Electronic Supplementary Information

Enantioselective Direct Michael Addition of Cyanohydrin Ether Derivatives to Enones Catalyzed by Chiral Bis(guanidino)iminophosphorane Organosuperbase

Saikat Das,¹ Azusa Kondoh,^{2,*} Masahiro Terada^{1,*}

Graduate School of Science, Tohoku University

¹ Department of Chemistry, Graduate School of Science, Tohoku University,

Sendai 980-8578, Japan

² Research and Analytical Center for Giant Molecules, Graduate School of Science

Tohoku University, Sendai 980-8578, Japan

Contents

1. General Information	S 2
2. Additional Experimental Results	S 3
3. Experimental Procedure and Analytical Data	S 7
4. ¹ H NMR and ¹³ C NMR Spectra	S29
5. HPLC Chart	S62
6. References	S85

1. General information

Unless otherwise noted, the reactions were carried out with dried glassware under argon or nitrogen atmosphere. Analytical thin layer chromatography (TLC) was performed on Merck precoated TLC plates (silica gel 60 GF254, 0.25 mm). Flash column chromatography was performed on silica gel 60N (spherical, neutral, 40-50 m; Kanto Chemical Co., Inc.). ¹H NMR spectra were recorded on a JEOL JNM-ECA600 (600 MHz) spectrometer. Chemical shifts are reported in ppm from the solvent resonance or tetramethylsilane (TMS) as the internal standard (CDCl₃: 7.27 ppm, TMS: 0.00 ppm). Data are reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad) and coupling constants (Hz). ¹³C NMR spectra were recorded on a JEOL JNM-ECA600 (150 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from the solvent resonance as the internal standard (CDCl₃: 77.0 ppm). ¹⁹F NMR spectra were recorded on a JEOL JNM-ECA600 (565 MHz) spectrometer. Chemical shifts are reported in ppm from the C₆F₅CF₃ (-67.2 ppm) resonance as the external standard. Optically rotations were measured on a Jasco P-1020 digital polarimeter with a sodium lamp and reported as follows; $[\alpha]^{T}_{D}$ (c = g/100 mL, solvent). HPLC analysis was performed on a JASCO LC-2000 Plus system with UV and CD detectors. Infrared spectra were recorded on a JASCO FT/IR-4100 spectrometer. High resolution mass spectra analysis was performed on a Bruker Daltonics solariX 9.4T FT-ICR-MS spectrometer at the Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University.

Materials: Unless otherwise noted, materials were purchased from Wako Pure Chemical Industries, Ltd., Tokyo Chemical Industry Co., LTD., Aldrich Inc., and other commercial suppliers and were used without purification. Dichloromethane, diethyl ether, tetrahydrofuran and toluene were supplied from Kanto Chemical Co., Inc. as "Dehydrated solvent system". Other solvents were purchased from commercial suppliers as dehydrated solvents, and used under argon atmosphere.

2. Additional Experimental Results

(M)-1a·HBr: R = Me, Ar = Ph, X = Br (M)-1b·HCl: R = *t*-Bu, Ar = Ph, X = Cl (M)-1c·HCl: R = Bn, Ar = Ph, X = Cl (M)-1d·HCl: R = Bzh, Ar = Ph, X = Cl (M)-1e·HCl: R = *t*-Bu, Ar = 2-Np, X = Cl (M)-1f·HCl: R = Ad, Ar = Ph, X = Cl (M)-1g·HCl: R = *t*-Bu, Ar = 1-Np, X = Cl

Entry	Cat.	Solvent	T(°C)	Time (h)	Yield (%) ^b	Dr ^c	ee (%) ^d
1	(<i>M</i>)- 1a ⋅HBr	toluene	rt	6 h	93	60:40	25/6
2	(<i>M</i>)- 1b ·HCl	toluene	rt	6 h	69	70:30	38/8
3	(<i>M</i>)- 1c ⋅HCl	toluene	rt	6 h	83	64:36	11/8
4	(<i>M</i>)-1d⋅HCl	toluene	rt	6 h	95	66:34	6/6
5	(<i>M</i>)- 1e ⋅HCl	toluene	rt	6 h	91	78:22	55/32
6	(<i>M</i>)- 1f ⋅HCl	toluene	rt	6 h	72	67:33	32/14
7	(<i>M</i>)- 1g ⋅HCl	toluene	rt	6 h	61	79:21	56/26

^{*a*}Unless otherwise noted, all reactions were carried out using (*M*)-1·HX (5.5 µmol) with KHMDS (5.0 µmol), **2a** (0.050 mmol), and **3a** (0.055 mmol) in toluene (0.5 mL) at the indicated temperature. ^{*b*}Yields were determined by crude NMR spectroscopy using CH₂Br₂ as the internal standard ^{*c*}Diastereomeric ratio was determined by crude NMR spectroscopy. ^{*d*}Enantiomeric excess of **4aa** was determined by chiral-stationary-phase HPLC analysis.

