thiepino[3,4-*c*]pyrrole 5,5-dioxide (3al)

The general procedure (A) was followed using **1a** (107 mg, 0.60 mmol), **2l** (93.6 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc = 3:1) yielded **3al** (83.9 mg, 60%) as a yellow solid. **M.p.**: 141–143 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.15 (d, *J* = 7.7 Hz, 1H), 8.02 (d, *J* = 8.1 Hz, 1H), 7.78 (d, *J* = 7.7 Hz, 1H), 7.50–7.45 (m, 2H), 7.23 (d, *J* = 8.1 Hz, 1H), 7.14 (s, 1H), 6.48 (s, 1H), 4.37 (d, *J* = 14.4 Hz, 1H), 4.25 (d, *J* = 14.4 Hz, 1H), 3.92 (dd, *J* = 8.8, 8.8 Hz, 1H), 3.63–3.55 (m, 2H), 3.43 (t, *J* = 13.3 Hz, 1H), 3.33 (t, *J* = 9.3 Hz, 1H), 2.41 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 144.6, 142.2, 137.7, 136.7, 135.9, 134.2, 133.7, 132.4, 132.3, 128.4, 127.8, 127.4, 123.1, 120.7, 55.0, 53.8, 52.0, 39.4, 21.4. **HR–MS** (ESI) *m/z* calc. for C₂₀H₂₂NO₄S₂ [M+H]⁺: 404.0985, found: 404.0984.

8-Methyl-2-((2,4,6-triisopropylphenyl)sulfonyl)-2,3,3a,4-tetrahydro-1*H*-benzo[6,7]thiepino[3,4-*c*]pyrrole 5,5-dioxide (3am)

The general procedure (A) was followed using **1a** (107 mg, 0.60 mmol), **2m** (108.3 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc = 3:1) yielded **3am** (89.6 mg, 58%) as a white solid. **M.p.**: 60–62 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.1 Hz, 1H), 7.26–7.20 (m, 3H), 7.14 (s, 1H), 6.50 (s, 1H), 4.26–4.19 (m, 3H), 4.15 (d, *J* = 14.5 Hz, 1H), 3.68–3.50 (m, 3H), 3.52–3.44 (m, 1H), 3.23 (t, *J* = 8.3 Hz, 1H), 2.94 (d, *J* = 6.8 Hz, 1H), 2.43 (s, 3H), 1.29 (dd, *J* = 6.8, 2.9 Hz, 18H). ¹³C **NMR** (151 MHz, CDCl₃) δ 153.8, 151.7, 144.6, 142.8, 136.6, 133.4, 132.9, 130.3, 128.3, 127.5, 124.1, 123.0, 56.6, 52.8, 51.0, 39.0, 34.3, 29.6, 25.1, 25.0, 23.7, 21.5. **HR–MS** (ESI) *m/z* calc. for C₂₈H₃₈NO₄S₂ [M+H]⁺: 516.2237, found: 516.2237.

8-Methyl-2-(naphthalen-2-ylsulfonyl)-2,3,3a,4-tetrahydro-1*H*benzo[6,7]thiepino[3,4-*c*]pyrrole 5,5-dioxide (3an)

The general procedure (A) was followed using **1a** (107 mg, 0.60 mmol), **2n** (85.5 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3an** (92.2 mg, 70%) as a white solid. **M.p.**: 232–234 °C. ¹**H NMR** (400 MHz, DMSO) δ 8.54 (s, 1H), 8.24 (d, *J* = 7.7 Hz, 1H), 8.17 (d, *J* = 8.7 Hz, 1H), 8.07 (d, *J* = 7.8 Hz, 1H), 7.87 (dd, *J* = 8.6, 1.3 Hz, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.75–7.68 (m, 2H), 7.25 (d, *J* = 8.1 Hz, 1H), 7.14 (s, 1H), 6.50 (s, 1H), 4.31 (d, *J* = 15.1 Hz, 1H), 4.03 (d, *J* = 15.1 Hz, 1H), 3.89 (dd, *J* = 8.4, 8.4 Hz, 1H), 3.73 (dd, *J* = 14.6, 4.9 Hz, 1H), 3.54 (dd, *J* = 14.5, 12.1 Hz, 1H), 3.19–3.17 (m, 1H), 3.06 (t, *J* = 9.9 Hz, 1H), 2.30 (s, 3H). ¹³**C NMR** (101 MHz, DMSO) δ 144.3, 143.0, 137.4, 135.1, 134.0, 133.1, 132.3, 132.2, 130.1, 129.9, 129.6, 129.4, 128.4, 128.3, 128.2, 126.5, 123.3, 122.5, 54.6, 52.8, 52.4, 39.2, 21.2. **HR–MS** (ESI) *m*/*z* calc. for C₂₃H₂₂NO4S₂ [M+H]⁺: 440.0985, found: 440.0985.

8-Methyl-2-(thiophen-2-ylsulfonyl)-2,3,3a,4-tetrahydro-1*H*benzo[6,7]thiepino[3,4-*c*]pyrrole 5,5-dioxide (3ao)

The general procedure (A) was followed using **1a** (107 mg, 0.60 mmol), **2o** (72.3 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3ao** (59.3 mg, 50%) as a white solid. **M.p.**: 235–237 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.1 Hz, 1H), 7.68 (d, *J* = 5.0 Hz, 1H), 7.67 (d, *J* = 3.7 Hz, 1H), 7.24 (d, *J* = 8.1 Hz, 1H), 7.21 (dd, *J* = 4.0, 4.0 Hz, 1H), 7.13 (s, 1H), 6.48 (d, *J* = 1.3 Hz, 1H), 4.30 (d, *J* = 14.6 Hz, 1H), 4.14 (d, *J* = 14.6 Hz, 1H), 3.81 (dd, *J* = 9.5, 7.8 Hz, 1H), 3.56 (dd, *J* = 13.4, 4.3 Hz, 1H), 3.47–3.33 (m, 2H), 3.17 (t, *J* = 9.4 Hz, 1H), 2.42 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 144.7, 141.8, 136.7, 135.8, 133.7, 133.1, 132.8, 132.3, 128.5, 128.0, 127.5, 123.3, 55.3, 54.5, 52.5, 38.9, 21.5. **HR–MS** (ESI) *m/z* calc. for C₁₇H₁₈NO₄S₃ [M+H]⁺: 396.0393, found: 396.0392.

2-(Benzylsulfonyl)-8-methyl-2,3,3a,4-tetrahydro-1*H*-benzo[6,7]thiepino[3,4*c*]pyrrole 5,5-dioxide (3ap)

The general procedure (A) was followed using **1a** (107 mg, 0.60 mmol), **2p** (74.7 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3ap** (65.3 mg, 54%) as a white solid. **M.p.**: 158–160 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.1 Hz, 1H), 7.43–7.39 (m, 5H), 7.24 (d, *J* = 8.2 Hz, 1H), 7.14 (s, 1H), 6.39 (s, 1H), 4.34 (s, 2H), 4.17 (d, *J* = 14.6 Hz, 1H), 4.00 (d, *J* = 14.4 Hz, 1H), 3.57 (dd, *J* = 7.6, 7.6 Hz, 1H), 3.49–3.42 (m, 2H), 3.28 (dd, *J* = 15.2, 12.8 Hz, 1H), 3.06 (t, *J* = 9.0 Hz, 1H), 2.42 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 144.6, 142.2, 136.8, 133.8, 132.2, 130.8, 129.1, 129.0, 128.9, 128.4, 127.3, 122.9, 57.6, 54.5, 54.4, 52.5, 39.3, 21.4. **HR–MS** (ESI) *m/z* calc. for C₂₀H₂₂NO₄S₂ [M+H]⁺: 404.0985, found: 404.0985.

8-Methyl-2-(methylsulfonyl)-2,3,3a,4-tetrahydro-1*H*-benzo[6,7]thiepino[3,4*c*]pyrrole 5,5-dioxide (3aq)

The general procedure (A) was followed using **1a** (107 mg, 0.60 mmol), **2q** (51.9 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3aq** (46.1 mg, 47%) as a white solid. **M.p.**: 148–150 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.1 Hz, 1H), 7.26 (d, *J* = 8.1 Hz, 1H), 7.18 (s, 1H), 6.54 (d, *J* = 1.2 Hz, 1H), 4.36 (d, *J* = 14.6 Hz, 1H), 4.20 (d, *J* = 14.6 Hz, 1H), 3.84 (dd, *J* = 9.6, 7.6 Hz, 1H), 3.64–3.58 (m, 2H), 3.45 (dd, *J* = 15.2, 12.8 Hz, 1H), 3.28 (t, *J* = 9.2 Hz. 1H), 2.94 (s, 3H), 2.44 (s, 3H). ¹³**C NMR** (151 MHz, DMSO) δ 144.5, 143.9, 137.5, 134.3, 132.3, 128.5, 126.6, 122.3, 54.6, 52.5, 52.0, 39.5, 34.1, 21.2. **HR–MS** (ESI) *m*/*z* calc. for C₁₄H₁₈NO₄S₂ [M+H]⁺:328.0672, found: 328.0682.

$\label{eq:2-(Ethylsulfonyl)-8-methyl-2,3,3a,4-tetrahydro-1 \ensuremath{\textit{H}-benzo[6,7]}\xspace{-1.5mm} this pino[3,4-tetrahydro-1 \ensuremath{\textit{H}-benzo[6,7]}\xspace{-1.5mm} this pino[3,4-tetrahydro$

c]pyrrole 5,5-dioxide (3ar)

The general procedure (A) was followed using **1a** (107 mg, 0.60 mmol), **2r** (56.1 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3ar** (46.0 mg, 45%) as a white solid. **M.p.**: 122–124 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.1 Hz, 1H), 7.25 (d, *J* = 8.1 Hz, 1H), 7.17 (s, 1H), 6.52 (s, 1H), 4.38 (d, *J* = 14.4 Hz, 1H), 4.23 (d, *J* = 14.5 Hz, 1H), 3.86 (dd, *J* = 9.4, 7.7 Hz, 1H), 3.67–3.57 (m, 2H), 3.43 (dd, *J* = 14.1, 11.9 Hz, 1H), 3.30 (t, *J* = 9.4 Hz, 1H), 3.09 (q, *J* = 7.4 Hz, 2H), 2.43 (s, 3H), 1.42 (t, *J* = 7.4 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 144.7, 142.5, 136.8, 133.7, 132.3, 128.5, 127.4, 123.0, 54.9, 54.2, 52.2, 45.5, 39.6, 21.5, 8.1. **HR–MS** (ESI) *m/z* calc. for C₁₅H₂₀NO₄S₂ [M+H]⁺: 342.0828, found: 342.0828.

2-(Isopropylsulfonyl)-8-methyl-2,3,3a,4-tetrahydro-1*H*-benzo[6,7]thiepino[3,4*c*]pyrrole 5,5-dioxide (3as)

The general procedure (A) was followed using **1a** (107 mg, 0.60 mmol), **2s** (60.3 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3as** (54.3 mg, 51%) as a white solid. **M.p.**: 168–170 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.1 Hz, 1H), 7.24 (d, *J* = 8.2 Hz, 1H), 7.17 (s, 1H), 6.50 (d, *J* = 1.1 Hz, 1H), 4.41 (d, *J* = 14.4 Hz, 1H), 4.25 (d, *J* = 14.5 Hz, 1H), 3.87 (dd, *J* = 9.6, 7.6 Hz, 1H), 3.64–3.56 (m, 2H), 3.42 (dd, *J* = 14.0, 12.0 Hz, 1H), 3.32 (t, *J* = 9.6 Hz, 1H), 3.28 (t, *J* = 6.8 Hz, 1H), 2.43 (s, 3H), 1.41 (s, 3H), 1.40 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 144.6, 142.8, 136.7, 133.8, 132.3, 128.4, 127.3, 122.8, 54.6, 54.0, 52.7, 39.7, 21.4, 16.7. **HR–MS** (ESI) *m/z* calc. for C₁₆H₂₂NO₄S₂ [M+H]⁺: 356.0985 found: 356.0983.

8-Methyl-2-(propylsulfonyl)-2,3,3a,4-tetrahydro-1*H*-benzo[6,7]thiepino[3,4*c*]pyrrole 5,5-dioxide (3at)

The general procedure (A) was followed using **1a** (107 mg, 0.60 mmol), **2t** (60.3 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3at** (47.9 mg, 45%) as a yellow solid. **M.p.**: 142–144 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.1 Hz, 1H), 7.25 (d, *J* = 8.1 Hz, 1H), 7.17 (s, 1H), 6.51 (d, *J* = 1.6 Hz, 1H), 4.36 (d, *J* = 14.5 Hz, 1H), 4.21 (d, *J* = 14.5 Hz, 1H), 3.84 (dd, *J* = 9.3, 7.7 Hz, 1H), 3.62–3.57 (m, 2H), 3.43 (dd, *J* = 15.3, 13.0 Hz, 1H), 3.28 (t, *J* = 9.4 Hz, 1H), 3.05–3.01 (m, 2H), 2.42 (s, 3H), 1.94–1.84 (m, 2H), 1.09 (t, *J* = 7.4 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 144.7, 142.5, 136.7, 133.7, 132.2, 128.4, 127.3, 123.0, 54.8, 54.0, 52.4, 52.0, 39.5, 21.4, 17.1, 13.1. **HR–MS** (ESI) *m/z* calc. for C₁₆H₂₂NO₄S₂ [M+H]⁺: 356.0985 found: 356.0983.

2-(Cyclopropylsulfonyl)-8-methyl-2,3,3a,4-tetrahydro-1*H*-benzo[6,7]thiepino[3,4*c*]pyrrole 5,5-dioxide (3au)

The general procedure (A) was followed using **1a** (107 mg, 0.60 mmol), **2u** (59.7 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3au** (53.0 mg, 50%) as a white solid. **M.p.**: 177–179 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.1 Hz, 1H), 7.25 (d, *J* = 8.1 Hz, 1H), 7.17 (s, 1H), 6.53 (d, *J* = 1.4 Hz, 1H), 4.39 (d, *J* = 14.6 Hz, 1H), 4.25 (d, *J* = 14.6 Hz, 1H), 3.85 (dd, *J* = 7.6, 7.6 Hz, 1H), 3.65–3.60 (m, 2H), 3.47 (dd, *J* = 15.2, 13.2 Hz, 1H), 3.31 (t, *J* = 9.3 Hz, 1H), 2.43 (s, 3H), 1.27–1.22 (m, 3H), 1.08–1.03 (m, 2H). ¹³**C NMR** (151 MHz, CDCl₃) δ 144.7, 142.6, 136.7, 133.6, 132.5, 128.4, 127.4, 123.0, 55.4, 54.2, 52.3, 39.3, 26.9, 21.5, 4.9, 4.9. **HR–MS** (ESI) *m/z* calc. for C₁₆H₂₀NO₄S₂ [M+H]⁺: 354.0838, found: 354.0830.

2-(Dodecylsulfonyl)-8-methyl-2,3,3a,4-tetrahydro-1*H*-benzo[6,7]thiepino[3,4*c*]pyrrole 5,5-dioxide (3av)

The general procedure (A) was followed using **1a** (107 mg, 0.60 mmol), **2v** (98.1 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3av** (71.1 mg, 49%) as a white solid. **M.p.**: 97–99 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.1 Hz, 1H), 7.25 (d, *J* = 8.1 Hz, 1H), 7.17 (s, 1H), 6.51 (s, 1H), 4.37 (d, *J* = 14.5 Hz, 1H), 4.22 (d, *J* = 14.5 Hz, 1H), 3.85 (dd, *J* = 7.6, 7.6 Hz, 1H), 3.64–3.57 (m, 2H), 3.43 (dd, *J* = 15.2, 12.8 Hz, 1H), 3.29 (t, *J* = 9.5 Hz, 1H), 3.04 (dd, *J* = 9.4, 6.5 Hz, 2H), 2.43 (s, 3H), 1.87–1.81 (m, 2H), 1.45–1.40 (m, 2H), 1.27 (s, 16H), 0.88 (t, *J* = 6.4 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 144.6, 142.5, 136.8, 133.7, 132.3, 128.4, 127.4, 123.0, 54.8, 54.1, 52.1, 50.8, 39.5, 32.0, 29.7, 29.6, 29.4, 29.2, 28.5, 23.4, 22.8, 21.4, 14.2. **HR–MS** (ESI) *m/z* calc. for C₂₅H₃₈NO4S₂ [M+H]⁺: 482.2394, found: 482.2392.

8-Methyl-2-((4-(5-methyl-3-phenylisoxazol-4-yl)phenyl)sulfonyl)-2,3,3a,4tetrahydro-1*H*-benzo[6,7]thiepino[3,4-*c*]pyrrole 5,5-dioxide (3aw)

The general procedure (A) was followed using **1a** (107 mg, 0.60 mmol), **2w** (117.6 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3aw** (86.8 mg, 53%) as a yellow solid. **M.p.**: 207–209 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.1 Hz, 1H), 7.85 (d, *J* = 8.5 Hz, 2H), 7.38–7.35 (m, 7H), 7.23 (d, *J* = 8.1 Hz, 1H), 7.12 (s, 1H), 6.46 (d, *J* = 1.5 Hz, 1H), 4.26 (d, *J* = 14.6 Hz, 1H), 4.12 (d, *J* = 14.6 Hz, 1H), 3.80 (dd, *J* = 9.6, 7.4 Hz, 1H), 3.55 (dd, *J* = 12.7, 3.5 Hz, 1H), 3.40–3.30 (m, 2H), 3.17 (t, *J* = 9.3 Hz, 1H), 2.51 (s, 3H), 2.40 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 167.5, 161.2, 144.7, 142.0, 136.6, 136.0, 135.4, 133.5, 132.3, 130.6, 129.9, 128.8, 128.6, 128.5, 128.4, 128.1, 127.4, 123.2, 114.4, 55.4, 54.2, 52.3, 38.9, 21.4, 11.9. **HR–MS** (ESI) *m/z* calc. for C₂₉H₂₇N₂O₅S₂ [M+H]⁺: 547.1356, found: 547.1353.

8-Methyl-2-((4-(5-(*p*-tolyl)-3-(trifluoromethyl)-1*H*-pyrazol-1-yl)phenyl)sulfonyl)-2,3,3a,4-tetrahydro-1*H*-benzo[6,7]thiepino[3,4-*c*]pyrrole 5,5-dioxide (3ax)

The general procedure (A) was followed using **1a** (107 mg, 0.60 mmol), **2x** (137.7 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3ax** (110.3 mg, 60%) as a yellow solid. **M.p.**: 77–79 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.1 Hz, 1H), 7.85 (d, *J* = 8.7 Hz, 2H), 7.54 (d, *J* = 8.7 Hz, 2H), 7.22–7.17 (m, 3H), 7.12 (d, *J* = 8.4 Hz, 3H), 6.76 (s, 1H), 6.42 (d, *J* = 1.7 Hz, 1H), 4.24 (d, *J* = 14.6 Hz, 1H), 4.03 (d, *J* = 14.6 Hz, 1H), 3.74 (dd, *J* = 9.2, 7.6 Hz, 1H), 3.54 (dd, *J* = 13.5, 4.6 Hz, 1H), 3.48–3.43 (m, 1H),

3.33 (dd, J = 13.4, 11.8 Hz, 1H), 3.06 (t, J = 9.2 Hz, 1H), 2.40 (s, 3H), 2.39 (s, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 145.5, 144.7, 143.2, 141.5, 140.0, 136.7, 135.2, 133.6, 132.2, 129.9, 128.8, 128.8, 128.5, 127.4, 125.8, 125.7, 123.4, 121.1 (q, J = 270.7 Hz), 106.5, 55.2, 54.1, 52.3, 39.0, 27.0, 21.4. ¹⁹F NMR (377 MHz, CDCl₃) δ –62.45. HR– **MS** (ESI) m/z calc. for C₃₀H₂₇F₃N₃O₄S₂ [M+H]⁺: 614,1392, found: 614.1390.

8,10-Dimethyl-2-(phenylsulfonyl)-2,3,3a,4-tetrahydro-1*H*-benzo[6,7]thiepino[3,4*c*]pyrrole 5,5-dioxide (3ay)

The general procedure (A) was followed using **1a** (107 mg, 0.60 mmol), **2y** (74.7 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3ay** (48.4 mg, 40%) as a yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.1 Hz, 1H), 7.87 (d, *J* = 7.3 Hz, 2H), 7.66 (d, *J* = 7.3 Hz, 1H), 7.61 (d, *J* = 7.8 Hz, 2H), 7.23 (d, *J* = 7.0 Hz, 1H), 7.11 (s, 1H), 4.36 (d, *J* = 14.6 Hz, 1H), 3.77(dd, *J* = 8.4, 6.0 Hz, 1H), 3.75 (d, *J* = 6.9 Hz, 1H), 3.67 (d, *J* = 14.8 Hz, 1H), 3.31 (d, *J* = 9.4 Hz, 1H), 3.03 (d, *J* = 9.4 Hz, 1H), 2.45 (s, 1H), 2.42 (s, 3H), 2.05 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 144.7, 141.8, 135.0, 133.4, 130.0, 129.9, 129.4, 128.8, 128.3, 128.2, 128.0, 126.9, 68.4, 52.1, 50.7, 37.8, 21.7, 19.5. **HR–MS** (ESI) *m/z* calc. for C₂₀H₂₂NO₄S₂ [M+H]⁺: 404.0985, found: 404.0982.

3a,8-Dimethyl-2-(phenylsulfonyl)-2,3,3a,4-tetrahydro-1*H*-benzo[6,7]thiepino[3,4*c*]pyrrole 5,5-dioxide (3az)

The general procedure (A) was followed using **1a** (107 mg, 0.60 mmol), **2z** (74.7 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3az** (50.8 mg, 42%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.1 Hz, 1H), 7.86 (d, *J* = 7.7 Hz, 2H), 7.65 (d, *J* = 7.0 Hz, 1H), 7.60 (d, *J* = 7.6 Hz, 2H), 7.19 (d, *J* = 8.1 Hz, 1H), 7.06 (s, 1H), 6.39 (s, 1H), 4.27 (d, *J* = 14.2 Hz, 1H), 3.98 (d, *J* = 14.3 Hz, 1H), 3.62 (q, *J* = 11.5 Hz,

2H), 3.37 (q, J = 8.9 Hz, 2H), 2.41 (s, 3H), 1.22 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 146.7, 144.9, 136.2, 135.6, 134.1, 133.4, 131.4, 129.4, 128.2, 127.8, 128.7, 121.3, 67.4, 60.8, 53.9, 42.9, 26.5, 21.5. **HR–MS** (ESI) m/z calc. for C₂₀H₂₂NO₄S₂ [M+H]⁺: 404.0985, found: 404.0986.

2-(Phenylsulfonyl)-2,3,3a,4-tetrahydro-1*H*-benzo[6,7]thiepino[3,4-*c*]pyrrole 5,5dioxide (3ba)

The general procedure (A) was followed using **1b** (98.4 mg, 0.60 mmol), **2a** (70.5 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3ba** (66.4 mg, 59%) as a white solid. **M.p.**: 139–141 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.13 (d, *J* = 7.9 Hz, 1H), 7.88 (d, *J* = 7.5 Hz, 2H), 7.66 (d, *J* = 7.2 Hz, 1H), 7.60 (dd, *J* = 7.6, 7.6 Hz, 3H), 7.43 (dd, *J* = 7.7, 7.7 Hz, 1H), 7.30 (d, *J* = 7.8 Hz, 1H), 6.49 (d, *J* = 1.3 Hz, 1H), 4.24 (d, *J* = 14.9 Hz, 1H), 4.09 (d, *J* = 14.6 Hz, 1H), 3.76 (dd, *J* = 9.2, 7.5 Hz, 1H), 3.58 (dd, *J* = 12.9, 3.8 Hz, 1H), 3.44–3.35 (m, 2H), 3.11 (t, *J* = 9.0 Hz, 1H). ¹³C **NMR** (151 MHz, CDCl₃) δ 142.3, 139.3, 135.8, 133.8, 133.5, 132.9, 132.6, 129.5, 127.8, 127.8, 127.3, 123.1, 55.6, 54.1, 52.3, 38.8. **HR–MS** (ESI) *m*/*z* calc. for C₁₈H₁₈NO₄S₂ [M+H]⁺: 376.0672, found: 376.0673.

8-Isopropyl-2-(phenylsulfonyl)-2,3,3a,4-tetrahydro-1*H*-benzo[6,7]thiepino[3,4*c*]pyrrole 5,5-dioxide (3ca)

The general procedure (A) was followed using **1c** (123.6 mg, 0.60 mmol), **2a** (70.5 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3ca** (87.6 mg, 70%) as a white solid. **M.p.**: 160–162 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.2 Hz, 1H), 7.87 (d, *J* = 7.5 Hz, 2H), 7.64 (d, *J* = 7.3 Hz, 1H), 7.59 (d, *J* = 7.8 Hz, 2H), 7.26 (d, *J* = 9.2 Hz, 1H), 7.13 (s, 1H), 6.48 (d, *J* = 1.2 Hz, 1H), 4.23 (d, *J* = 14.5 Hz, 1H), 4.08 (d, *J* =

14.5 Hz, 1H), 3.74 (dd, J = 9.2, 7.6 Hz, 1H), 3.56 (dd, J = 13.1, 4.0 Hz, 1H), 3.44–3.32 (m, 2H), 3.09 (t, J = 9.0 Hz, 1H), 2.98–2.91 (m, 1H), 1.25 (d, J = 6.9 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 155.3, 141.9, 136.8, 135.8, 133.4, 132.6, 131.1, 129.5, 127.7, 127.5, 125.9, 123.3, 55.8, 54.1, 52.3, 38.8, 34.1, 23.6, 23.6. HR–MS (ESI) m/z calc. for C₂₁H₂₄NO₄S₂ [M+H]⁺: 418.1141, found: 418.1142.

8-Methoxy-2-(phenylsulfonyl)-2,3,3a,4-tetrahydro-1*H*-benzo[6,7]thiepino[3,4*c*]pyrrole 5,5-dioxide (3da)

The general procedure (A) was followed using **1d** (116.4 mg, 0.60 mmol), **2a** (70.5 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3da** (79.0 mg, 65%) as a white solid. **M.p.**: 152–154 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.8 Hz, 1H), 7.87 (d, *J* = 7.4 Hz, 2H), 7.65 (d, *J* = 7.4 Hz, 1H), 7.60 (d, *J* = 7.8 Hz, 2H), 6.88 (dd, *J* = 8.8, 2.5 Hz, 1H), 6.77 (d, *J* = 2.5 Hz, 1H), 6.44 (d, *J* = 1.2 Hz, 1H), 4.20 (d, *J* = 14.7 Hz, 1H), 4.09 (d, *J* = 14.6 Hz, 1H), 3.86 (s, 3H), 3.71 (dd, *J* = 9.6, 7.2 Hz, 1H), 3.57 (d, *J* = 8.9 Hz, 1H), 3.40–3.34 (m, 2H), 3.12 (t, *J* = 8.8 Hz, 1H). ¹³**C NMR** (151 MHz, CDCl₃) δ 163.5, 142.6, 135.8, 135.0, 133.5, 131.3, 129.8, 129.5, 127.8, 123.1, 118.3, 112.2, 56.9, 55.8, 54.0, 52.3, 38.8. **HR–MS** (ESI) *m*/*z* calc. for C₁₉H₂₀NO₅S₂ [M+H]⁺: 406.0778, found: 406.0777.

8-Fluoro-2-(phenylsulfonyl)-2,3,3a,4-tetrahydro-1*H*-benzo[6,7]thiepino[3,4*c*]pyrrole 5,5-dioxide (3ea)

The general procedure (A) was followed using **1e** (109.2 mg, 0.60 mmol), **2a** (70.5 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3ea** (67.2 mg, 57%) as a white solid. **M.p.**: 160–162 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.15 (dd, *J* = 8.8, 5.6 Hz, 1H), 7.88 (d, *J* = 7.3 Hz, 2H), 7.67 (d, *J* = 7.4 Hz, 1H), 7.61 (d, *J* = 7.8 Hz, 2H), 7.14–7.09

(m, 1H), 7.00 (dd, J = 9.3, 2.5 Hz, 1H), 6.45 (d, J = 1.4 Hz, 1H), 4.23 (d, J = 14.9 Hz, 1H), 4.11 (d, J = 14.9 Hz, 1H), 3.74 (dd, J = 9.5, 7.3 Hz, 1H), 3.61 (d, J = 9.0 Hz, 1H), 3.45–3.37 (m, 2H), 3.12 (t, J = 8.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.5 (d, J = 256.5 Hz), 144.1, 136.0 (d, J = 9.1 Hz), 135.8, 133.6, 130.5 (d, J = 9.8 Hz), 129.6, 128.2, 127.8, 122.2, 119.3 (d, J = 23.2 Hz), 114.8 (d, J = 22.2 Hz), 56.4, 54.0, 52.2, 38.9. ¹⁹F NMR (377 MHz, CDCl₃) δ –104.31. HR–MS (ESI) m/z calc. for C₁₈H₁₇FNO₄S₂ [M+H]⁺: 354.0578, found: 354.0576.

8-Chloro-2-(phenylsulfonyl)-2,3,3a,4-tetrahydro-1*H*-benzo[6,7]thiepino[3,4*c*]pyrrole 5,5-dioxide (3fa)

The general procedure (A) was followed using **1f** (118.8 mg, 0.60 mmol), **2b** (70.5 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3fa** (62.6 mg, 51%) as a yellow solid. **M.p.**: 182–184 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 8.07 (d, *J* = 8.5 Hz, 1H), 7.88 (d, *J* = 7.3 Hz, 2H), 7.67 (d, *J* = 7.5 Hz, 1H), 7.61 (d, *J* = 7.9 Hz, 2H), 7.40 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.29 (d, *J* = 1.9 Hz, 1H), 6.43 (d, *J* = 1.7 Hz, 1H), 4.24 (d, *J* = 14.8 Hz, 1H), 4.10 (d, *J* = 14.8 Hz, 1H), 3.75 (dd, *J* = 9.5, 7.6 Hz, 1H), 3.59 (dd, *J* = 13.5, 4.2 Hz, 1H), 3.47–3.39 (m, 2H), 3.13 (t, *J* = 9.0 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 144.2, 140.2, 137.8, 135.8, 134.5, 133.6, 132.4, 129.6, 129.0, 127.8, 122.1, 56.1, 54.1, 52.2, 38.9. **HR–MS** (ESI) *m*/*z* calc. for C₁₈H₁₇ClNO₄S₂ [M+H]⁺: 410.0282, found: 410.0264.

8-Bromo-2-(phenylsulfonyl)-2,3,3a,4-tetrahydro-1*H*-benzo[6,7]thiepino[3,4*c*]pyrrole 5,5-dioxide (3ga)

The general procedure (A) was followed using 1g (145.2 mg, 0.60 mmol), 2b (70.5 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded 3ga (88.3 mg, 65%) as a yellow

solid. **M.p.**: 212–214 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.99 (d, J = 8.4 Hz, 1H), 7.88 (d, J = 7.5 Hz, 2H), 7.67 (d, J = 7.1 Hz, 1H), 7.60 (dd, J = 7.5, 7.5 Hz, 2H), 7.56 (d, J = 8.5 Hz, 1H), 7.46 (s, 1H), 6.42 (s, 1H), 4.24 (d, J = 14.9 Hz, 1H), 4.10 (d, J = 14.9 Hz, 1H), 3.75 (dd, J = 9.2, 7.5 Hz, 1H), 3.59 (dd, J = 12.9, 3.7 Hz, 1H), 3.46–3.34 (m, 2H), 3.12 (t, J = 8.9 Hz, 1H). ¹³**C NMR** (151 MHz, CDCl₃) δ 144.2, 138.2, 135.8, 135.3, 134.5, 133.6, 130.8, 129.56, 129.0, 128.6, 127.8, 122.0, 56.0, 54.1, 52.2, 38.9. **HR–MS** (ESI) m/z calc. for C₁₈H₁₇BrNO₄S₂ [M+H]⁺: 453.9777, found: 453.9774.

8-Iodo-2-(phenylsulfonyl)-2,3,3a,4-tetrahydro-1*H*-benzo[6,7]thiepino[3,4*c*]pyrrole 5,5-dioxide (3ha)

The general procedure (A) was followed using **1h** (174.0 mg, 0.60 mmol), **2b** (70.5 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3ha** (61.6 mg, 41%) as a yellow solid. **M.p.**: 176–178 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.89–7.86 (m, 2H), 7.81 (dd, J = 8.4, 8.4 Hz, 2H), 7.67 (d, J = 6.9 Hz, 2H), 7.61 (dd, J = 8.4, 1.6 Hz, 2H), 7.70–7.66 (m, 2H), 7.62–7.58 (m, 2H), 6.39 (d, J = 2.0 Hz, 1H), 4.24 (dt, J = 14.8, 1.6 Hz, 1H). 4.09 (dt, J = 14.8, 1.6 Hz, 1H), 3.75 (dd, J = 9.5, 7.4 Hz, 1H), 3.58 (dd, J = 13.1, 3.9 Hz, 1H), 3.47–3.34 (m, 2H), 3.11 (t, J = =9.6 Hz, 1H). ¹³**C NMR** (151 MHz, CDCl₃) δ 144.0, 141.3, 139.0, 138.9, 136.8, 134.1, 133.6, 129.6, 128.6, 127.8, 121.9, 101.2, 56.0, 54.1, 52.2, 38.9. **HR–MS** (ESI) *m*/*z* calc. for C₁₈H₁₇INO₄S₂ [M+H]⁺: 501.9638, found: 501.9633.