 Table S2: Investigation of temperature effect^a

OBn	+ O Ph	(<i>M</i>)- 1e ·H KHMDS Ph toluer	CI (11 mol% S (10 mol%) ne (0.1 <i>M</i>)) NC	OBn * Ph Ph O	2-Np ^{'''''}	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\$
1.0 eq 2a	1.1 eq 3a				4aa	2	∎ пп <u>-</u> -Np 2-Np (<i>M</i>)- 1е •НСI
Entry	Cat.	Solvent	T(°C)	Time (h)	Yield (%) ^b	Dr ^c	ee (%) ^d
1	(<i>M</i>)- 1e ⋅HCl	toluene	rt	6 h	91	78:22	55/32
2	(<i>M</i>)- 1e ·HCl	toluene	–20°C	24h	75	84:16	70/32
3	(<i>M</i>)- 1e ⋅HCl	toluene	–40°C	24 h	65	87:13	68/
4	(<i>M</i>)- 1e ·HCl	toluene	–60°C	24 h	5	85:15	/

^{*a*}Unless otherwise noted, all reactions were carried out using (*M*)-1e·HCl (5.5 μ mol) with KHMDS (5.0 μ mol), 2a (0.050 mmol), and 3a (0.055 mmol) in toluene (0.5 mL) at the indicated temperature. ^{*b*}Yields were determined by crude NMR spectroscopy using CH₂Br₂ as the internal standard ^{*c*}Diastereomeric ratio was determined by crude NMR spectroscopy. ^{*d*}Enantiomeric excess of 4aa was determined by chiral-stationary-phase HPLC analysis.

Table S3: Screening of solvents^a

1.0	OBn CN + D eq 2a	• • • • • • • • • • • • • • • • • • •	(<i>M</i>)- 1e ·HCI (1 KHMDS (10 Ph solvent (0	1 mol%) mol%) 1 <i>M</i>)	NC OI	Bn Ph Ph O	2-Np ¹¹¹ 2-N	$\begin{array}{c} t\text{-Bu }t\text{-Bu } \\ \ominus \\ Cl \\ N, \ominus, N \\ N, \neg \\ N, \neg \\ H \\ p \\ 2 - Np \\ M \\) - 1e \cdot HCl \end{array}$	∑ ▶2-№р
_	Entry	Cat.	Solvent	T(°C)	Time (h)	Yield (%) ^b	Dr ^c	ee (%) ^d	
	1	(<i>M</i>)- 1e ⋅HCl	toluene	–20°C	24h	75	84:16	70/32	
	2	(<i>M</i>)- 1e ⋅HCl	THF	–20°C	24h	87	23:77	2/10	
	3	(<i>M</i>)- 1e ⋅HCl	Et ₂ O	–20°C	24h	78	78:22	62/8	
	4	(<i>M</i>)- 1e ⋅HCl	EtOAc	–20°C	24h	No reaction	-:	/	
	5	(<i>M</i>)- 1e ⋅HCI	CH ₃ CN	–20°C	24h	73	22:78	4/6	
	6	(<i>M</i>)- 1e ⋅HCl	trifluorotoluene	–20°C	24h	24	63:37	/	
	7	(<i>M</i>)- 1e ⋅HCl	chlorobenene	–20°C	24h	13	69:31	/	

^{*a*}Unless otherwise noted, all reactions were carried out using (*M*)-**1e**·HCl (5.5 μ mol) with KHMDS (5.0 μ mol), **2a** (0.050 mmol), and **3a** (0.055 mmol) in toluene (0.5 mL) at the indicated temperature. ^{*b*}Yields were determined by crude NMR spectroscopy using CH₂Br₂ as the internal standard ^{*c*}Diastereomeric ratio was determined by crude NMR spectroscopy. ^{*d*}Enantiomeric excess of **4aa** was determined by chiral-stationary-phase HPLC analysis.

Table S4: Control experiments to check racemization over time^a

^{*a*}Unless otherwise noted, all reactions were carried out using (*M*)-**1e**·HCl (5.5 µmol) with KHMDS (5.0 µmol), **2a** (0.050 mmol), and **3a** (0.055 mmol) in toluene (0.5 mL) at the indicated temperature. ^{*b*}Yields were determined by crude NMR spectroscopy using CH₂Br₂ as the internal standard ^{*c*}Diastereomeric ratio was determined by crude NMR spectroscopy. ^{*d*}Enantiomeric excess of **4aa** was determined by chiral-stationary-phase HPLC analysis.