2-(Phenylsulfonyl)-8-(trifluoromethyl)-2,3,3a,4-tetrahydro-1*H*benzo[6,7]thiepino[3,4-*c*]pyrrole 5,5-dioxide (3ia)

The general procedure (A) was followed using **1i** (139.2 mg, 0.60 mmol), **2b** (70.5 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3ia** (81.1 mg, 61%) as a white

solid. **M.p.**: 198–200 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.27 (d, J = 8.2 Hz, 1H), 7.88 (d, J = 7.4 Hz, 2H), 7.68 (dd, J = 7.7, 5.4 Hz, 2H), 7.61 (dd, J = 7.5, 7.5 Hz, 2H), 7.56 (s, 1H), 6.55 (d, J = 1.5 Hz, 1H), 4.27 (d, J = 15.0 Hz, 1H), 4.12 (d, J = 15.0 Hz, 1H), 3.78 (dd, J = 9.4, 7.4 Hz, 1H), 3.63 (dd, J = 12.9, 3.5 Hz, 1H), 3.49–3.38(m, 2H), 3.13 (t, J = 9.0 Hz, 1H). ¹³**C NMR** (151 MHz, CDCl₃) δ 144.7, 142.5, 135.8, 135.5, 133.7, 133.6, 129.6, 129.5, 128.3, 127.8, 124.5 (q, J = 3.0 Hz), 122.2, 55.7, 54.1, 52.2, 38.9. ¹⁹**F NMR** (377 MHz, CDCl₃) δ –63.45. **HR–MS** (ESI) m/z calc. for C₁₉H₁₇F₃NO₄S₂ [M+H]⁺: 444.0546, found: 444.0543.

8-Nitro-2-(phenylsulfonyl)-2,3,3a,4-tetrahydro-1*H*-benzo[6,7]thiepino[3,4*c*]pyrrole 5,5-dioxide (3ja)

The general procedure (A) was followed using **1j** (125.4 mg, 0.60 mmol), **2b** (70.5 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3ja** (50.4 mg, 40%) as a white solid. **M.p.**: 231–233 °C. ¹**H NMR** (400 MHz, DMSO) δ 8.33 (d, *J* = 2.0 Hz, 1H), 8.26 (dd, *J* = 8.7, 2.0 Hz, 1H), 8.21 (d, *J* = 8.7 Hz, 1H), 7.87 (d, *J* = 7.5 Hz, 2H), 7.75 (dd, *J* = 7.3, 7.3 Hz, 1H), 7.67 (dd, *J* = 7.5, 7.5 Hz, 2H), 6.85 (s, 1H), 4.30 (d, *J* = 15.4 Hz, 1H), 3.99 (d, *J* = 15.4 Hz, 1H), 3.91–3.83 (m, 2H), 3.76 (dd, *J* = 14.8, 12.1 Hz, 1H), 3.29–3.21 (m, 1H), 3.00 (t, *J* = 10.0 Hz, 1H). ¹³**C NMR** (151 MHz, DMSO) δ 150.7, 146.0, 144.8, 135.8, 134.2, 134.0, 130.1, 128.5, 128.1, 128.0, 122.5, 121.4, 54.5, 52.1, 51.5, 39.3. **HR–MS** (ESI) *m*/*z* calc. for C₁₈H₁₇N₂O₆S₂ [M+H]⁺: 421.0523, found: 421.0515.

2-(Phenylsulfonyl)-2,3,3a,4-tetrahydro-1*H*-benzo[6,7]thiepino[3,4-*c*]pyrrole-8carbonitrile 5,5-dioxide (3ka)

The general procedure (A) was followed using **1k** (113.4 mg, 0.60 mmol), **2b** (70.5 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography

on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3ka** (54.0 mg, 45%) as a white solid. **M.p.**: 215–217 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 8.26 (d, *J* = 8.1 Hz, 1H), 7.88 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.71 (dd, *J* = 8.2, 1.5 Hz, 1H), 7.68 (dd, *J* = 2.5, 1.6 Hz, 1H), 7.63–7.59 (m, 3H), 6.49 (d, *J* = 2.0 Hz, 1H), 4.27 (dt, *J* = 15.0, 1.2 Hz, 1H), 4.13 (dt, *J* = 15.1, 1.6 Hz, 1H), 3.77 (dd, *J* = 9.5, 7.5 Hz, 1H), 3.64 (dd, *J* = 13.6, 4.1 Hz, 1H), 3.49–3.40 (m, 2H), 3.14 (t, *J* = 9.0 Hz, 1H). ¹³**C NMR** (151 MHz, DMSO) δ 145.9, 143.6, 137.2, 135.7, 134.0, 133.4, 131.4, 130.1, 128.0, 127.4, 121.1, 117.7, 116.6, 54.6, 52.2, 51.6, 39.3. **HR–MS** (ESI) *m*/*z* calc. for C₁₉H₁₇N₂O₄S₂ [M+H]⁺: 401.0624, found: 401.0601.

7-Bromo-2-(phenylsulfonyl)-2,3,3a,4-tetrahydro-1*H*-benzo[6,7]thiepino[3,4*c*]pyrrole 5,5-dioxide (3la)

The general procedure (A) was followed using **11** (145.2 mg, 0.60 mmol), **2b** (70.5 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3la** (58.4 mg, 43%) as a white solid. **M.p.**: 62–64 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 8.09 (dd, *J* = 7.9, 0.9 Hz, 1H), 7.88 (dd, *J* = 8.3, 1.1 Hz, 2H), 7.84 (dd, *J* = 8.0, 1.1 Hz, 1H), 7.71–7.68 (m, 1H), 7.62 (dd, *J* = 7.7, 7.7 Hz, 2H), 7.30 (dd, *J* = 7.8, 7.8 Hz, 1H), 6.73 (d, *J* = 2.0 Hz, 1H), 4.37 (dt, *J* = 15.0, 1.8 Hz, 1H), 3.95 (dd, *J* = 15.4, 2.4 Hz, 1H), 3.92 (dd, *J* = 13.8, 6.6 Hz, 1H), 3.78 (dd, *J* = 13.8, 11.4 Hz, 1H), 3.30 (d, *J* = 1.5 Hz, 1H), 3.29 (s, 1H), 3.25–3.21 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 143.7, 140.5, 138. 2, 135.8, 135.1, 133.6, 129.6, 128.7, 128.0, 127.7, 125.3, 123.1, 66.5, 52.4, 52.3, 37.1. **HR–MS** (ESI) *m/z* calc. for C₁₈H₁₇BrNO₄S₂ [M+H]⁺: 453.9777, found: 453.9782.

6-Methyl-2-(phenylsulfonyl)-2,3,3a,4-tetrahydro-1*H*-benzo[6,7]thiepino[3,4*c*]pyrrole 5,5-dioxide (3ma)

The general procedure (A) was followed using 1m (106.8 mg, 0.60 mmol), 2b (70.5

mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3ma** (70.0 mg, 60%) as a pink solid. **M.p.**: 149–151 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.1 Hz, 1H), 7.88 (d, *J* = 7.9 Hz, 2H), 7.66 (d, *J* = 6.7 Hz, 1H), 7.61 (d, *J* = 7.7 Hz, 2H), 7.23 (d, *J* = 8.1 Hz, 1H), 7.10 (s, 1H), 6.44 (s, 1H), 4.24 (d, *J* = 14.5 Hz, 1H), 4.08 (d, *J* = 14.4 Hz, 1H), 3.77 (dd, J = 9.2, 7.6 Hz, 1H), 3.55 (dd, *J* = 13.2, 4.2 Hz, 1H), 3.45–3.32 (m, 2H), 3.11 (t, *J* = 9.1 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 144.7, 142.1, 136.6, 133.5, 133.5, 132.5, 129.5, 128.4, 127.9, 127.8, 127.5, 123.2, 55.8, 54.2, 52.3, 38.9, 21.5. **HR–MS** (ESI) *m/z* calc. for C₁₉H₂₀NO₄S₂ [M+H]⁺: 390.0828, found: 390.0836.

6-(Phenylsulfonyl)-6,7,7a,8-tetrahydro-5*H*-thieno[3',2':6,7]thiepino[3,4-*c*]pyrrole 9,9-dioxide (3na)

The general procedure (A) was followed using **1n** (102.0 mg, 0.60 mmol), **2b** (70.5 mg, 0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **3na** (44.6 mg, 39%) as a yellow solid. **M.p.**: 180–182 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.88 (d, *J* = 7.3 Hz, 2H), 7.67 (d, *J* = 7.3 Hz, 1H), 7.61 (d, *J* = 7.8 Hz, 2H), 7.52 (d, *J* = 5.0 Hz, 1H), 6.95 (d, *J* = 5.0 Hz, 1H), 6.50 (d, *J* = 2.1 Hz, 1H), 4.33 (dt, *J* = 15.0, 1.7 Hz, 1H), 3.99 (dt, *J* = 15.0, 2.0 Hz, 1H), 3.95(t, *J* = 9.2 Hz, 1H), 3.60–3.55 (m, 1H), 3.40 (dd, *J* = 14.4, 3.8 Hz, 1H), 3.30 (t, *J* = 12.8 Hz, 1H), 3.03 (t, *J* = 10.4 Hz, 1H). ¹³**C NMR** (151 MHz, CDCl₃) δ 142.3, 137.9, 136.2, 135.9, 133.6, 131.6, 129.8, 129.6, 127.8, 116.8, 54.2, 52.6, 52.1, 39.2. **HR–MS** (ESI) *m/z* calc. for C₁₆H₁₆NO₄S₃ [M+H]⁺: 382.0236, found: 382.0230.

2-(Phenylsulfonyl)-2,3,3a,4-tetrahydro-1*H*-naphtho[2',3':6,7]thiepino[3,4*c*]pyrrole 5,5-dioxide (30a)

The general procedure (A) was followed using 10 (128.4 mg, 0.60 mmol), 2b (70.5 mg,

0.3 mmol) and Na₂CO₃ (31.8 mg, 0.30 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **30a** (81.6 mg, 64%) as a yellow solid. **M.p.**: 93–95 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 8.15 (d, *J* = 8.7 Hz, 1H), 8.00 (d, *J* = 8.4 Hz, 1H), 7.93 (dd, *J* = 6,0, 6.0 Hz, 2H), 7.90 (d, *J* = 7.6 Hz, 2H), 7.68 (dd, *J* = 14.5, 7.3 Hz, 2H), 7.62 (d, *J* = 7.4 Hz, 3H), 7.21 (s, 1H), 4.48 (d, *J* = 14.9 Hz, 1H), 4.03 (dd, *J* = 13.8, 6.3 Hz, 2H), 3.86 (dd, *J* = 7.6, 7.6 Hz, 1H), 3.31–3.25 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 144.6, 136.1, 135.5, 135.2, 133.6, 131.2, 129.5, 129.1, 128.8, 128.4, 128.0, 127.9, 127.4, 125.3, 122.9, 120.4, 68.9, 52.4, 52.3, 37.3. **HR–MS** (ESI) *m/z* calc. for C₂₂H₂₀NO₄S₂ [M+H]⁺: 426.0828, found: 426.0831.

5-Phenyl-4-tosyl-6,7-dihydro-3*H*-2,6-methanobenzo[*h*][1,2]thiazonine 1,1-dioxide (4a)

The general procedure (B) was followed using **1a** (107 mg, 0.60 mmol), **2a'** (93.3 mg, 0.3 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **4a** (39.1 mg, 28%) as a yellow solid. **M.p.**: 108–110 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 8.00 (dd, J = 7.7, 1.1 Hz, 1H), 7.49–7.46 (m, 1H), 7.38 (dd, J = 7.6, 7.6 Hz, 1H), 7.32 (dd, J = 7.4, 7.4 Hz, 1H), 7.23 (dd, J = 7.8, 7.8 Hz, 2H), 7.03 (s, 4H), 7.00 (d, J = 7.5 Hz, 1H), 6.68 (s, 2H), 4.47 (s, 1H), 4.44 (d, J = 5.5 Hz, 1H), 4.29 (dd, J = 19.7, 2.0 Hz, 1H), 3.61 (d, J = 14.9 Hz, 1H), 3.48 (d, J = 15.4 Hz, 1H), 2.91–2.85 (m, 2H), 2.37 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.6, 144.1, 139.7, 137.5, 136.7, 135.2, 134.8, 133.5, 132.7, 129.7, 129.4, 128.6, 127.8, 127.4, 127.3, 50.0, 45.6, 38.9, 38.6, 21.6. **HR–MS** (ESI) *m*/*z* calc. for C₂₅H₂₄NO₄S₂ [M+H]⁺: 466.1141, found: 466.1144.

5-(*p*-Tolyl)-4-tosyl-6,7-dihydro-3*H*-2,6-methanobenzo[*h*][1,2]thiazonine 1,1dioxide (4b) The general procedure (B) was followed using **1a** (107 mg, 0.60 mmol), **2b'** (97.5 mg, 0.3 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **4b** (34.5 mg, 24%) as a yellow solid. **M.p.**: 193–195 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 7.99 (d, J = 7.7 Hz, 1H), 7.47–7.44 (m, 1H), 7.37 (dd, J = 7.6, 7.6 Hz, 1H), 7.09 (d, J = 8.3 Hz, 2H), 7.05 (d, J = 7.9 Hz, 4H), 6.98 (d, J = 7.5 Hz, 1H), 6.59 (s, 2H), 4.45 (d, J = 14.4 Hz, 1H), 4.42 (d, J = 16.8 Hz, 1H), 4.26 (dd, J = 19.5, 1.9 Hz, 1H), 3.61 (d, J = 14.7 Hz, 1H), 3.46 (dd, J = 14.4, 1.2 Hz, 1H), 2.91–2.85 (m, 2H), 2.39 (s, 3H), 2.38 (s, 3H). ¹³C **NMR** (151 MHz, CDCl₃) δ 149.8, 144.1, 139.8, 138.7, 137.7, 135.2, 134.5, 133.9, 133.5, 132.7, 129.7, 129.3, 128.5, 127.4, 127.4, 50.1, 45.8, 39.0, 38.7, 21.7, 21.4. **HR–MS** (ESI) *m*/*z* calc. for C₂₆H₂₆NO₄S₂ [M+H]⁺: 480.1298, found: 480.1303.

5-(4-(Tert-butyl)phenyl)-4-tosyl-6,7-dihydro-3*H*-2,6methanobenzo[*h*][1,2]thiazonine 1,1-dioxide (4c)

The general procedure (B) was followed using **1a** (107 mg, 0.60 mmol), **2c'** (110.1 mg, 0.3 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **4c** (34.4 mg, 22%) as a white solid. **M.p.**: 221–223 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.05 (dd, J = 7.7, 1.3 Hz, 1H), 7.52–7.48 (m, 1H), 7.42 (dd, J = 7.5, 7.5 Hz, 1H), 7.19 (d, J = 8.6 Hz, 2H), 7.02 (d, J = 7.4 Hz, 1H), 6.97 (s, 4H), 6.57 (d, J = 8.2 Hz, 2H), 4.51 (d, J = 7.8 Hz, 1H), 4.47 (s, 1H), 4.32 (dd, J = 19.6, 2.2 Hz, 1H), 3.63 (d, J = 15.4 Hz, 1H), 3.49 (dd, J = 14.4, 1.7 Hz, 1H), 2.92 (dd, J = 14.9, 6.5 Hz, 1H), 2.83 (d, J = 5.8 Hz, 1H), 2.35 (s, 3H), 1.34 (s, 9H). ¹³C **NMR** (101 MHz, CDCl₃) δ 151.8, 149.6, 143.7, 139.8, 137.7, 135.3, 135.1, 133.6, 133.5, 132.8, 129.9, 129.2, 128.0, 127.5, 127.3, 124.7, 50.1, 45.6, 39.0, 38.5, 34.7, 31.4, 21.6. **HR–MS** (ESI) m/z calc. for C₂₉H₃₂NO₄S₂ [M+H]⁺: 522.1767, found: 522.1771.

5-(4-Fluorophenyl)-4-tosyl-6,7-dihydro-3*H*-2,6-methanobenzo[*h*][1,2]thiazonine 1,1-dioxide (4d)

The general procedure (B) was followed using **1a** (107 mg, 0.60 mmol), **2d'** (98.7 mg, 0.3 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **4d** (40.6 mg, 28%) as a yellow solid. **M.p.**: 180–182 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.02 (dd, J = 7.7, 1.2 Hz, 1H), 7.50–7.46 (m, 1H), 7.40 (dd, J = 7.6, 7.6 Hz, 1H), 7.08 (s, 4H), 6.98–6.91 (m, 3H), 6.68 (s, 2H), 4.48 (d, J = 7.7 Hz, 1H), 4.44 (d, J = 12.8 Hz, 1H), 4.26 (dd, J = 19.7, 2.0 Hz, 1H), 3.65 (d, J = 14.6 Hz, 1H), 3.47 (dd, J = 14.5, 1.2 Hz, 1H), 2.90–2.82 (m, 2H), 2.40 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 162.9 (d, J = 249.2 Hz), 148.5, 144.4, 139.9, 137.5, 135.7, 135.0, 133.3, 132.8, 132.6, 129.9, 129.5, 127.6, 127.3, 115.0 (d, J = 25.7 Hz), 50.0, 45.8, 39.0, 38.7, 21.7. ¹⁹F NMR (377 MHz, CDCl₃) δ –112.08. **HR–MS** (ESI) *m*/*z* calc. for C₂₅H₂₃FNO4S₂ [M+H]⁺: 484.1047, found: 484.1045.

5-(4-Methoxyphenyl)-4-tosyl-6,7-dihydro-3*H*-2,6methanobenzo[*h*][1,2]thiazonine 1,1-dioxide (4e)

The general procedure (B) was followed using **1a** (107 mg, 0.60 mmol), **2e'** (102.3 mg, 0.3 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **4e** (81.7 mg, 55%) as a white solid. **M.p.**: 128–130 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.02 (dd, J = 7.7, 1.4 Hz, 1H), 7.48–7.44 (m, 1H), 7.39 (dd, J = 7.2, 7.2 Hz, 1H), 7.07 (dd, J = 8.5, 8.5 Hz, 4H), 6.95 (d, J = 7.3 Hz, 1H), 6.76 (d, J = 8.9 Hz, 2H), 6.61 (d, J = 8.3 Hz, 2H), 4.48–4.42 (m, 2H), 4.25 (dd, J = 19.5, 1.7 Hz, 1H), 3.85 (s, 3H), 3.62 (q, J = 5.0 Hz, 1H), 3.45 (dt, J = 14.0, 2.0 Hz, 1H), 2.90–2.85 (m, 2H), 2.38 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 160.0, 149.6, 144.0, 139.9, 137.8, 135.2, 134.8, 133.5, 132.7, 129.8, 129.4, 128.7, 127.5, 127.4, 113.3, 55.4, 50.1, 45.9, 39.1, 38.7, 21.7. **HR–MS** (ESI) m/z calc. for C₂₆H₂₆NO₅S₂ [M+H]⁺: 496.1247, found: 496.1266.

5-(4-Methoxyphenyl)-9-methyl-4-tosyl-6,7-dihydro-3*H*-2,6methanobenzo[*h*][1,2]thiazonine 1,1-dioxide (4f)

The general procedure (B) was followed using **1a** (107 mg, 0.60 mmol), **2f'** (107.1 mg, 0.3 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **4f** (76.4 mg, 50%) as a white solid. **M.p.**: 212–214 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 7.89 (d, *J* = 7.9 Hz, 1H), 7.16 (d, *J* = 7.8 Hz, 1H), 7.10 (d, *J* = 8.4 Hz, 2H), 7.07 (d, *J* = 8.3 Hz, 2H), 6.76 (d, *J* = 8.9 Hz, 2H), 6.70 (s, 1H), 6.60 (d, *J* = 4.8 Hz, 2H), 4.45 (s, 1H), 4.42 (d, *J* = 4.9 Hz, 1H), 4.23 (dd, *J* = 19.7, 2.2 Hz, 1H), 3.85 (s, 3H), 3.58 (d, *J* = 15.1 Hz, 1H), 3.43 (dd, *J* = 14.1, 1.7 Hz, 1H), 2.83 (d, *J* = 6.5 Hz, 1H), 2.77 (dd, *J* = 14.7, 6.5 Hz, 1H), 2.39 (s, 3H), 2.37 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 160.0, 149.6, 144.0, 143.2, 138.0, 136.9, 135.0, 134.8, 134.4, 131.5, 129.8, 129.3, 128.7, 127.8, 127.4, 113.2, 55.4, 50.1, 45.9, 39.0, 38.6, 21.6, 21.4. HR–MS (ESI) *m*/*z* calc. for C₂₇H₂₈NO₅S₂ [M+H]⁺: 510.1404, found: 510.1413.

9-Methoxy-5-(4-methoxyphenyl)-4-tosyl-6,7-dihydro-3*H*-2,6methanobenzo[*h*][1,2]thiazonine 1,1-dioxide (4g)

The general procedure (B) was followed using **1a** (107 mg, 0.60 mmol), **2g'** (111.3 mg, 0.3 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **4g** (75.6 mg, 48%) as a yellow solid. **M.p.**: 95–97 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.7 Hz, 1H), 7.12–7.06 (m, 4H), 6.83 (dd, *J* = 8.7, 2.4 Hz, 1H), 6.77 (d, *J* = 8.8 Hz, 2H), 6.66 (d, *J* = 8.5 Hz, 2H), 6.43 (d, *J* = 2.4 Hz, 1H), 4.43 (d, *J* = 18.0 Hz, 2H), 4.22 (dd, *J* = 19.7, 1.9 Hz, 1H), 3.86 (s, 3H), 3.85 (s, 3H), 3.59 (d, *J* = 14.4 Hz, 1H), 3.42 (d, *J* = 13.0 Hz, 1H), 2.83–2.75 (m, 2H), 2.39 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 162.6, 160.1, 149.5, 144.0, 138.0, 137.3, 135.0, 132.0, 131.5, 129.3, 128.8, 127.4, 119.7, 114.9, 113.3, 111.3, 55.7, 55.5, 50.1, 45.9, 39.2, 38.8, 21.7. HR–MS (ESI) *m/z* calc. for C₂₇H₂₈NO₆S₂ [M+H]⁺: 526.1353, found: 526.1352.

9-(Tert-butyl)-5-(4-methoxyphenyl)-4-tosyl-6,7-dihydro-3*H*-2,6methanobenzo[*h*][1,2]thiazonine 1,1-dioxide (4h)

The general procedure (B) was followed using **1a** (107 mg, 0.60 mmol), **2h'** (119.1 mg, 0.3 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **4h** (106.3 mg, 61%) as a yellow solid. **M.p.**: 83–85 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.90 (d, J = 8.2 Hz, 1H), 7.31 (dd, J = 8.2, 1.7 Hz, 1H), 7.13 (d, J = 8.3 Hz, 2H), 7.08 (d, J = 8.3 Hz, 2H), 6.89 (d, J = 1.2 Hz, 1H), 6.73 (d, J = 7.7 Hz, 2H), 6.56 (s, 2H), 4.46 (d, J = 11.5 Hz, 1H), 4.43 (s, 1H), 4.30 (dd, J = 19.6, 2.1 Hz, 1H), 3.83 (s, 3H), 3.59 (d, J = 15.1 Hz, 1H), 3.46 (dd, J = 14.3, 2.3 Hz, 1H), 2.89 (d, J = 6.5 Hz, 1H), 2.80 (dd, J = 15.1, 6.8 Hz, 1H), 2.39 (s, 3H), 1.31 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 160.0, 156.0, 150.1, 144.0, 138.2, 136.8, 134.6, 134.6, 131.2, 129.6, 129.4, 128.8, 127.3, 123.9, 113.2, 55.4, 50.1, 46.1, 39.5, 38.8, 35.0, 31.0, 21.7. HR–MS (ESI) m/z calc. for C₃₀H₃₄NO₅S₂ [M+H]⁺: 552.1873, found: 582.1874.

9-(Hydroxymethyl)-5-(4-methoxyphenyl)-4-tosyl-6,7-dihydro-3*H*-2,6methanobenzo[*h*][1,2]thiazonine 1,1-dioxide (4i)

The general procedure (B) was followed using **1a** (107 mg, 0.60 mmol), **2p'** (111.3 mg, 0.3 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 1:2) yielded **4i** (74.0 mg, 47%) as a white solid. **M.p.**: 58–60 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.0 Hz, 1H), 7.32 (d, *J* = 7.9 Hz, 1H), 7.10–7.04 (m, 4H), 6.92 (s, 1H), 6.74 (d, *J* = 8.3 Hz, 2H), 6.58 (d, *J* = 7.9 Hz, 2H), 4.70 (s, 2H), 4.47–4.37 (m, 2H), 4.22 (d, *J* = 19.5 Hz, 1H), 3.83 (s, 3H), 3.59 (d, *J* = 13.7 Hz, 1H), 3.43 (d, *J* = 14.2 Hz, 1H), 2.88–2.77 (m, 2H), 2.37 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 160.1, 149.7, 146.1, 144.2, 138.4, 137.6, 135.4, 134.6, 131.8, 129.9, 129.3, 128.5, 127.6, 127.4, 125.2, 113.3, 64.1, 55.5, 50.1, 45.8, 39.1, 38.5, 21.7. **HR–MS** (ESI) *m/z* calc. for C₂₇H₂₈NO₆S₂ [M+H]⁺: 526.1353, found: 526.1349.

9-Fluoro-5-(4-methoxyphenyl)-4-tosyl-6,7-dihydro-3*H*-2,6methanobenzo[*h*][1,2]thiazonine 1,1-dioxide (4j)

The general procedure (B) was followed using **1a** (107 mg, 0.60 mmol), **2i'** (107.7 mg, 0.3 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **4j** (61.6 mg, 40%) as a yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 8.03 (dd, J = 8.6, 5.7 Hz, 1H), 7.31 (d, J = 8.1 Hz, 1H), 7.18 (dd, J = 6.8, 6.8 Hz, 1H), 7.09 (dd, J = 18.5, 8.3 Hz, 4H), 6.77 (d, J = 8.6 Hz, 2H), 6.63 (d, J = 8.2 Hz, 2H), 4.46 (d, J = 6.8 Hz, 1H), 4.41 (s, 1H), 4.25 (dd, J = 19.6, 1.6 Hz, 1H), 3.84 (s, 3H), 3.59 (d, J = 14.5 Hz, 1H), 3.44 (d, J = 14.8 Hz, 1H), 2.85–2.77 (m, 2H), 2.38 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 164.5 (d, J = 255.2 Hz), 160.2, 149.1, 144.2, 138.60 (d, J = 8.7 Hz), 137.6, 135.9, 135.1, 132.45 (d, J = 9.6 Hz), 129.3, 128.4, 127.4, 120.6 (d, J = 22.7 Hz), 114.1 (d, J = 21.1 H)z, 113.4, 55.4, 50.0, 45.8, 39.0, 38.3, 21.6. ¹⁹F NMR (565 MHz, CDCl₃) δ -105.67. **HR–MS** (ESI) m/z calc. for C₂₆H₂₅FNO₅S₂ [M+H]⁺: 513.1153, found: 514.1148.

9-Chloro-5-(4-methoxyphenyl)-4-tosyl-6,7-dihydro-3*H*-2,6methanobenzo[*h*][1,2]thiazonine 1,1-dioxide (4k)

The general procedure (B) was followed using **1a** (107 mg, 0.60 mmol), **2j'** (112.5 mg, 0.3 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **4k** (76.2 mg, 48%) as a yellow oil. **H NMR** (600 MHz, CDCl₃) δ 7.93 (d, J = 8.3 Hz, 1H), 7.31 (d, J = 8.4 Hz, 1H), 7.13 (d, J = 8.3 Hz, 2H), 7.10 (d, J = 8.3 Hz, 2H), 6.89 (d, J = 1.9 Hz, 1H), 6.79 (d, J = 8.9 Hz, 2H), 6.61 (d, J = 5.9 Hz, 2H), 4.44 (d, J = 7.1 Hz, 1H), 4.41 (s, 1H), 4.26 (dd, J = 19.6, 2.3 Hz, 1H), 3.86 (s, 3H), 3.58 (d, J = 15.3 Hz, 1H), 3.46 (dd, J = 14.3, 1.8 Hz, 1H), 2.85 (d, J = 6.3 Hz, 1H), 2.78 (dd, J = 15.3, 7.0 Hz, 1H), 2.40 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 160.2, 149.1, 144.3, 138.7, 137.2, 135.0, 133.4, 131.1, 129.4, 128.4, 127.4, 127.4, 55.5, 50.1, 45.9, 38.9, 38.2, 21.7. **HR–MS** (ESI) *m/z* calc. for C₂₆H₂₅ClNO₅S₂ [M+H]⁺: 530.0857, found: 530.0860.

9-Bromo-5-(4-methoxyphenyl)-4-tosyl-6,7-dihydro-3*H*-2,6methanobenzo[*h*][1,2]thiazonine 1,1-dioxide (4l)

The general procedure (B) was followed using **1a** (107 mg, 0.60 mmol), **2k'** (125.7 mg, 0.3 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **4l** (77.4 mg, 45%) as a yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.85 (d, J = 8.3 Hz, 1H), 7.48 (dd, J = 8.3, 1.8 Hz, 1H), 7.16–7.10 (m, 4H), 7.05 (d, J = 1.8 Hz, 1H), 6.80 (d, J = 9.0 Hz, 2H), 6.61 (d, J = 7.7 Hz, 2H), 4.46–4.40 (m, 2H), 4.27 (dd, J = 19.8, 2.3 Hz, 1H), 3.86 (s, 3H), 3.58 (d, J = 15.3 Hz, 1H), 3.46 (dd, J = 14.2, 1.8 Hz, 1H), 2.86 (d, J = 6.7 Hz, 1H), 2.76 (dd, J = 15.4, 7.1 Hz, 1H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.2, 149.2, 144.3, 138.9, 137.7, 137.2, 136.4, 135.0, 132.8, 131.1, 130.4, 129.4, 128.3, 127.4, 127.2, 113.4, 55.5, 50.1, 45.9, 38.8, 38.1, 21.7. **HR–MS** (ESI) *m/z* calc. for C₂₆H₂₅BrNO₅S₂ [M+H]⁺: 574.0352, found: 574.0363.

8-Bromo-5-(4-methoxyphenyl)-4-tosyl-6,7-dihydro-3*H*-2,6methanobenzo[*h*][1,2]thiazonine 1,1-dioxide (4m)

The general procedure (B) was followed using **1a** (107 mg, 0.60 mmol), **2r'** (125.7 mg, 0.3 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **4m** (73.9 mg, 43%) as a yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 8.04 (dd, J = 7.8, 1.2 Hz, 1H), 7.74 (dd, J = 8.0, 1.3 Hz, 1H), 7.24 (dd, J = 7.9, 7.9 Hz, 1H), 7.14 (d, J = 8.3 Hz, 2H), 7.06 (d, J = 8.0 Hz, 2H), 6.74 (d, J = 8.9 Hz, 2H), 6.54 (d, J = 8.5 Hz, 2H), 4.55 (d, J = 19.6 Hz, 1H), 4.40 (d, J = 14.1 Hz, 1H), 4.24 (dd, J = 19.6, 2.5 Hz, 1H), 3.83 (s, 3H), 3.65 (dd, J = 16.1, 7.5 Hz, 1H), 3.46 (dd, J = 13.1, 3.3 Hz, 1H), 3.39 (d, J = 16.2 Hz, 1H), 3.01–2.97 (m, 1H), 2.37 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 160.2, 149.4, 144.1, 142.0, 137.8, 137.6, 135.1, 135.0, 129.4, 129.3, 128.6, 128.3, 127.8, 127.5, 127.2, 113.5, 55.5, 50.6, 46.1, 38.7, 37.4, 21.7. **HR–MS** (ESI) *m*/*z* calc. for C₂₆H₂₅BrNO₅S₂ [M+H]⁺: 574.0352, found: 574.0343.