Table S5: Optimization of reaction conditions^a

Entry	1 (mol%)	Base (mol%)	R ¹	T(°C)	Time (h)	Yield (%) ^b	Dr ^c	Ee (%) ^d	
1	(<i>M</i>)- 1a ·HBr (11)	KHMDS (10)	Bn	rt	6 h	93	60:40	25/6	
2	(<i>M</i>)- 1b ·HCl (11)	KHMDS (10)	Bn	rt	6 h	69	70:30	38/8	
3	(<i>M</i>)- 1c ·HCl (11)	KHMDS (10)	Bn	rt	6 h	83	64:36	11/8	
4	(<i>M</i>)- 1d ·HCl (11)	KHMDS (10)	Bn	rt	6 h	95	66:34	6/6	
5	(<i>M</i>)- 1e ·HCl (11)	KHMDS (10)	Bn	rt	6 h	91	78:22	55/32	
6	(<i>M</i>)- 1e ·HCl (11)	KHMDS (10)	Bn	–20°C	24 h	75	84:16	69/26	
7	(<i>M</i>)- 1e ·HCl (11)	KHMDS (10)	Nap	–20°C	24 h	76	84:16	79	
8	(<i>M</i>)- 1e ·HCl (11)	KHMDS (10)	Nap	–40°C	24 h	89	87:13	84	
9	(<i>M</i>)- 1e ·HCl (11)	KHMDS (10)	Nap	–60°C	48 h	53	89:11	83	
10	(<i>M</i>)- 1e ·HCl (10)	KHMDS (15)	Nap	–60°C	24 h	88	90:10	90	
11	(<i>M</i>)- 1e ·HCl (10)	KHMDS (20)	Nap	–60°C	24 h	95	90:10	92/43	
12	(<i>M</i>)- 1e ·HCl (10)	KHMDS (30)	Nap	–60°C	24 h	85	90:10	90	
13	(<i>M</i>)- 1e ·HCl (10)	KHMDS (20)	Nap	–78°C	24 h	66	90:10	90	
14	(<i>M</i>)- 1e ·HCl (10)	NaHMDS (20)	Nap	–60°C	24 h	96	87:13	90	
15	(<i>M</i>)- 1e ·HCl (10)	tBuOK (20)	Nap	–60°C	24 h	84	90:10	90	
16	(<i>M</i>)- 1e ·HCl (10)	LiHMDS (20)	Nap	–60°C	24 h	trace			
 17 ^e	(<i>M</i>)- 1e ·HCl (10)	KHMDS (20)	Nap	–60°C	24 h	91	90:10	91	
18 ^f	(<i>M</i>)- 1e ·HCl (10)	KHMDS (20)	Nap	–60°C	24 h	84	90:10	91	

^{*a*}Unless otherwise noted, all reactions were carried out using (*M*)-1·HX (5.0-5.5 µmol) with KHMDS (5.0-15.0 µmol), **2a** (0.050 mmol), and **3a** (0.055 mmol) in toluene (0.5 mL) at the indicated temperature. ^{*b*}Yields were determined by crude NMR spectroscopy using CH₂Br₂ as the internal standard ^{*c*}Diastereomeric ratio was determined by crude NMR spectroscopy. ^{*d*}Enantiomeric excess of **4aa** was determined by chiral-stationary-phase HPLC analysis. ^{*e*}1.1 equiv of **2b** and 1.0 equiv of **3a** were used. ^{*f*}1.0 equiv of **2b** and 1.5 equiv of **3a** were used.

3. Experimental Procedure and Analytical Data

Cyanohydrin benzyl ether 2a was prepared according to the procedure in the literature.^{S1}

Synthesis and characterization of 2-(naphthalen-2-ylmethoxy)-2-arylacetonitrile (S3):

Method A:

To a magnetically stirred suspension of anhydrous iron (III) chloride (0.13 mmol, 20 mol%) and (naphthalen-2-ylmethoxy)trimethylsilane (**S2**,15.8 mmol, 2.4 equiv) at 0 °C was added aldehyde **S1** (6.6 mmol, 1.0 equiv). The reaction mixture was warmed to room temperature and stirred for 4 h under argon atmosphere. Trimethylsilyl cyanide (9.9 mmol, 1.5 equiv) was then added, and the resulting mixture was stirred at room temperature for 2 h. The mixture was diluted with CH₂Cl₂ (15 mL), and quenched with a phosphate buffer (pH = 7). The product was extracted with CH₂Cl₂ (10 mL × 3), and the combined organic layer was dried over Na₂SO₄. Evaporation of the solvent and purification of the residue on silica gel column furnished 2-(naphthalen-2-ylmethoxy)-2-arylacetonitrile **2**.

2-(naphthalen-2-ylmethoxy)-2-phenylacetonitrile (2b):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 24/1); White solid (64% yield); ¹H NMR (600 MHz, CDCl₃) δ 7.89 (d, *J* = 8.4 Hz, 1H), 7.88-7.86 (m, 3H), 7.54-7.51 (m, 5H), 7.46-7.43 (m, 3H), 5.29 (s, 1H), 5.02 (d, *J* = 12.6 Hz, 1H), 4.87 (d, *J* = 12.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 133.4, 133.3, 133.2, 133.1, 129.8, 129.0, 128.7, 128.0, 127.8, 127.7, 127.4, 126.4 (2C), 125.8, 117.2, 71.8, 69.3; IR (ATR): 3063, 3051, 2918, 2872, 2238, 1508, 1453, 1220, 1174, 1062, 1005, 822, 733 cm⁻¹; HRMS (ESI) Calcd for C₁₉H₁₅NO [M+Na]⁺ 296.1046, Found 296.1046; mp. 79.0-81.0 °C.

2-(naphthalen-2-ylmethoxy)-2-(p-tolyl)acetonitrile (2c):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 24/1); White solid (65% yield); ¹H NMR (600 MHz, CDCl₃) δ 7.89-7.85 (m, 4H), 7.53-7.50 (m, 3H), 7.40 (d, *J* = 7.2 Hz, 2H), 7.25 (d, *J* = 7.2 Hz, 2H), 5.26 (s, 1H), 4.98 (d, *J* = 12.0 Hz, 1H), 4.85 (d, *J* = 11.4 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 139.8, 133.21, 133.19, 133.1, 130.4, 129.6, 128.6, 127.9, 127.7, 127.5, 127.4, 126.3 (2C), 125.7, 117.3, 71.5, 69.2, 21.2; IR (ATR): 3052, 3033, 2919, 2867, 2236, 1510, 1220, 1174, 1066, 1009, 863, 811, 772 cm⁻¹; HRMS (ESI) Calcd for C₂₀H₁₇NO [M+Na]⁺ 310.1202, Found 310.1202; mp. 74.0-76.0 °C.