Methyl-5-(4-methoxyphenyl)-4-tosyl-6,7-dihydro-3H-2,6-

methanobenzo[*h*][1,2]thiazonine-9-carboxylate 1,1-dioxide (4n)

The general procedure (B) was followed using **1a** (107 mg, 0.60 mmol), **2o'** (119.7 mg, 0.3 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **4n** (79.6 mg, 48%) as a yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 8.07 (d, J = 8.1 Hz, 1H), 7.98 (dd, J = 8.1, 1.2 Hz, 1H), 7.59 (s, 1H), 7.08 (d, J = 8.3 Hz, 2H), 7.04 (d, J = 8.2 Hz, 2H), 6.75 (d, J = 8.9 Hz, 2H), 6.55–6.53 (m, 2H), 4.45 (d, J = 3.5 Hz, 1H), 4.42 (d, J = 9.1 Hz, 1H), 4.27 (dd, J = 19.7, 2.2 Hz, 1H), 4.00 (s, 3H), 3.84 (s, 3H), 3.62 (d, J = 15.2 Hz, 1H), 3.47 (dd, J = 14.5, 1.8 Hz, 1H), 2.92 (dd, J = 15.0, 6.6 Hz, 1H), 2.86 (d, J = 6.2 Hz, 1H), 2.37 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 165.5, 160.15, 149.4, 144.2, 143.7, 137.6, 135.6, 134.8, 134.4, 133.5, 129.9, 129.3, 128.7, 128.4, 128.3, 127.4, 113.2, 55.4, 52.8, 50.1, 45.8, 39.0, 38.3, 21.6. HR–MS (ESI) m/z calc. for C₂₈H₂₈NO₇S₂ [M+H]⁺: 554.1302, found: 554.1311.

5-(4-Methoxyphenyl)-4-tosyl-6,7-dihydro-3H-2,6-methanonaphtho[2,3-

h][1,2]thiazonine 1,1-dioxide (40)

The general procedure (B) was followed using **1a** (107 mg, 0.60 mmol), **2n'** (117.3 mg, 0.3 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **4o** (115.5 mg, 70%) as a yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 8.11 (d, J = 12.9 Hz, 1H), 7.90 (d, J = 8.1 Hz, 1H), 7.85 (d, J = 8.7 Hz, 1H), 7.58 (dd, J = 7.2, 7.2 Hz, 1H), 7.54 (d, J = 8.8 Hz, 1H), 7.36 (dd, J = 7.2, 7.2Hz, 1H), 7.14 (d, J = 11.0 Hz, 1H), 7.05–6.90 (m, 4H), 6.42 (d, J = 7.3 Hz, 2H), 6.06 (d, J = 2.5 Hz, 1H), 4.59–4.50 (m, 2H), 4.28 (dd, J = 19.6, 2.1 Hz, 1H), 3.95 (dd, J = 15.9, 7.6 Hz, 1H), 3.76
(s, 3H), 3.68 (d, J = 16.0 Hz, 1H), 3.50 (dd, J = 14.2, 2.7 Hz, 1H), 3.08 (d, J = 7.2 Hz, 1H), 2.34 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 159.9, 149.5, 143.9, 138.3, 137.6, 135.6, 134.3, 134.1, 132.4, 129.2, 129.0, 128.3, 128.1, 128.0, 127.7, 127.2, 127.0, 125.2, 124.8, 112.9, 55.3, 50.7, 46.2, 38.3, 31.0, 21.6. **HR–MS** (ESI) m/z calc. for C₃₀H₂₈NO₅S₂ [M+H]⁺: 546.1404, found: 546.1394.

5-(4-Methoxyphenyl)-4-tosyl-6,7-dihydro-3H-2,6-methanothieno[3,2-

h][1,2]thiazonine 1,1-dioxide (4p)

The general procedure (B) was followed using **1a** (107 mg, 0.60 mmol), **2m'** (104.1 mg, 0.3 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **4p** (58.6 mg, 39%) as a yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.41 (d, J = 4.9 Hz, 1H), 7.19 (d, J = 8.2 Hz, 2H), 7.11 (d, J = 8.2 Hz, 2H), 6.77 (d, J = 8.8 Hz, 2H), 6.65 (d, J = 8.0 Hz, 2H), 6.62 (d, J = 4.9 Hz, 1H), 4.69 (d, J = 19.7 Hz, 1H), 4.51 (d, J = 14.8 Hz, 1H), 4.31 (dd, J = 19.6, 2.4 Hz, 1H), 3.84 (s, 3H), 3.58 (dd, J = 14.4, 2.4 Hz, 1H), 3.19 (dd, J = 15.7, 1.8 Hz, 1H), 2.92 (dd, J = 15.2, 5.2 Hz, 1H), 2.72 (d, J = 2.3 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 156.0, 148.9, 144.2, 139.7, 137.9, 137.8, 135.2, 132.0, 129.6, 129.4, 128.5, 127.4, 113.3, 55.4, 49.7, 45.9, 37.1, 33.2, 21.7. **HR–MS** (ESI) *m/z* calc. for C₂₄H₂₄NO₅S₃ [M+H]⁺: 502.0811, found: 502,0818.

4-((4-Fluorophenyl)sulfonyl)-5-(4-methoxyphenyl)-6,7-dihydro-3*H*-2,6methanobenzo[*h*][1,2]thiazonine 1,1-dioxide (4q)

The general procedure (B) was followed using **1e** (109.2 mg, 0.60 mmol), **2e'** (102.3 mg, 0.3 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **4q** (77.8 mg, 52%) as a yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 8.04 (d, *J* = 7.7 Hz, 1H), 7.47 (dd, *J* = 7.5, 7.5 Hz, 1H), 7.42 (dd, *J* = 7.5, 7.5 Hz, 1H), 7.16 (dd, *J* = 8.7, 5.1 Hz, 2H), 6.95 (d, *J* = 7.5 Hz, 1H), 6.90 (dd, *J* = 8.5, 8.5 Hz, 2H), 6.75 (d, J = 8.7 Hz, 2H), 6.57 (d, J = 7.7 Hz, 2H), 4.48 (d, J = 14.0 Hz, 1H), 4.46 (d, J = 8.4 Hz, 1H), 4.31 (dd, J = 19.7, 1.0 Hz, 1H), 3.83 (s, 3H), 3.62 (d, J = 14.2 Hz, 1H), 3.47 (d, J = 14.3 Hz, 1H), 2.88–2.83 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 165.2 (d, J = 273.7 Hz), 160.1, 150.3, 139.8, 136.8 (d, J = 2.5 Hz), 135.1, 134.8, 133.5, 132.8, 130.05 (d, J = 9.6 Hz), 129.8, 128.3, 127.59, 115.7 (d, J = 22.7 Hz), 113.4, 55.4, 50.0, 45.7, 39.1, 38.5. ¹⁹F NMR (565 MHz, CDCl₃) δ –103.99. HR–MS (ESI) m/z calc. for C₂₅H₂₃FNO₅S₂ [M+H]⁺: 500.0996, found: 500.1015.

4-((3-Bromophenyl)sulfonyl)-5-(4-methoxyphenyl)-6,7-dihydro-3*H*-2,6methanobenzo[*h*][1,2]thiazonine 1,1-dioxide (4r)

The general procedure (B) was followed using **11** (145.2 mg, 0.60 mmol), **2e'** (102.3 mg, 0.3 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **4r** (80.5 mg, 48%) as a yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 8.06 (d, J = 7.6 Hz, 1H), 7.54–7.53 (m, 1H), 7.49–7.47 m, 1H), 7.44 (dd, J = 7.4, 7.4 Hz, 1H), 7.17–7.12 (m, 3H), 6.95 (d, J = 7.3 Hz, 1H), 6.74 (d, J = 8.8 Hz, 2H), 6.53 (d, J = 7.9 Hz, 2H), 4.51 (d, J = 19.8 Hz, 1H), 4.47 (d, J = 14.3 Hz, 1H), 4.34 (dd, J = 19.7, 2.0 Hz, 1H), 3.85 (s, 3H), 3.63 (d, J = 14.6 Hz, 1H), 3.48 (d, J = 14.3 Hz, 1H), 2.89–2.83 (m, 2H). ¹³**C NMR** (151 MHz, CDCl₃) δ 160.3, 150.8, 142.4, 139.7, 136.0, 135.0, 134.9, 133.4, 132.8, 130.6, 130.1, 129.8, 127.8, 127.7, 125.6, 122.5, 55.4, 50.0, 45.6, 39.1, 38.5. **HR–MS** (ESI) *m*/*z* calc. for C₂₅H₂₃BrNO₅S₂ [M+H]⁺: 560.0196, found: 560.1292.

5-(4-Methoxyphenyl)-4-(naphthalen-2-ylsulfonyl)-6,7-dihydro-3*H*-2,6methanobenzo[*h*][1,2]thiazonine 1,1-dioxide (4s)

The general procedure (B) was followed using **1o** (128.4 mg, 0.60 mmol), **2e'** (102.3 mg, 0.3 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **4s** (66.9 mg, 42%) as a yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 8.02 (dd, J = 7.6, 0.9 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.72 (d, J = 8.6 Hz, 1H), 7.68 (d, J = 8.2 Hz, 1H), 7.65 (dd, J = 7.1, 7.1 Hz, 1H), 7.62 (s, 1H), 7.60–7.54 m, 2H), 7.42–7.39 (m, 1H), 7.30 (d, J = 7.6 Hz, 1H), 7.22 (dd, J = 8.6, 1.8 Hz, 1H), 6.92 (d, J = 7.6 Hz, 1H), 6.55 (s, 2H), 6.51 (d, J = 9.0 Hz, 1H), 4.58 (d, J = 19.7 Hz, 1H), 4.47 (d, J = 14.2 Hz, 1H), 4.38 (dd, J = 19.8, 2.2 Hz, 1H), 3.69 (s, 3H), 3.62 (d, J = 15.4 Hz, 1H), 3.47 (dd, J = 14.2, 1.6 Hz, 1H), 2.87–2.80 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 159.9, 149.9, 139.8, 137.1, 135.1, 135.1, 134.8, 133.4, 132.7, 131.8, 129.8, 129.7, 129.3, 129.2, 129.0, 128.3, 127.8, 127.5, 121.8, 113.1, 55.2, 50.1, 45.8, 39.1, 38.5. HR–MS (ESI) m/z calc. for C₂₉H₂₆NO₅S₂ [M+H]⁺: 532.1247, found: 532.1253.

5-(4-Methoxyphenyl)-4-(thiophen-2-ylsulfonyl)-6,7-dihydro-3*H*-2,6methanobenzo[*h*][1,2]thiazonine 1,1-dioxide (4t)

The general procedure (B) was followed using **1n** (102.0 mg, 0.60 mmol), **2e'** (102.3 mg, 0.3 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **4t** (70.1 mg, 50%) as a yellow solid. **M.p.**: 202–204 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 7.97 (d, J = 7.7 Hz, 1H), 7.54 (d, J = 4.8 Hz, 1H), 7.44 (dd, J = 7.4, 7.4 Hz, 1H), 7.35 (d, J = 7.6 Hz, 1H), 7.01 (d, J = 3.5 Hz, 1H), 6.94 (d, J = 7.4 Hz, 1H), 6.89 (dd, J = 4.2, 4.2 Hz, 1H), 6.83 (d, J = 8.6 Hz, 2H), 6.73 (d, J = 0.6 Hz, 2H), 4.47 (d, J = 14.3 Hz, 1H), 4.43 (d, J = 19.7 Hz, 1H), 4.30 (dd, J = 19.4, 1.9 Hz, 1H), 3.85 (s, 3H), 3.63 (d, J = 15.1 Hz, 1H), 3.50 (d, J = 14.2 Hz, 1H), 2.92 (s, 1H), 2.87 (dd, J = 15.1, 6.8 Hz, 1H). ¹³**C NMR** (151 MHz, CDCl₃) δ 160.1, 150.3, 141.6, 139.8, 135.1, 134.4, 134.0, 133.8, 133.5, 132.6, 129.7, 128.6, 127.5, 127.3, 113.4, 55.4, 50.1, 45.6, 39.2, 38.7. **HR–MS** (ESI) *m*/*z* calc. for C₂₃H₂₂NO₅S₃ [M+H]⁺: 488.0655, found: 488.0673.

4-(Cyclopropylsulfonyl)-5-(4-methoxyphenyl)-6,7-dihydro-3*H*-2,6methanobenzo[*h*][1,2]thiazonine 1,1-dioxide (4u) The general procedure (B) was followed using **1p** (76.8 mg, 0.60 mmol), **2e'** (102.3 mg, 0.3 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **4u** (41.4 mg, 31%) as a yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 8.11 (dd, J = 7.2, 0.6 Hz, 1H), 7.53–7.50 (m, 1H), 7.46 (dd J = 7.5, 7.5 Hz, 1H), 7.01 (d, J = 7.4 Hz, 1H), 6.90–6.89 (m, 4H), 4.52 (d, J = 14.3 Hz, 1H), 4.37 (d, J = 19.6 Hz, 1H), 4.21 (dd, J = 19.6, 2.3 Hz, 1H), 3.85 (s, 3H), 3.69 (d, J = 15.3 Hz, 1H), 3.53 (dd, J = 14.3, 1.7 Hz, 1H), 3.02 (d, J = 6.1 Hz, 1H), 2.94 (dd, J = 15.0, 6.6 Hz, 1H), 1.58–1.56 (m, 1H), 1.00–0.97 (m, 1H), 0.91–0.86 (m, 1H), 0.69–0.64 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 160.3, 148.3, 139.9, 135.3, 134.4, 133.6, 132.8, 129.8, 128.9, 127.9, 127.6, 113.7, 55.4, 50.2, 45.8, 39.2, 38.3, 32.0, 5.8, 5.4. HR–MS (ESI) *m/z* calc. for C₂₂H₂₄NO₅S₂ [M+H]⁺: 446.1091, found: 446.1098.

5-(4-Methoxyphenyl)-9-(5-(*p*-tolyl)-3-(trifluoromethyl)-1*H*-pyrazol-1-yl)-4-tosyl-6,7-dihydro-3*H*-2,6-methanobenzo[*h*][1,2]thiazonine 1,1-dioxide (7)

The general procedure (B) was followed using **1a** (107 mg, 0.60 mmol), **2q'** (169.5 mg, 0.3 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **7** (103.5 mg, 48%) as a white solid. **M.p.**: 150–152 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.4 Hz, 1H), 7.37 (d, *J* = 1.6 Hz, 1H), 7.23 (d, *J* = 7.9 Hz, 2H), 7.17–7.14 (m, 4H), 6.98 (d, *J* = 8.1 Hz, 2H), 6.87 (d, *J* = 8.6 Hz, 2H), 6.79 (s, 1H), 6.77 (dd, *J* = 8.4, 1.8 Hz, 1H), 6.71 (d, *J* = 8.8 Hz, 2H), 4.46 (d, *J* = 14.4 Hz, 1H), 4.36 (q, *J* = 19.6 Hz, 2H), 3.88 (s, 3H), 3.66 (d, *J* = 13.2 Hz, 1H), 3.50 (d, *J* = 14.3 Hz, 1H), 2.94–2.86 (m, 2H), 2.41 (s, 3H), 2.27 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.2, 149.5, 145.2, 144.0, 141.9, 140.1, 138.8, 137.7, 137.4, 134.7, 130.0, 130.0, 129.9, 129.6, 129.3, 128.8, 128.7, 128.4, 128.3, 127.8, 127.5, 125.7, 122.8, 106.3, 55.3, 50.1, 45.8, 39.1, 38.3, 21.5, 21.4. ¹⁹F NMR (565 MHz, DMSO) δ –60.89. HR–MS (ESI) *m*/*z* calc. for C₃₇H₃₃F₃N₃O₅S₂ [M+H]⁺: 720.1808, found: 720.1825.

5-(4-Methoxyphenyl)-9-(5-methyl-3-phenylisoxazol-4-yl)-4-tosyl-6,7-dihydro-3*H*-2,6-methanobenzo[*h*][1,2]thiazonine 1,1-dioxide (8)

The general procedure (B) was followed using **1a** (107 mg, 0.60 mmol), **2r'** (149.4 mg, 0.3 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **8** (56.7 mg, 29%) as a yellow solid. **M.p.**: 80–90 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 8.09 (d, J = 8.0 Hz, 1H), 7.51 (dd, J = 7.8, 1.4 Hz, 2H), 7.48–7.43 (m, 3H), 7.27 (dd, J = 8.0, 0.9 Hz, 1H), 7.10 (d, J = 8.2 Hz, 2H), 7.02 (d, J = 8.1 Hz, 2H), 6.81 (s, 1H), 6.55 (d, J = 8.8 Hz, 2H), 6.47 (d, J = 8.2 Hz, 2H), 4.55 (d, J = 19.6 Hz, 1H), 4.46 (d, J = 14.3 Hz, 1H), 4.22 (dd, J = 19.6, 2.0 Hz, 1H), 3.75 (s, 3H), 3.61 (d, J = 15.2 Hz, 1H), 3.44 (dd, J = 14.2, 1.7 Hz, 1H)., 2.84 (s, 1H), 2.79 (dd, J = 15.2, 6.7 Hz, 1H), 2.45 (s, 3H), 2.33 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 167.5, 160.9, 160.1, 148.9, 144.1, 139.1, 137.4, 135.9, 135.7, 135.3, 134.5, 130.3, 130.0, 129.2, 129.2, 128.5, 128.3, 128.1, 127.4, 114.3, 113.1, 55.5, 49.9, 45.7, 39.3, 38.3, 21.6, 11.7. **HR–MS** (ESI) *m/z* calc. for C₃₆H₃₃N₂O₆S₂ [M+H]⁺: 653.1775, found: 653.1784.