2-(4-methoxyphenyl)-2-(naphthalen-2-ylmethoxy)acetonitrile (2d):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 6/1); White solid (70% yield); ¹H NMR (600 MHz, CDCl₃) δ 7.90-7.86 (m, 4H), 7.54-7.51 (m, 3H), 7.44 (d, *J* = 7.8 Hz, 2H), 6.96 (d, *J* = 8.4 Hz, 2H), 5.24 (s, 1H), 4.98 (d, *J* = 12.0 Hz, 1H), 4.84 (d, *J* = 12.0 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 160.7, 133.2 (2C), 133.1, 129.0, 128.6, 127.9, 127.7, 127.5, 126.4, 126.3, 125.8, 125.5, 117.4, 114.3, 71.4, 68.9, 55.3; IR (ATR): 3054, 3010, 2957, 2911, 2838, 2234, 1542, 1463, 1220, 1175, 1061, 1031, 816, 772 cm⁻¹; HRMS (ESI) Calcd for C₂₀H₁₇NO₂ [M+Na]⁺ 326.1151, Found 326.1151; mp. 70.0-72.0 °C.

2-(4-chlorophenyl)-2-(naphthalen-2-ylmethoxy)acetonitrile (2e):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 24/1); White solid (30% yield); ¹H NMR (600 MHz, CDCl₃) δ 7.91-7.86 (m, 4H), 7.54 (m, 2H), 7.50 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.45-7.41 (m, 4H), 5.24 (s, 1H), 5.03 (d, *J* = 12.0 Hz, 1H), 4.86 (d, *J* = 12.0 Hz, 1H); ¹³C

NMR (150 MHz, CDCl₃) δ 135.9, 133.3, 133.1, 132.7, 131.9, 129.3, 128.8, 128.7, 128.0, 127.8, 127.7, 126.5 (2C), 125.7, 116.8, 71.9, 68.5; IR (ATR): 3054, 2920, 2870, 2236, 1492, 1403, 1220, 1065, 1014, 817, 772 cm⁻¹; HRMS (ESI) Calcd for C₁₉H₁₄ClNO [M+Na]⁺ 330.0656, Found 330.0656; mp. 85.0-87.0 °C.

2-(naphthalen-2-ylmethoxy)-2-(*m*-tolyl)acetonitrile (2h):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 24/1); White solid (74% yield); ¹H NMR (600 MHz, CDCl₃) δ 7.90-7.87 (m, 4H), 7.55-7.51 (m, 3H), 7.35-7.29 (m, 3H), 7.25 (d, *J* = 6.6 Hz, 1H), 5.26 (s, 1H), 5.01 (d, *J* = 12.0 Hz, 1H), 4.87 (d, *J* = 11.4 Hz, 1H), 2.40 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 138.8, 133.2, 133.13, 133.07, 133.0, 130.4, 128.7, 128.5, 127.9, 127.8, 127.6, 127.4, 126.2, 125.6, 124.4, 117.2, 71.6, 69.3, 21.2; IR (ATR): 3055, 3025, 2920, 2868, 2236, 1509, 1458, 1273, 1220, 1157, 1063, 818, 772 cm⁻¹; HRMS (ESI) Calcd for C₂₀H₁₇NO [M+Na]⁺ 310.1202, Found 310.1202; mp. 49.0-51.0 °C.

2-(naphthalen-2-ylmethoxy)-2-(o-tolyl)acetonitrile (2j):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 24/1); White solid (68% yield); ¹H NMR (600 MHz, CDCl₃) δ 7.89-7.87 (m, 4H), 7.62 (t, *J* = 6.6 Hz, 1H), 7.54-7.49 (m, 3H), 7.36-7.33 (m, 1H), 7.31-7.28 (m, 1H), 7.24 (dd, *J* = 7.8, 3.0 Hz, 1H), 5.40 (d, *J* = 4.2 Hz, 1H), 5.00 (dd, *J* = 12.0, 2.4 Hz, 1H), 4.87 (dd, *J* = 12.0, 2.4 Hz, 1H), 2.34 (d, *J* = 4.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 136.5, 133.2, 133.1, 133.0, 131.3, 131.1, 129.9, 128.5, 128.1, 127.9, 127.7, 127.6, 126.4, 126.3 (2C), 125.8, 117.0, 71.7, 67.7, 18.7; IR (ATR): 3055, 3025, 2924, 2869, 2235, 1273, 1176, 1124, 1063, 856, 817, 749 cm⁻¹; HRMS (ESI) Calcd for C₂₀H₁₇NO [M+Na]⁺ 310.1202, Found 310.1202; mp. 53.0-55.0 °C.

Method B:

To a magnetically stirred suspension of anhydrous iron (III) chloride (0.13 mmol, 20 mol%) and (naphthalen-2-ylmethoxy)trimethylsilane (**S2**, 15.8 mmol, 2.4 equiv) at 0 °C was added aldehyde **S4** (6.6 mmol, 1.0 equiv). The reaction mixture was warmed to room temperature and stirred for 4 h under argon atmosphere. Trimethylsilyl cyanide (9.9 mmol, 1.5 equiv) followed by trimethylsilyl trifluoromethanesulfonate (1.3 mmol, 20 mol%) was then added, and the resulting mixture was stirred at room temperature for 2 h. The mixture was diluted with CH₂Cl₂ (15 mL), and quenched with a phosphate buffer (pH = 7). The product was extracted with CH₂Cl₂ (10 mL × 3), and the combined organic layer was dried over Na₂SO₄. Evaporation of the solvent and purification of the residue on silica gel column furnished 2-(naphthalen-2-ylmethoxy)-2-arylacetonitrile **2**.