6. Derivatization of the products 4

5-(4-Methoxyphenyl)-6,7-dihydro-3*H*-2,6-methanobenzo[*h*][1,2]thiazonine 1,1dioxide (5)

Compound **4a** (0.3 mmol, 148.5 mg) was placed into a Schlenk tube, perylene (12.8 mg, 0.05 mmol) was added and the flask was evaculated and back filled with N₂. Then, *i*-Pr₂EtN (8.0 eq.) and the solvent mixture (3 mL) were added. The solution was kept stirring under irradiation of 30 W blue LEDs at room temperature for 10 h. Afterwards, the solution was diluted with CH_2Cl_2 and transferred to a round bottom flask. Silica was added to the flask and volatiles were evaporated under vacuum. The purification was performed by flash column chromatography on silica gel (petroleum ether/ EtOAc

= 2:1) to obtain product **5** (35.8 mg, 35% **yield**) as a yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, J = 7.5 Hz, 1H), 7.32 (d, J = 7.2 Hz, 1H), 7.26 (d, J = 7.2 Hz, 1H), 6.95 (d, J = 8.6 Hz, 2H), 6.84 (d, J = 8.6 Hz, 2H), 6.67 (d, J = 7.2 Hz, 1H), 5.42 (s, 1H), 4.56 (d, J = 14.1 Hz, 1H), 4.01–3.89 (m, 2H), 3.84 (s, 3H), 3.74 (d, J = 14.9 Hz, 1H), 3.54 (d, J = 14.1 Hz, 1H), 3.14 (d, J = 6.6 Hz, 1H), 3.00 (dd, J = 14.8, 7.1 Hz, 1H). ¹³**C NMR** (151 MHz, CDCl₃) δ 159.5, 140.0, 138.6, 136.8, 132.8, 132.2, 132.0, 129.4, 127.2, 126.6, 119.0, 114.0, 55.4, 51.6, 46.3, 39.7, 31.9. **HR–MS** (ESI) *m/z* calc. for C₁₉H₂₀NO₃S [M+H]⁺: 342.1159, found: 342.1156.

(4-Methoxyphenyl)-4-tosyl-9-(3,4,5-trimethoxyphenyl)-6,7-dihydro-3*H*-2,6methanobenzo[*h*][1,2]thiazonine 1,1-dioxide (6)

In a 100 mL flask with a stir-bar was charged with **41** (0.3 mmol) and (3,4,5-trimethoxyphenyl)boronic acid (0.4 mmol). *i*-PrOH (3 mL), Pd(OAc)₂ (0.003 mmol) and K₂CO₃ (0.6 mmol) were added and the solution was stirred at RT for 12 hours. The purification was performed by flash column chromatography on silica gel (petroleum ether/ EtOAc = 2:1) to obtain product **6** (128.9mg, 65% **yield**) as a yellow soild. **M.p.**: 207–209 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 8.09 (d, J = 8.1 Hz, 1H), 7.59 (dd, J = 8.1, 1.5 Hz, 1H), 7.09 (d, J = 5 Hz, 3H), 7.02 (d, J = 8.1 Hz, 2H), 6.75 (s, 2H), 6.72 (d, J = 8.6 Hz, 2H), 6.65 (d, J = 7.8 Hz, 2H), 4.53 (d, J = 19.7 Hz, 1H), 4.48 (d, J = 14.2 Hz, 1H), 4.26 (dd, J = 19.7, 2.0 Hz, 1H), 3.99 (s, 6H), 3.95 (s, 3H), 3.81 (s, 3H), 3.67 (d, J = 14.7 Hz, 1H), 3.47 (d, J = 12.9 Hz, 1H), 2.96–2.91 (m, 2H), 2.29 (s, 3H). ¹³C **NMR** (151 MHz, CDCl₃) δ 160.1, 153.8, 149.5, 145.3, 144.1, 138.9, 138.3, 137.9, 135.6, 135.2, 134.7, 131.8, 130.4, 129.3, 128.6, 127.3, 125.6, 113.2, 104.6, 61.2, 56.5, 56.5, 55.4, 50.2, 46.0, 39.4, 38.6, 21.6. **HR–MS** (ESI) *m*/*z* calc. for C₃₅H₃₆NO₈S₂ [M+H]⁺: 662.1877, found: 662.1888.

5. Mechanistic Studies

Radical Trapping Experiment

To a 25 mL Schlenk tube containing (1-cyclopropylvinyl)benzene (0.3 mmol, 1.0 equiv.), **1a** (0.3 mmol, 1.0 equiv.), Et₄NClO₄ (92 mg, 0.1 M) were added and subsequently dissolved in a mixture of HFIP/H₂O (3:1, 4 mL). Electrocatalysis was performed at room temperature with a constant current of 4.0 mA maintained for 8 h. The GF anode was washed with ethyl acetate (3 × 3 mL) in an ultrasonic bath and transfered to the round bottom flask with the crude reaction solution. Silica was added to the flask and all volatiles were evaporated under vacuum. Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) delivered product **9** (53.8 mg, 60%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.37 (d, *J* = 8.2 Hz, 2H), 7.33–7.30 (m, 1H), 7.26 (d, *J* = 7.7 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 6.92 (d, *J* = 7.0 Hz, 2H), 6.54 (s, 1H), 2.40 (s, 3H), 1.70–1.67 (m, 1H), 0.84–0.81 (m, 2H), 0.52–0.50 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 160.3, 143.6, 139.2, 133.8, 129.3, 128.4, 128.2, 127.7, 127.6, 127.0, 21.7, 20.0, 7.1. HR–MS (ESI) *m*/*z* calc. for C₁₈H₁₉O₂S [M+H]⁺: 299.1101, found: 299.1102.

Table S-4 Calculated activation barriers for radical addition to alkynes and alkenes.							
R'-	_====	+ •A	ΔG^{\ddagger}	۱ ►	R'	A (A = C	F ₃ or Ts)
Ehtry	Alkyne/Alkene	∆G [‡] /(kcal/mol) ^a	$\Delta G^{\dagger}/(kcal/mol)^{b}$	Ehtry	Alkyne	∆G [‡] /(kcal/mol) ^a	∆G [‡] /(kcal/mol) ^b
1	Ph	6.6	8.7	5	OMe	8.3	12.9
2	PhO	7.5	12.2	6	Ph	10.0	13.2
3	PhO PhO	10.0	16.2	7	PhPh	11.0	14.8
4	Ph	8.5	11.4	8	O →────Ph Ph	11.0	14.8

6. Density Functional Theory (DFT) Computations

The calculated activation barriers for radical addition to various alkenes and alkynes at the M06-2X/def2svp-SMD(DMSO)//M06-2X/def2tzvp-SMD(DMSO) level of theory.^{*a*} Additon of \cdot CF₃.^{*b*} Addition of \cdot Ts (Ts = *p*-toluene sulforyl).

Computational details: All density functional theory (DFT) calculations were performed using Gaussian 16.⁴ Geometry optimizations and frequencies were calculated at the M06-2X/def-TZVP-SMD(DMSO) level of theory.^{5,6} Frequency calculations confirmed that optimized structures are minima (no imaginary frequency) or transition structures (one imaginary frequency). To obtain more accurate electronic energies, single-point energy calculations were performed at the M06-2X-D3/def2-QZVP-SMD(DMSO) level of theory with the optimized structures. Structures were generated using CYLview.⁷ Grimme's quasi-RRHO correction⁸ for the frequencies that are below 100 cm⁻¹ and concentration correction for all species (from 1 atm to 1 mol/L) are implemented by the GoodVibes program.⁹

The calculated Cartesian coordinates and	С	-2.95242	0.3394	0.00016
energies of structures	С	-1.95027	-0.53576	-0.00014
	Η	-3.98027	-0.00218	0.00007
1	Η	-2.79416	1.41204	0.00048

Η	-2.18399	-1.59719	-0.00043	
С	-0.50944	-0.22396	-0.00008	
С	0.40651	-1.27921	0.00001	
С	-0.01612	1.08579	-0.00011	
С	1.77516	-1.03924	0.00009	
Η	0.03673	-2.29867	0.00001	
С	1.34917	1.32614	-0.00003	
Η	-0.70222	1.92414	-0.0002	
С	2.25152	0.26522	0.00007	
Η	2.46796	-1.87202	0.00016	
Η	1.71389	2.34621	-0.00006	
Η	3.31741	0.45742	0.00013	
M0	6-2X/def2	QZVP-SN	ID(DMSO): E =
-30	9.6519700	74 hartree		
0	1 0.1	1 5 1		200 54

Corrected Gibbs Free Energy = -309.546512 hartree

2

С	4.18459	0.10512	-0.44251
С	3.15456	-0.21468	0.32683
Η	5.15431	-0.36064	-0.31191
Η	4.09298	0.84988	-1.22698
Η	3.25605	-0.96356	1.10745
С	1.81347	0.4324	0.21633
Н	1.59427	1.00504	1.12485
Η	1.78036	1.11081	-0.64142
0	0.84404	-0.60482	0.06864
С	-0.46486	-0.24571	0.02575
С	-1.38303	-1.29584	-0.05718
С	-0.91746	1.07178	0.05524
С	-2.73954	-1.02772	-0.1098
Η	-1.0107	-2.31274	-0.07886
С	-2.28719	1.32378	0.00283
Η	-0.2265	1.90117	0.11525
С	-3.20315	0.28653	-0.07927
Η	-3.44167	-1.85036	-0.17353
Η	-2.63103	2.35092	0.02627
Η	-4.26481	0.49412	-0.1195
M0	6-2X/def2	QZVP-SN	ID(DMSO): E =
-42	4.1850884	96 hartree	
Co	rrected Gib	obs Free l	Energy = -424.049773
har	tree		

3

C -1.87335 0.6229 -0.00001 H -1.71801 1.24489 -0.88727 H -1.71779 1.24468 0.88736 O -0.97928 -0.4827 -0.00024 C 0.35386 -0.19962 -0.00011 C 1.204 -1.30703 -0.00003 C 0.88282 1.08825 -0.00009 C 2.57555 -1.12415 0.00008 H 0.76952 -2.29905 -0.00004 C 2.26686 1.25374 0.00002 H 0.24522 1.96168 -0.00017 C 3.11795 0.15987 0.00011 H 3.22692 -1.98975 0.00015 H 2.67274 2.25814 0.00004 H 4.19122 0.30079 0.0002 C -3.23833 0.10539 0.0001 C -4.36661 -0.29936 0.00017 H -5.37206 -0.65975 0.00024 M06-2X/def2QZVP-SMD(DMSO): E = -422.937891322 hartree Corrected Gibbs Free Energy = -422.825899 hartree

4

C -1.50572 1.20422 0.00003 C -0.1187 1.20919 -0.00001 C -1.50572 -1.20422 0.00004 C -2.2012 0. 0.00005 H -2.04512 2.14318 0.00004 Н 0.42805 2.14376 -0.00003 Н 0.42805 -2.14376 -0.00002 H -2.04512 -2.14318 0.00005 Н -3.28421 О. 0.00009 C 2.01798 0. -0.00008 C 3.21996 0.00001 -0.00009 H 4.28791 -0.00004 0.00041 M06-2X/def2QZVP-SMD(DMSO): E = -308.407090476 hartree Corrected Gibbs Free Energy = -308.324556hartree

5

C 1.95999 -0.27618 -0.31048 C 0.83151 -0.6075 -0.06322 C -0.55856 -0.97915 0.21642 Н -0.81341 -1.86996 -0.36473 Н -0.64766 -1.25986 1.2697 C -1.55685 0.13886 -0.09924 H -1.46719 0.41307 -1.15443 Н -1.2976 1.02693 0.48455 C -2.99214 -0.2738 0.20414 Н -3.06952 -0.55542 1.25877 Н -3.23993 -1.16692 -0.37763 C -3.98905 0.83567 -0.10646 H -3.94493 1.11407 -1.16217 H -5.01236 0.52782 0.11614 Н -3.77235 1.72964 0.48332 O 3.18198 0.06469 -0.60236 C 3.89909 0.6728 0.49487 H 4.89216 0.89818 0.11688 Н 3.39328 1.58786 0.80372 Н 3.95974 -0.02708 1.32852 M06-2X/def2QZVP-SMD(DMSO): E = -349.115622141 hartree Corrected Gibbs Free Energy = -348.973331hartree

C -1.45709 -1.67302 0.07481
Н -1.59019 -2.35488 -0.77066
Н -1.60877 -2.2746 0.97517
C -0.08528 -1.17582 0.06303
C 1.04652 -0.76523 0.05163
C 2.38973 -0.26321 0.03732
C 2.63898 1.08303 0.32599
C 3.46045 -1.1107 -0.26683
C 3.93793 1.56934 0.30885
Н 1.80996 1.73887 0.56202
C 4.75655 -0.61625 -0.28049
Н 3.26833 -2.15269 -0.49049
C 4.99895 0.72269 0.00638
Н 4.12229 2.61277 0.53296
Н 5.58007 -1.27887 -0.51653
Н 6.012 1.10533 -0.00552
C -2.52719 -0.59789 0.01392
C -2.24278 0.73476 -0.26287
C -3.85392 -0.97512 0.2263
C -3.26689 1.67595 -0.32817
Н -1.2175 1.0448 -0.42784
C -4.87545 -0.03869 0.16069
Н -4.08326 -2.01254 0.44546
C -4.58432 1.2938 -0.11757
Н -3.02946 2.71077 -0.54394
Н -5.90018 -0.34741 0.32902
Н -5.3803 2.02666 -0.16756
M06-2X/def2QZVP-SMD(DMSO): E =
-578.789497897 hartree
Corrected Gibbs Free Energy = -578.606781
hartree

•			
С	4.12524	1.20409	0.00012
С	2.73855	1.20931	0.00012
С	2.03343 -	0.00002	0.
С	2.7386 -	1.20932	-0.00012
С	4.12529 -	1.20404	-0.00011
С	4.82144	0.00004	0.
Н	4.66454	2.14314	0.00021
Н	2.19222	2.14413	0.0002
Н	2.19231 -	2.14417	-0.00021
Н	4.66463 -	2.14308	-0.0002
Н	5.90441	0.00006	0.
С	0.60317 -	0.00005	0.
С	-0.60317 -	-0.00007	-0.00001
С	-2.03343 -	-0.00003	0.
С	-2.73854	1.20931	-0.00012
С	-2.73861 -	-1.20933	0.00012
С	-4.12523	1.20409	-0.00011
Н	-2.19221	2.14412	-0.00021
С	-4.1253 -	1.20404	0.00012
Н	-2.19233	-2.14417	0.0002
С	-4.82144	0.00004	0.
Н	-4.66453	2.14315	-0.0002
Η	-4.66464	-2.14307	0.00021
Н	-5.90441	0.00007	0.00001

M06-2X/def2QZVP-SMD(DMSO): E = -539.480595529 hartree Corrected Gibbs Free Energy = -539.324016 hartree

8

C 0.01229 0.92028 -0.0001			
C -1.13969 0.56468 -0.00008			
C -2.50187 0.1372 -0.00006			
C -2.80527 -1.22915 -0.00063			
C -3.53349 1.08286 0.00055			
C -4.12878 -1.64003 -0.00059			
Н -2.00111 -1.95445 -0.0011			
C -4.85349 0.66069 0.00059			
Н -3.29064 2.13795 0.00099			
C -5.15228 -0.69791 0.00002			
Н -4.36304 -2.69709 -0.00104			
Н -5.65153 1.39244 0.00107			
Н -6.18521 -1.02331 0.00005			
C 1.3872 1.38703 -0.00008			
O 1.62876 2.57784 -0.00013			
C 2.45938 0.35374 -0.00001			
C 2.15983 -1.00795 0.00021			
C 3.79021 0.77516 -0.00014			
C 3.18656 -1.94234 0.0003			
Н 1.12795 -1.33795 0.00032			
C 4.81178 -0.16009 -0.00005			
Н 4.01015 1.83526 -0.0003			
C 4.5102 -1.51966 0.00016			
Н 2.95335 -2.99959 0.00047			
Н 5.84406 0.16659 -0.00016			
Н 5.31047 -2.24971 0.00023			
M06-2X/def2QZVP-SMD(DMSO): E =			
-652.820211686 hartree			
Corrected Gibbs Free Energy = -652.657576			
hartree			

CF3

C -0.00001 0.00004 0.32621 F 0.85031 0.91737 -0.0725 F 0.36939 -1.19502 -0.07252 F -1.2197 0.27762 -0.07245 M06-2X/def2QZVP-SMD(DMSO): E = -337.619368642 hartree Corrected Gibbs Free Energy = hartree

Ts

 S
 2.14228
 -0.0025
 -0.24187

 O
 2.66037
 1.28335
 0.28921

 O
 2.65473
 -1.28796
 0.2958

 C
 0.35264
 0.00151
 -0.09773

 C
 -0.3113
 1.21798
 -0.08691

 C
 -1.69663
 1.20719
 -0.00805

 C
 -2.40693
 0.00756
 0.02595

 C
 -1.69965
 -1.19789
 -0.01166

 C
 -0.31792
 -1.21491
 -0.09046

 H
 0.23573
 2.15157
 -0.11327

H-2.233542.147690.02038O3.05313-0.185541.49211H-2.24237-2.135720.01414C1.064131.018020.20427H0.22619-2.15015-0.1188C0.681681.81649-0.8643C-3.90526-0.00320.10441C-0.569712.41405-0.83285H-4.23718-0.529871.0015C-1.443952.197160.23414H-4.306031.009210.12814C-1.028261.386061.292H-4.32975-0.5253-0.75558C0.220420.782921.28112M06-2X/def2QZVP-SMD(DMSO): E =H1.35331.97735-1.69846H-0.878073.05034-1.65439H-1.695621.216592.12942-819.590768494 hartreeH-0.878073.05034-1.65439Corrected Gibbs Free Energy = -337.630750H-1.695621.216592.12942 hartree

TS_1+CF3

H0.07272.36/990.10512C-1.173280.609710.30904hartreeC-2.195891.19124-0.44815TS_2+CF3C-3.352930.48455-0.7477C-2.101620.95283-1.30393H-2.076862.21017-0.79981C-1.453571.81518-0.50954C-2.49188-1.415330.449H-3.102371.17584-1.65502H-0.55639-1.191821.32597H-1.589570.10913-1.75113C-3.50512-0.82185-0.29981H-1.958862.69655-0.12755H-4.134350.95359-1.33314C-0.059031.64037-0.01619H-2.60273-2.435570.79594H0.526442.5429-0.22918H-4.40513-1.37726-0.53349H-0.072871.511011.07404C2.49598-0.21487-0.21854O0.528280.51146-0.63697F2.772480.5871-1.23027C1.789930.16693-0.26607F3.61439-0.627690.35211C2.553290.871740.66178M06-2X/def2QZVP-SMD(DMSO): E =C3.59301-1.39985-0.5698H1.70366-1.50441-1.60005C3.838730.426330.96419<

hartree

TS_1+Ts

С	1.8213	-1.95354 -0.90487
С	0.80327	-2.37133 -0.09842
Η	2.80072	-2.40565 -0.79833
Η	1.63083	-1.43617 -1.83934
Η	1.04828	-3.00171 0.75098
С	-0.59097	-1.97855 -0.21023
С	-1.47947	-2.35223 0.80918
С	-1.07937	-1.20122 -1.27283
С	-2.80551	-1.94832 0.78073
Η	-1.11101	-2.95353 1.63297
С	-2.40393	-0.80056 -1.2989
Η	-0.41943	-0.90415 -2.07879
С	-3.27179	-1.16627 -0.27097
Η	-3.47576	-2.23998 1.57996
Η	-2.76495	-0.19343 -2.12061
Η	-4.30635	-0.84644 -0.29491
S	2.60381	0.1105 0.10673
0	3.52433	0.84615 -0.8025

Н 0.53669 0.14625 2.09818 C -2.82481 2.78459 0.22285 IS_1+CF3 H-2.855593.71192-0.34916C1.056991.024211.37503H-3.523052.08241-0.24272C0.028131.399510.59926H-3.17892.979741.2352H1.882951.70271.55248M06-2X/def2QZVP-SMD(DMSO): E =H0.07272.367990.10912Corrected Gibbs Free Energy = -1129.030585C-1.173280.609710.30904hartreeC-2.195891.19124-0.44815Н -2.85559 3.71192 -0.34916

H 2.16872 1.7567 1.14941 C 4.36596 -0.70309 0.35754 Н 3.98998 -2.2844 -1.05313 H 4.42698 0.97908 1.68684 H 5.36573 -1.0397 0.60033 C -3.03723 -0.59026 0.25259 F -3.9402 0.05249 0.97614 F -3.60662 -1.61599 -0.3624 F -2.06519 -1.0237 1.03813 M06-2X/def2QZVP-SMD(DMSO): E = -761.807214471 hartree Corrected Gibbs Free Energy = -761.668552hartree

TS_2+Ts

С	2.47758	-2.0123	-0.81141
С	1.28463	-2.27044	-0.19204
Η	3.35656	-2.58212	-0.5307
Η	2.47768	-1.58317	-1.81034
Η	1.25432	-2.85494	0.72084
С	-0.01371	-1.76761	-0.72056

Н 0.10922 -0.77126 -1.16108				
Н -0.37884 -2.4367 -1.51229				
O -0.95059 -1.73088 0.34612				
C -2.16581 -1.17714 0.09514				
C -3.02196 -1.06433 1.19319				
C -2.58201 -0.73621 -1.1597				
C -4.287 -0.52531 1.03278				
Н -2.6764 -1.40729 2.16084				
C -3.85841 -0.19465 -1.30291				
Н -1.93676 -0.81141 -2.02421				
C -4.71579 -0.08632 -0.21893				
H -4.94303 -0.44513 1.89122				
Н -4.17568 0.144 -2.282				
Н -5.7051 0.3355 -0.34217				
S 3.32896 -0.05396 0.11152				
O 4.28048 0.5988 -0.82496				
O 3.77264 -0.33983 1.49885				
C 1.83428 0.91909 0.18681				
C 1.45481 1.66043 -0.92333				
C 0.19529 2.24335 -0.93403				
C -0.68601 2.0685 0.13481				
C -0.26721 1.32451 1.2392				
C 0.98582 0.73416 1.26974				
Н 2.12751 1.77598 -1.76414				
Н -0.11756 2.82231 -1.79521				
Н -0.94584 1.18028 2.07226				
Н 1.29655 0.13438 2.11613				
C -2.0636 2.66383 0.10914				
Н -2.08335 3.60702 0.66167				
Н -2.38705 2.86509 -0.91207				
Н -2.78135 1.98893 0.5796				
M06-2X/def2QZVP-SMD(DMSO): E =				
-1243.77764748 hartree				
Corrected Gibbs Free Energy = -1243.528414				
hartree				

TS_3+CF3

С	0.01509	0.01808	-0.74038
Η	0.1628	0.86862 ·	-0.06469
Η	-0.25505	0.40655	-1.72766
0	-0.99551	-0.84906	-0.24419
С	-2.2402	-0.31721	-0.07972
С	-3.21285	-1.19748	0.39701
С	-2.56866	1.00678	-0.35552
С	-4.50743	-0.75151	0.59688
Η	-2.93361	-2.2231	0.60428
С	-3.87756	1.43881	-0.14857
Η	-1.83188	1.70594	-0.72596
С	-4.84982	0.57191	0.32465
Η	-5.25568	-1.44162	0.96744
Η	-4.12753	2.47043	-0.36486
Η	-5.86333	0.91836	0.48123
С	1.25555	-0.7398	-0.83726
С	2.35705	-1.24611	-0.84024
Η	3.1645	-1.92586	-1.02515
С	3.74706	0.17767	0.24851
F	4.20548	-0.40788	1.34291

F 4.75862 0.51173 -0.53698 F 3.05751 1.25686 0.5737 M06-2X/def2QZVP-SMD(DMSO): E = -760.555008809 hartree Corrected Gibbs Free Energy = -760.440596 hartree

hartree TS 3+Ts C -0.03647 -2.10165 -0.47017 H -0.10843 -1.6309 -1.45681 Н -0.50802 -3.09047 -0.52923 O -0.66281 -1.31109 0.52768 C -1.9798 -1.00741 0.34556 C -2.58911 -0.32242 1.3983 C -2.70832 -1.33246 -0.79431 C -3.9223 0.03649 1.30678 Н -1.9998 -0.08215 2.27458 C -4.0507 -0.96127 -0.87042 H -2.25904 -1.87002 -1.61803 C -4.66358 -0.27921 0.16874 Н -4.38748 0.56739 2.12859 Н -4.61405 -1.21754 -1.75957 Н -5.70649 0.00247 0.09922 C 1.37171 -2.23985 -0.1245 C 2.57304 -2.12135 0.13728 Н 3.48946 -2.63294 0.38412 S 3.29037 -0.03838 0.15118 O 4.14874 0.13249 -1.0453 O 3.84629 0.30421 1.48189 C 1.7677 0.85692 -0.08993 C 1.18222 0.82404 -1.34945 C -0.07363 1.38388 -1.51035 C -0.74188 1.97273 -0.43298 C -0.11738 2.0035 0.8122 C 1.13252 1.42928 0.99973 Н 1.69507 0.36293 -2.18539 Н -0.55029 1.35838 -2.48402 H -0.62515 2.46213 1.65269 H 1.6053 1.4293 1.97371 C -2.12492 2.52246 -0.62259 H -2.50202 2.97142 0.29574 Н -2.13993 3.27601 -1.41281 H -2.80753 1.72104 -0.91929 M06-2X/def2OZVP-SMD(DMSO): E = -1242.52393764 hartree Corrected Gibbs Free Energy = -1242.298147hartree

TS_4+CF3

C 3.03159 -1.24819 -0.22672 C 1.78935 -1.17452 0.38328 C 1.19003 0.07354 0.59742 C 1.85145 1.24045 0.19319 C 3.09355 1.15408 -0.41545 C 3.68558 -0.08711 -0.62636 H 3.4915 -2.21467 -0.39109 H 1.27451 -2.07402 0.69674

H 1.38465 2.20302 0.36047 Н 3.60196 2.05815 -0.72656 Н 4.65623 -0.14959 -1.10246 C -0.08958 0.15398 1.2191 C -1.22273 0.2092 1.64768 H -2.08658 0.28043 2.27541 C -2.59795 -0.01917 -0.24815 F -3.12994 -1.23044 -0.23629 F -3.55715 0.89227 -0.25241 F -1.83625 0.1252 -1.31757 M06-2X/def2QZVP-SMD(DMSO): E = -646.026822096 hartree Corrected Gibbs Free Energy = -645.941808hartree

TS 4+Ts

C 2.8183 -0.76805 -1.13199 C 1.49397 -1.09105 -1.3735 C 0.76516 -1.81093 -0.41194 C 1.39217 -2.21763 0.77861 2.71722 -1.89051 1.00373 С C 3.431 -1.1612 0.055 Н 3.37529 -0.20327 -1.86941 Н 1.00594 -0.78132 -2.28924 H1.00594-0.78132-2.28924hartreeH0.82464-2.771181.51617H3.19718-2.198571.92418H4.46614-0.901920.2399C-1.345190.14036-0.06044C-0.6081-2.06757-0.615C-0.689681.18712-0.20637C-1.83601-2.0655-0.69974S-0.03965-1.638210.23117H-2.76214-2.53454-0.9777O-0.21507-2.61957-0.87597S-2.67881-0.083940.11292O-0.1654-2.134551.6298O-3.17587-0.290941.49638C1.58132-0.896860.05736O-3.591520.51772-0.89202C2.1463-0.79685-1.20716C-1.184550.894840.18682C3.34958-0.12403-1.34818C-0.353540.758781.28997C3.979770.46399-0.24811C0.867691.415561.28748C3.379720.356381.00618C1.267372.186320.19366C2.17663-0.318311.16768C0.406792.30174-0.8996H1.65666-1.2451-2.06285C-0.815791.64625-0.91941H3.80624-0.04531-2.32827H1.52581.321622.14383H1.71307-0.399712.14335H0.70331 Н 0.82464 -2.77118 1.51617 -1127.99800408 hartree

Corrected Gibbs Free Energy = -1127.804329 H -3.68451 1.38736 0.60934 hartree

TS 5+CF3

С	0.79043	1.3409	-0.36735
С	0.08722	0.37367	-0.1469
С	1.65849	-1.33978	0.0081
F	1.60791	-2.1136	-1.073

F 2.85368 -0.76094 0.0649
F 1.4977 -2.09954 1.08937
C -1.12612 -0.43053 0.07837
Н -1.12896 -1.27424 -0.61813
Н -1.08194 -0.85836 1.08406
C -2.41203 0.38165 -0.08409
H -2.44547 0.80129 -1.09367
Н -2.39376 1.22477 0.6125
C -3.65529 -0.46437 0.16377
Н -3.60969 -0.88259 1.17386
Н -3.65678 -1.31279 -0.52722
C -4.93955 0.33796 -0.0035
Н -5.01721 0.74152 -1.0159
Н -5.82189 -0.27776 0.18014
Н -4.96667 1.17888 0.69366
O 1.6728 2.24735 -0.61921
C 2.25084 2.86591 0.55958
Н 2.97111 3.59013 0.19184
Н 1.46666 3.36054 1.13135
H 2.74458 2.10404 1.16184
M06-2X/def2QZVP-SMD(DMSO): E =
-686.735952166 hartree
Corrected Gibbs Free Energy = -686.590821
hartree

C -3.79576 0.64648 -0.18784 Н -3.64195 1.17088 -1.13546 C -5.19853 0.05187 -0.1484 Н -5.29544 -0.69432 -0.94262 Н -5.33851 -0.47743 0.79883 C -6.27656 1.11652 -0.30768 Н -7.27631 0.67958 -0.27839 H -6.21159 1.85883 0.49144

H -6.16768 1.64109 -1.25996 O 0.25585 2.03745 -0.3625 C 0.602 2.81118 0.82108 H 1.49475 3.36841 0.5555 H -0.22097 3.48418 1.05631 H 0.79837 2.13233 1.64949 M06-2X/def2QZVP-SMD(DMSO): E = -1168.70399190 hartree Corrected Gibbs Free Energy = -1168.450742 hartree

TS_6+CF3

C 1.61939 1.20305 -0.1598 H 1.7317 1.76819 -1.08743 Н 1.74195 1.90556 0.66803 C 0.263 0.6292 -0.10999 C -0.66566 -0.15749 -0.08056 C -1.84553 -0.95321 -0.04422 C -2.33683 -1.43434 1.17738 C -2.52826 -1.25612 -1.23066 C -3.48945 -2.20334 1.20589 Н -1.80811 -1.19958 2.09277 C -3.68039 -2.02505 -1.19 Н -2.14762 -0.8831 -2.1733 C -4.16303 -2.50063 0.02535 Н -3.86426 -2.57228 2.15252 H -4.20421 -2.25504 -2.10952 Н -5.06329 -3.10198 0.05222 C 2.67 0.11598 -0.07899 C 3.20232 -0.43867 -1.23951 C 3.09583 -0.35662 1.16021 C 4.14948 -1.4535 -1.1632 Н 2.87402 -0.07219 -2.20597 C 4.04238 -1.37059 1.23824 H 2.68351 0.07453 2.06608 C 4.57118 -1.9216 0.07584 Н 4.56014 -1.87639 -2.0721 Н 4.36998 -1.72867 2.20676 H 5.31065 -2.71078 0.13618 C -0.88634 2.6482 0.04457 F -2.13062 2.42859 -0.34677 F -0.8817 3.01495 1.31822 F -0.35357 3.61202 -0.69472 M06-2X/def2OZVP-SMD(DMSO): E = -916.408479963 hartree Corrected Gibbs Free Energy = -916.221672hartree

TS_6+Ts

С	2.54906	-1.29317	-0.05181
Η	2.51742	-1.99316	0.78576
Η	2.68188	-1.88087	-0.96476
С	1.25086	-0.58157	-0.13157
С	0.58279	0.45813	-0.12407
С	-0.39018	1.47861	-0.15459
С	-0.71227	2.1129	-1.36865
С	-1.08589	1.82811	1.01605