2-(4-bromophenyl)-2-(naphthalen-2-ylmethoxy)acetonitrile (2f):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 24/1); White solid (79% yield); ¹H NMR (600 MHz, CDCl₃) δ 7.90-7.85 (m, 4H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.55-7.52 (m, 2H), 7.50 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.38 (d, *J* = 9.0 Hz, 2H), 5.23 (s, 1H), 5.02 (d, *J* = 12.0 Hz, 1H), 4.86 (d, *J* = 12.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 133.3, 133.1, 132.7, 132.4, 132.2, 128.9, 128.8, 128.0, 127.8 (2C), 126.5 (2C), 125.7, 124.1, 116.8, 71.9, 68.5; IR (ATR): 3054, 3026, 2937, 2917, 2872, 2241, 1487, 1400, 1220, 1069, 1007, 819, 799, 772 cm⁻¹; HRMS (FD+) Calcd for C₁₉H₁₄BrNO [M]⁺ 351.0259, Found 351.0257; mp. 80.0-82.0 °C.

2-(naphthalen-2-ylmethoxy)-2-(4-(trifluoromethyl)phenyl)acetonitrile (2g):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 24/1); White solid (75% yield); ¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, *J* = 7.8 Hz, 1H), 7.89-7.87 (m, 3H), 7.71 (d, *J* = 8.4 Hz, 2H), 7.64 (d, *J* = 8.4 Hz, 2H), 7.55-7.53 (m, 2H), 7.51 (dd, *J* = 8.4, 1.8 Hz, 1H), 5.32 (s, 1H), 5.08 (d, *J* = 11.4 Hz, 1H), 4.90 (d, *J* = 11.4 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 137.2, 133.4, 133.1, 132.5, 132.0 (q, *J* = 30.0 Hz), 128.9, 128.0, 127.9, 127.8, 127.7, 126.61, 126.59, 126.1 (q, *J* = 4.4 Hz), 125.7, 123.6 (q, *J* = 271.5 Hz), 116.6, 72.2, 68.4; ¹⁹F NMR (565 MHz, CDCl₃) δ – 62.8; IR (ATR): 3062, 2870, 2243, 1414, 1326, 1220, 1169, 1122, 1067, 1018, 817, 772 cm⁻¹; HRMS (ESI) Calcd for C₂₀H₁₄F₃NO [M+Na]⁺ 364.0920, Found 364.0920; mp. 88.0-90.0 °C.

2-(3-chlorophenyl)-2-(naphthalen-2-ylmethoxy)acetonitrile (2i):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 24/1); White solid (71% yield); ¹H NMR (600 MHz, CDCl₃) δ 7.91-7.86 (m, 4H), 7.55-7.53 (m, 2H), 7.51-7.49 (dd *J* = 8.4, 2.4 Hz, 1H), 7.45-7.41 (m, 4H), 5.25 (s, 1H), 5.03 (d, *J* = 12.0 Hz, 1H), 4.86 (d, *J* = 12.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 135.9, 133.3, 133.1, 132.7, 131.9, 129.3 (2C), 128.8, 128.7 (2C), 128.0, 127.7 (2C), 126.5 (2C), 125.7, 116.8, 71.9, 68.5; IR (ATR): 3052, 3025, 2939, 2920, 2871, 2236, 1492, 1402, 1173, 1009, 989, 820, 772 cm⁻¹; HRMS (FD+) Calcd for C₁₉H₁₄ClNO [M]⁺ 307.0764, Found 307.0763; mp. 85.0-87.0 °C.

2-cyclohexyl-2-(naphthalen-2-ylmethoxy)acetonitrile (2k):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 24/1); White solid (78% yield); ¹H NMR (600 MHz, CDCl₃) δ 7.88-7.86 (m, 3H), 7.82 (s, 1H), 7.54-7.51 (m, 2H), 7.47 (dd, J = 8.4, 1.2 Hz, 1H), 5.03 (d, J = 12.6 Hz, 1H), 4.69 (d, J = 12.6 Hz, 1H), 3.97 (d, J = 6.0 Hz, 1H), 1.93-1.89 (m, 2H), 1.85-1.77 (m, 3H), 1.71-1.68 (m, 1H), 1.32-1.09 (m, 5H); ¹³C NMR (150 MHz, CDCl₃) δ 133.4, 133.2, 133.1, 128.5, 127.9, 127.7, 127.4, 126.3, 126.3, 125.8, 117.7, 72.6, 72.3, 41.0, 28.5, 28.2, 25.9, 25.48, 25.46; IR (ATR): 3056, 2927, 2854, 2234, 1509, 1450, 1331, 1220, 1088, 1070, 855, 817, 749 cm⁻¹; HRMS (ESI) Calcd for C₁₉H₂₁NO [M+Na]⁺ 302.1515, Found 302.1515; mp. 79.0-81.0 °C.