C -1.72115 3.05812 -1.40655		
Н -0.17342 1.84122 -2.26788		
C -2.09865 2.77044 0.96105		
Н -0.83496 1.33888 1.94899		
C -2.4208 3.38489 -0.24641		
Н -1.97025 3.54019 -2.34367		
Н -2.64385 3.02514 1.8617		
Н -3.21598 4.11926 -0.28375		
C 3.69569 -0.32237 0.11669		
C 4.31351 -0.16537 1.3531		
C 4.13434 0.43719 -0.96683		
C 5.35913 0.7395 1.50685		
Н 3.97621 -0.75547 2.19791		
C 5.1773 1.34048 -0.81486		
Н 3.6548 0.316 -1.93237		
C 5.79206 1.49437 0.42429		
Н 5.835 0.85264 2.47344		
Н 5.51328 1.92378 -1.66364		
Н 6.60649 2.19851 0.54297		
S -0.18559 -2.34053 -0.43221		
O 0.08328 -3.37041 0.60611		
O -0.16468 -2.75222 -1.86017		
C -1.76848 -1.58453 -0.08538		
C -2.22941 -1.55978 1.22242		
C -3.38743 -0.84967 1.50582		
C -4.06459 -0.15013 0.50608		
C -3.57192 -0.19481 -0.80019		
C -2.42017 -0.90348 -1.10452		
Н -1.69451 -2.08489 2.00399		
Н -3.75972 -0.82071 2.52325		
Н -4.08765 0.34801 -1.58441		
Н -2.03082 -0.92162 -2.11507		
C -5.29869 0.64373 0.82191		
Н -5.30803 1.58166 0.2643		
Н -6.19533 0.08505 0.54117		
Н -5.36071 0.86641 1.88687		
M06-2X/def2QZVP-SMD(DMSO): E =		
-1398.37970800 hartree		
Corrected Gibbs Free Energy = -1398.083795		
hartree		

TS_7+CF3

С	4.31105	-0.64851	-1.20256
С	2.92592	-0.63839	-1.21013
С	2.21996	-0.6198	0.00211
С	2.92512	-0.61342	1.21493
С	4.31026	-0.62366	1.2085
С	5.00579	-0.64155	0.00326
Η	4.85211	-0.66156	-2.14045
Η	2.37868	-0.64346	-2.14437
Η	2.37726	-0.59924	2.14872
Η	4.85069	-0.61725	2.14681
Η	6.08873	-0.64943	0.00369
С	0.80135	-0.60155	0.00154
С	-0.40886	-0.43978	0.00008
С	-1.82616	-0.71364	0.00219
С	-2.5155	-0.84376	-1.20646

С	-2.51508	-0.8289	1.21256
С	-3.87793	-1.10483	-1.19939
Η	-1.97839	-0.74177	-2.14141
С	-3.87759	-1.08992	1.20907
Η	-1.97769	-0.71578	2.14607
С	-4.56077	-1.22845	0.00577
Η	-4.40792	-1.21041	-2.13785
Η	-4.40732	-1.18402	2.1489
Η	-5.62464	-1.43099	0.00719
С	-0.57411	1.82971	-0.00873
F	-1.18441	2.23634	1.09548
F	0.64522	2.34169	-0.05355
F	-1.26216	2.23226	-1.0679
M0	6-2X/def2	QZVP-SN	ID(DMSO): E =
-87	7.0974421	55 hartree	
Co	rrected Gil	bbs Free I	Energy = -876.937191
har	tree		

TS 7+Ts

- D .	_/ 1 _ 5	
С	5.06737	0.82614 0.81008
С	3.68499	0.86852 0.92471
С	2.88975	0.63205 -0.19845
С	3.48263	0.33234 -1.42632
С	4.8655	0.29423 -1.53125
С	5.65848	0.54021 -0.41549
Η	5.68356	1.01758 1.67975
Η	3.21624	1.09005 1.87558
Η	2.85726	0.13579 -2.28832
Η	5.32505	0.06951 -2.48573
Η	6.73761	0.50817 -0.50132
С	1.44124	0.65798 -0.07737
С	0.37898	1.29804 -0.14425
С	-0.94417	1.77055 -0.13684
С	-1.76011	1.609 -1.27232
С	-1.47894	2.35922 1.02576
С	-3.08523	2.00457 -1.22893
Η	-1.34462	1.15859 -2.16508
С	-2.80361	2.75364 1.0503
Η	-0.84724	2.48187 1.89659
С	-3.61173	2.57254 -0.07092
Η	-3.71444	1.8662 -2.09953
Η	-3.21422	3.19915 1.94775
Η	-4.6507	2.87667 -0.04278
S	0.97991	-1.45091 0.52715
0	1.26425	-1.59825 1.97728
0	1.63504	-2.38717 -0.42043
С	-0.78909	-1.54026 0.28136
С	-1.62826	-1.07588 1.28496
С	-2.99145	-1.02068 1.03972
С	-3.51657	-1.40947 -0.195
С	-2.64539	-1.87584 -1.18054
С	-1.27695	-1.93139 -0.9567
Η	-1.22297	-0.76244 2.2394
Η	-3.65901	-0.66096 1.81465
Η	-3.04207	-2.18803 -2.1396
Η	-0.60168	-2.27966 -1.72827
С	-4.98734	-1.28275 -0.46443

Н -5.292 -1.90988 -1.30183 Н -5.57278 -1.55554 0.41426 Н -5.23154 -0.24563 -0.71326 M06-2X/def2QZVP-SMD(DMSO): E = -1359.06753860 hartree Corrected Gibbs Free Energy = -1358.798446 hartree

TS 8+CF3

C -0.128 0.42918 -0.2532
C 0.91138 -0.20834 -0.25461
C 2.19129 -0.81927 -0.21089
C 2.42574 -1.89986 0.65055
C 3.22391 -0.33342 -1.02537
C 3.68156 -2.48218 0.6935
Н 1.62226 -2.26844 1.27589
C 4.47386 -0.92753 -0.9748
Н 3.03351 0.50402 -1.68501
C 4.70407 -1.99959 -0.11786
Н 3.86447 -3.31561 1.35987
Н 5.27209 -0.55351 -1.60339
Н 5.68381 -2.45958 -0.08143
C -1.53323 0.73135 -0.53938
O -1.84995 1.80583 -1.00402
C -2.53213 -0.33552 -0.24721
C -2.17473 -1.55198 0.33324
C -3.86788 -0.08438 -0.56964
C -3.14726 -2.50939 0.58769
Н -1.14184 -1.75284 0.5878
C -4.83425 -1.04334 -0.31651
Н -4.13527 0.86341 -1.01894
C -4.47443 -2.25711 0.263
Н -2.86813 -3.45256 1.04011
Н -5.8688 -0.84759 -0.56901
Н -5.23113 -3.00635 0.46111
C 0.50311 2.5313 0.49028
F -0.3947 3.12075 1.25997
F 1.59802 2.28698 1.19105
F 0.80008 3.3037 -0.53852
M06-2X/def2QZVP-SMD(DMSO): E =
-990.438481511 hartree
Corrected Gibbs Free Energy = -990.270817
hartree

TS	_8+Ts		
С	1.10851	-0.33221	0.55418
С	0.29784	0.59371	0.67473
С	-0.80357	1.46309	0.77247
С	-1.42666	1.68221	2.01438
С	-1.32162	2.06062	-0.3897
С	-2.55776	2.47418	2.08046
Η	-1.02097	1.21529	2.90295
С	-2.45991	2.84317	-0.30613
Η	-0.83479	1.88694	-1.34132
С	-3.08036	3.04919	0.92327
Η	-3.04174	2.64011	3.03463
Η	-2.86907	3.2923	-1.20257

Η	-3.97237 3.66065 0.98055	C -2.51277 -1.33176 0.65591
С	2.53237 -0.7315 0.58997	C -3.6652 -0.68233 0.24279
0	2.85304 -1.78759 1.08496	C -3.856 -0.3366 -1.09747
С	3.52698 0.21619 0.01227	C -2.87113 -0.6735 -2.02599
С	3.15297 1.32643 -0.74403	C -1.70739 -1.31986 -1.63139
С	4.88016 -0.05045 0.23448	Н -2.36123 -1.58446 1.69803
С	4.12692 2.16344 -1.27151	Н -4.42382 -0.4248 0.97361
Η	2.10765 1.53529 -0.93203	Н -3.00807 -0.41296 -3.06896
С	5.84772 0.79212 -0.28681	Н -0.93759 -1.56529 -2.35247
Η	5.16054 -0.91634 0.82052	C -5.09495 0.40187 -1.51276
С	5.47148 1.89987 -1.04131	Н -5.1795 1.3411 -0.96061
Η	3.8348 3.02187 -1.863	Н -5.0831 0.62656 -2.57864
Η	6.89562 0.58763 -0.10674	Н -5.98788 -0.18683 -1.29202
Η	6.22877 2.5573 -1.45067	M06-2X/def2QZVP-SMD(DMSO): E =
S	0.01278 -2.33089 0.25134	-1472.40849847 hartree
0	-0.22206 -3.04791 1.52713	Corrected Gibbs Free Energy $= -1472.131933$
0	0.62833 -3.05488 -0.8875	hartree
С	-1.55196 -1.65072 -0.29437	

7. References

- [1] J. A. Johnson, B. M. Petersen, A. Kormos, E. Echeverria, Y.-S. Chen, J. Zhang, J. Am. Chem. Soc. 2016, 138, 10293–10298.
- [2] R. Kim, K. Kwon, H.-Y. Lee, Chem. Asian J. 2021, 16, 3909–3913.
- [3] P. Chen, Q. Zhou, Z. Chen, Y.-K. Liu, Y. Liang, K.-W. Tang, Org. Biomol. Chem. 2020, 18, 7345–7354.
- [4] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, Jr. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox. *Gaussian 16, Revision A.03*, Gaussian, Inc., Wallingford CT, **2016**.
- [5] (a) C. Lee, W. Yang, R. G. Parr. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. *Phys. Rev. B: Condens.*

Matter Mater. Phys. **1988**, *37*, 785. (b) A. D. Becke. Density - functional thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. **1993**, *98*, 5648.

- [6] A. V. Marenich, C. J. Cramer, D. G. Truhlar. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378.
- [7] C. Y. Legault. CYLview, 1.0b; Université de Sherbrooke, Sherbrooke, Canada, 2009, http://www.cylview.org.
- [8] S. Grimme. Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory. *Chem. Eur. J.* 2012, 18, 9955.
- [9] G. Luchini, J. V. Alegre-Requena, Y. Guan, I. Funes-Ardoiz, R. S. Paton. 2019, GoodVibes: GoodVibes 3.0.1. http://doi.org/10.5281/zenodo.595246.

7. NMR Spectra

f1 (ppm)

77.37 77.16 76.95

~55.86 --54.19 ~52.37

 $<^{21.72}_{21.46}$

2.408

Me

8.012 7.992 7.7891 7.7882 7.7882 7.7882 7.7284 7.7215 7.7259 7.7215 7.7215 7.7456 6.445 6.445

¹H NMR (400 MHz, CDCl₃)

77.48 77.16 76.84 ~55.53 ~54.07 ~52.28 ~38.87 ~21.41

¹³C NMR (101 MHz, CDCl₃)

8.034 8.014 8.014 8.014 7.826 7.757 7.758 7.757

 $< \begin{cases} 8.239 \\ 8.218 \\ 7.920 \\ 7.7796 \\ 7.776 \\ 7.776 \\ 7.7392 \\ 7.7392 \\ 7.283 \\ 7.283 \end{cases}$

8.024 7.7785 7.7

¹H NMR (400 MHz, CDCl₃)

144.68 144.68 136.63 136.63 136.63 136.63 135.63 136.63 132.30 130.65 130.65 130.65 130.65 130.65 130.65 123.42 123.42

¹H NMR (400 MHz, CDCl₃)

144.63 144.63 138.33 138.33 138.66 138.66 138.66 138.66 138.65 133.65 133.05 133.05 123.05 123.05

¹³C NMR (151 MHz, CDCl₃)

144.63 144.63 137.72 136.66 136.66 136.66 136.66 136.66 132.31 132.31 132.33 132.33 132.33 122.33 122.33 120.68

¹³C NMR (101 MHz, CDCl₃)

-8:544 -8:246 -8:227 -8:227 -8:227 -8:185 -8:185 -8:185 -8:185 -17:855 -17:855 -17:855 -17:855 -17:855 -17:855 -17:752

4.333 4.296 4.205 4.2012 4.201

8.037 8.017 7.691 7.671 7.671 7.671 7.671 7.657 7.2862 7.2862 7.253 7.253 7.219 7.7219 7.7219 7.7219 6.477 6.477

4.315 4.278 4.278 4.216 5.3311 5.3311 5.3311 5.3311 5.3311 5.3311 5.345

¹H NMR (400 MHz, CDCl₃)

-77.37 -77.16 -76.95

---38.90

55.33 54.49 52.51

--21.49

144.69 141.60 141.80 135.65 135.65 135.65 135.65 132.82 132.82 132.82 132.82 132.82 132.82 132.31

-8.004 -8.014 -7.1256 -7.12561 -7.12561 -7.12561 -7.12561 -7.12561 -6.393 -6.354 -6.355 -6.5555 -6.5555 -6.5555

144.63 136.75 136.75 133.75 130.78 130.78 129.09 122.88

¹H NMR (400 MHz, CDCl₃)

144.47 143.91 137.54 137.54 132.29 128.45 122.31

8.044
 8.024
 8.024

144.64
 142.78
 133.75
 133.75
 132.29
 122.75

¹³C NMR (101 MHz, CDCl₃)

77.37 77.16 76.95 ---39.50

54.75 54.04 52.03 52.03

¹³C NMR (151 MHz, CDCl₃)

8.056 8.036 7.284 7.263 7.263 7.243 7.168 <6.530 6.527 ∠1.267 ∠1.222 √1.083

¹H NMR (400 MHz, CDCl₃)

77.37 777.16 76.95

-39.30

55.44 54.21 52.32

-26.92

<4.92 4.85

-144.66 --142.62 136.74 133.60 132.48 128.42 128.42 127.44

8.054 8.054 8.054 8.054 7.7284 7.7284 7.7284 7.7284 7.7385 7.7385 7.7385 7.7453 7.7453 7.7453 7.7453 7.7453 7.7453 7.7453 7.7453 7.7453 7.7453 7.7453 7.7453 7.7453 7.7454 7.7453 7.7453 7.7453 7.7453 7.7453 7.7453 7.7453 7.7453 7.7453 7.7453 7.7454 7.7453 7.7453 7.74453

¹H NMR (400 MHz, CDCl₃)

77.37 77.16 76.95

¹³C NMR (151 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (151 MHz, CDCl₃)

8.062 8.052 9.039 7.861 7.861 7.664 7.661 7.664 6.897 6.897 6.897 6.897 6.897 6.897 6.897 6.897 6.897 6.897 6.897 6.897 6.897 7.645 7.652 7.645 7.652 7.645 7.645 7.652 7.645 7.652 7.645 7.652 7.652 6.837 7.652 6.837 7.652 6.837 7.652 6.837 6.837 6.837 6.837 6.837 6.837 6.637 6.757 6.757 6.7577 6.7577

8.169 8.165 8.165 8.165 8.137 7.887 7.657 7.663 7.663 7.663 6.988 6.988 6.444 6.444 6.444

¹H NMR (400 MHz, CDCl₃)

4.258 4.118

-77.37 -77.16 \76.95

--56.01 --54.05 --52.24

---38.88

-133.58 7129.57 127.80 -127.80

7.889 7.864 7.809 7.788 7.778 7.778 7.777 7.767 7.767 7.767 7.767 7.767 7.767 7.767 7.767 7.767 7.767 7.767 7.767 7.761 7.768 4 7.7684 7.7584 7.7584

¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

4a ¹³C NMR (151 MHz, CDCl₃)

7,098 7,985 77,468 77,468 7467 7467 7464 7443 7443 7443 7443 77,359 77,357 77,357 77,359 77,008 77,008 70,008 70,008 6,971 6,972 6,973 7,085 7,085 7,098 7,0008 7,009 7,009 7,000000

-120 -125 f1 (ppm)

Constant of the second second

7,7,964 7,945 7,945 7,77,103 7,124 7,103 7,103 6,845 6,827 6

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (151 MHz, CDCl₃)

7,063 7,043 7,005 7,005 7,005 7,005 7,005 6,923 6,523 6,524 6,534 6,534 6,534

-4.699 -4.444 4.3405 -4.3405 -4.3405 -4.3405 -3.572 -3.572 -3.572 -3.414 -2.375 -2.375 -2.375

¹H NMR (400 MHz, CDCl₃)

4.462 4.445 4.445 4.427 4.227 4.227 4.227 3.612

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (151 MHz, CDCl₃)

---2.335

¹H NMR (400 MHz, CDCl₃)

Construction of the second of

Page 2027 Page 2027 Page 2027 Page 2028 ~2.866

1.554 2.553 2.554 2.554 2.554 2.554 2.554 2.554 2.555 2.551 2.551 2.551 2.551 2.551 2.551 2.551 2.551 2.551 2.551 2.551 2.551 2.551 2.551 2.551 2.552 2.551 2.553 2.551 2.553 2.551 2.553 2.551 2.555 2.551 2.555 2.551 2.552</t

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (151 MHz, CDCl₃)