5. Catalytic enantioselective Michael addition of cyanohydrin ether derivatives to enones

5.1 Typical procedure

To a dried test tube was added (*M*)-1e·HCl (4.7 mg, 5.0 µmol), and then anhydrous toluene (0.5 mL) was added under argon atmosphere. A solution of KHMDS in toluene (0.5 *M*, 20 µL, 10.0 µmol) was added to the suspension at room temperature, and the resulting mixture was stirred for 5 min. Next, the mixture was cooled to -60 °C, cyanohydrin ether 2b (13.7 mg, 0.050 mmol) was added in one portion, and the mixture was stirred for 1 min. Then chalcone (3a, 11.5 mg, 0.055 mmol) was added to the solution. After that, the reaction mixture was stirred at -60 °C for 24 h. The reaction was quenched with saturated aq. NH₄Cl (1.0 mL), and the product was extracted with EtOAc (2.0 mL × 3). The combined organic phase was dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash chromatography (Hexane/EtOAc = 19/1) to afford 4ba (20.2 mg, 84% yield) as a white solid with 92% ee.

(2S,3R)-2-(naphthalen-2-ylmethoxy)-5-oxo-2,3,5-triphenylpentanenitrile (4ba):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 19/1); White solid (20.2 mg, 84% yield); HPLC analysis DAICEL Chiralcel IA-3 (Hexane/IPA = 92/8, 0.8 mL/min, 254 nm, 25 °C) 11.8 (minor), 14.0 (major) min; 92% ee; Optical rotation $[\alpha]_D^{22} = +103.9$ (*c* 1.3, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.92 (d, *J* = 7.2 Hz, 2H), 7.84-7.82 (m, 1H), 7.79-7.77 (m, 2H), 7.69 (s, 1H), 7.50-7.47 (m, 3H), 7.39-7.33 (m, 8H), 7.14-7.10 (m, 3H), 7.07 (dd, *J* = 6.8, 1.8 Hz, 2H), 4.76 (d, *J* = 10.2 Hz, 1H), 4.48 (d, *J* = 10.8 Hz, 1H), 4.19 (dd, *J* = 8.4, 4.8 Hz, 1H), 4.13 (dd, *J* = 17.4, 4.8 Hz, 1H), 3.75 (dd, *J* = 17.4, 8.4 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 197.2, 136.9, 136.9, 135.6, 133.8, 133.1, 133.0 (2C), 129.3, 129.2, 128.6, 128.4, 128.1, 128.0, 128.0, 127.9, 127.6, 127.5, 126.6, 126.5, 126.1, 126.1, 125.6, 117.7, 85.7, 69.3, 52.7, 39.6; IR (ATR): 3059, 3031, 2953, 2924, 2870, 2854, 2233, 1685, 1591, 1449, 1218, 1065, 1050, 818, 772, 699 cm⁻¹; HRMS (FD+) Calcd for C₃₄H₂₇NO₂ [M]⁺ 481.2042, Found 481.2040; mp. 91.0-93.0 °C.

2-(naphthalen-2-ylmethoxy)-5-oxo-2,3,5-triphenylpentanenitrile: (minor)

Purified by silica gel flash column chromatography (Hexane/EtOAc = 19/1); colorless oil (2.2 mg, 9% yield); HPLC analysis DAICEL Chiralcel IA-3 (Hexane/IPA = 92/8, 0.8 mL/min, 254 nm, 25 °C) 11.4 (minor), 12.3 (major) min; 43% ee; Optical rotation $[\alpha]_D^{22} = -7.5$ (*c* 0.8, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.83-7.76 (m, 5H), 7.60 (s, 1H), 7.51-7.46 (m, 5H), 7.39-7.37 (m, 5H), 7.29-7.27 (m, 2H), 7.27-7.24 (m, 4H), 4.75 (d, *J* = 12.0 Hz, 1H), 4.48 (d, *J* = 12.0 Hz, 1H), 4.15 (dd, *J* = 11.4, 3.6 Hz, 1H), 3.87 (dd, *J* = 17.4, 11.4 Hz, 1H), 3.38 (dd, *J* = 17.4, 3.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 196.5, 137.1, 136.6, 135.4, 134.3, 133.2 (2C), 132.9, 130.0, 129.5, 128.7, 128.5, 128.04, 127.97, 127.9 (2C), 127.68, 127.65, 126.7, 126.2, 126.00, 125.97, 125.1, 118.1, 84.8, 69.0, 52.0, 39.4; IR (ATR): 3060, 3031, 2926, 2872, 2233, 1685, 1598, 1448, 1270, 1219, 1079, 817, 749, 699 cm⁻¹; HRMS (FD+) Calcd for C₃₄H₂₇NO₂ [M]⁺ 481.2042, Found 481.2041.

(2S,3R)-2-(naphthalen-2-ylmethoxy)-5-oxo-3,5-diphenyl-2-(*p*-tolyl)pentanenitrile (4ca):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 19/1); White solid (15.2 mg, 61% yield); HPLC analysis DAICEL Chiralcel IA-3 (Hexane/IPA = 92/8, 0.8 mL/min, 254 nm, 25 °C) 10.4 (minor), 13.5 (major) min; 88% ee; Optical rotation $[\alpha]_D^{22} = +119.5$ (*c* 1.0, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.90 (dd, *J* = 8.4, 1.8 Hz, 2H), 7.83-7.81 (m, 1H), 7.78-7.76 (m, 2H), 7.67 (s, 1H), 7.49-7.46 (m, 3H), 7.35 (dd, *J* = 8.4, 7.2 Hz, 2H), 7.32 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.25 (d, *J* = 8.4 Hz, 2H), 7.14-7.12 (m, 5H), 7.09-7.07 (m, 2H), 4.72 (d, *J* = 10.2 Hz, 1H), 4.45 (d, *J* = 10.2 Hz, 1H), 4.17 (dd, *J* = 8.4, 4.8 Hz, 1H), 4.10 (dd, *J* = 16.8, 4.8 Hz, 1H), 3.71 (dd, *J* = 16.8, 8.4 Hz, 1H), 2.35 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 197.3, 139.2, 137.1, 136.9, 133.9, 133.1, 133.0, 132.9, 132.5, 129.3 (2C), 128.4, 128.09, 128.05, 128.0, 127.9, 127.6, 127.4, 126.6, 126.5, 126.1, 126.0, 125.6, 117.9, 85.5, 69.1, 52.6, 39.7, 21.1; IR (ATR): 3059, 3030, 2923, 2867, 2234, 1686, 1598, 1448, 1219, 1082, 814, 689 cm⁻¹; HRMS (FD+) Calcd for C₃₅H₂₉NO₂ [M]⁺ 495.2198, Found 495.2196; mp. 139.0-141.0 °C.

(2*S*,3*R*)-2-(4-methoxyphenyl)-2-(naphthalen-2-ylmethoxy)-5-oxo-3,5-diphenylpentanenitrile (4da):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 13/1); White solid (14.9 mg, 58% yield); HPLC analysis DAICEL Chiralcel IA-3 (Hexane/IPA = 92/8, 0.8 mL/min, 254 nm, 25 °C) 21.5 (minor), 27.3 (major) min; 73% ee; Optical rotation $[\alpha]_D^{22} = +106.4$ (*c* 1.0, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.89 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.81-7.79 (m, 1H), 7.76-7.74 (m, 2H), 7.64 (s, 1H), 7.47-7.44 (m, 3H), 7.33 (dd, *J* = 7.8, 7.2 Hz, 2H), 7.30 (dd, *J* = 8.4, 1.8 Hz, 1H),

7.26 (d, J = 9.0 Hz, 2H), 7.12-7.11 (m, 3H), 7.07-7.06 (m, 2H), 6.81 (d, J = 9.0 Hz, 2H), 4.70 (d, J = 11.4 Hz, 1H), 4.43 (d, J = 11.4 Hz, 1H), 4.14 (dd, J = 8.4, 4.8 Hz, 1H), 4.09 (dd, J = 17.4, 4.8 Hz, 1H), 3.79 (s, 3H), 3.69 (dd, J = 17.4, 8.4 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 197.4, 160.2, 137.1, 136.9, 133.9, 133.1, 132.9 (2C), 129.2, 128.4, 128.10, 128.06, 128.0, 127.94, 127.92, 127.7, 127.4 (2C), 126.6, 126.1, 126.0, 125.6, 117.9, 113.9, 85.3, 69.1, 55.3, 52.7, 39.7; IR (ATR): 3059, 3030, 2961, 2930, 2860, 2839, 2234, 1686, 1510, 1448, 1255, 1219, 1082, 1032, 815, 689 cm⁻¹; HRMS (FD+) Calcd for C₃₅H₂₉NO₃ [M]⁺ 511.2147, Found 511.2145; mp. 135.0-137.0 °C.

(2*S*,3*R*)-2-(4-chlorophenyl)-2-(naphthalen-2-ylmethoxy)-5-oxo-3,5-diphenylpentanenitrile (4ea):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 19/1); White solid (22.2 mg, 86% yield); HPLC analysis DAICEL Chiralcel IA-3 (Hexane/IPA = 92/8, 0.8 mL/min, 254 nm, 25 °C) 11.6 (minor), 15.1 (major) min; 87% ee; Optical rotation $[\alpha]_D^{22} = +109.9$ (*c* 1.8, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.91 (dd, J = 8.4, 1.8 Hz, 2H), 7.83-7.82 (m, 1H), 7.78-7.76 (m, 2H), 7.65 (s, 1H), 7.51-7.47 (m, 3H), 7.36 (t, J = 7.8 Hz, 2H), 7.31-7.28 (m, 5H), 7.16-7.13 (m, 3H), 7.08-7.05 (m, 2H), 4.75 (d, J = 10.8 Hz, 1H), 4.42 (d, J = 10.8 Hz, 1H), 4.14 (dd, J = 7.8, 4.8 Hz, 1H), 4.10 (dd, J = 16.2, 4.8 Hz, 1H), 3.72 (dd, J = 16.8, 7.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 197.0, 136.8, 136.6, 135.3, 134.3, 133.5, 133.12, 133.06, 133.0, 129.2, 128.9, 128.5, 128.2 (2C), 128.1, 128.0, 127.9, 127.72, 127.67, 126.7, 126.22, 126.18, 125.5, 117.4, 85.2, 69.5, 52.7, 39.7; IR (ATR): 3059, 3031, 2925, 2855, 2234, 1685, 1597, 1490, 1449, 1267, 1092, 1067, 817, 749, 701 cm⁻¹; HRMS (FD+) Calcd for C₃₄H₂₆ClNO₂ [M]⁺ 515.1652, Found 515.1650; mp. 93.0-95.0 °C.

(2*S*,3*R*)-2-(4-bromophenyl)-2-(naphthalen-2-ylmethoxy)-5-oxo-3,5-diphenylpentanenitrile (4fa):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 19/1); White solid (21.4 mg, 77% yield); HPLC analysis DAICEL Chiralcel IA-3 (Hexane/IPA = 92/8, 0.8 mL/min, 254 nm, 25 °C) 14.0 (minor), 17.7 (major) min; 83% ee; Optical rotation $[\alpha]_D^{22} = +131.8$ (*c* 0.7, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, *J* = 7.2 Hz, 2H), 7.83-7.82 (m, 1H), 7.78-7.76 (m, 2H), 7.65 (s, 1H), 7.50-7.47 (m, 3H), 7.45 (d, *J* = 8.4 Hz, 2H), 7.36 (dd, *J* = 8.4, 7.8 Hz, 2H), 7.30 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.23 (d, *J* = 7.8 Hz, 2H), 7.16-7.14 (m, 3H), 7.08-7.06 (m, 2H), 4.75 (d, *J* = 10.8 Hz, 1H), 4.42 (d, *J* = 10.8 Hz, 1H), 4.14 (dd, *J* = 7.8, 4.8 Hz, 1H), 4.10 (dd, *J* = 16.2, 4.8 Hz, 1H), 3.72 (dd, *J* = 16.2, 7.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 197.0, 136.8, 136.6, 134.9, 133.4, 133.10, 133.06, 133.0, 131.8, 129.2, 128.5, 128.24, 128.23 (2C), 128.1, 127.9, 127.74, 127.66, 126.7, 126.21, 126.18, 125.5, 123.5, 117.3, 85.2, 69.5, 52.6, 39.7; IR (ATR): 3059, 3031, 2925, 2871, 2233, 1685, 1597, 1486, 1448, 1267, 1219, 1074, 1009, 817, 749 cm⁻¹; HRMS (FD+) Calcd for C₃₄H₂₆BrNO₂ [M]⁺ 559.1147, Found 559.1146; mp. 112.0-114.0 °C.

(2*S*,3*R*)-2-(naphthalen-2-ylmethoxy)-5-oxo-3,5-diphenyl-2-(4-(trifluoromethyl)phenyl) pentanenitrile (4ga):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 19/1); pale yellow sticky oil (15.0 mg, 54% yield); HPLC analysis DAICEL Chiralcel IA-3 (Hexane/IPA = 92/8, 0.8 mL/min, 254 nm, 25 °C) 9.7 (minor), 13.4 (major) min; 73% ee; Optical rotation $[\alpha]_D^{22} = +91.0$ (*c* 0.4, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.91 (dd, *J* = 8.4, 1.8 Hz, 2H), 7.84-7.82 (m, 1H), 7.79-7.77 (m, 2H), 7.67 (s, 1H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.51-7.47 (m, 5H), 7.37 (dd, *J* = 8.4, 7.8 Hz, 2H), 7.31 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.17-7.11 (m, 3H), 7.04 (dd, *J* = 7.8, 1.8 Hz, 2H), 4.79 (d, *J* = 11.4 Hz, 1H), 4.43 (d, *J* = 11.4 Hz, 1H), 4.16 (dd, *J* = 8.4, 4.8 Hz, 1H), 4.11 (dd, *J* = 16.8, 4.8

Hz, 1H), 3.75 (dd, J = 16.8, 8.4 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 196.9, 139.8, 136.8, 136.3, 133.2, 133.13, 133.10, 133.05, 131.6 (q, J = 33.0 Hz), 129.1, 128.5, 128.3 (2C), 128.1, 127.94, 127.86, 127.7, 127.1, 126.8, 126.27, 126.25, 125.6 (q, J = 2.9 Hz), 125.5, 123.6 (q, J = 270.0 Hz), 117.2, 85.3, 69.7, 52.7, 39.7; ¹⁹F NMR (565 MHz, CDCl₃) δ –62.6; IR (ATR): 3060, 3031, 2927, 2871, 2234, 1686, 1597, 1449, 1412, 1324, 1219, 1168, 1125, 1068, 817, 770 cm⁻¹; HRMS (FD+) Calcd for C₃₅H₂₆F₃NO₂ [M]⁺ 549.1916, Found 549.1915.

(2S,3R)-2-(naphthalen-2-ylmethoxy)-5-oxo-3,5-diphenyl-2-(m-tolyl)pentanenitrile (4ha):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 19/1); White solid (17.5 mg, 70% yield); HPLC analysis DAICEL Chiralcel IA-3 (Hexane/IPA = 92/8, 0.8 mL/min, 254 nm, 25 °C) 8.3 (minor), 9.8 (major) min; 88% ee; Optical rotation $[\alpha]_D^{22} = +106.2$ (*c* 1.5, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.91 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.83-7.82 (m, 1H), 7.78-7.77 (m, 2H), 7.67 (s, 1H), 7.50-7.46 (m, 3H), 7.36 (dd, *J* = 8.4, 7.8 Hz, 2H), 7.33 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.22-7.20 (m, 1H), 7.18-7.16 (m, 1H), 7.16-7.11 (m, 5H), 7.08-7.06 (m, 2H), 4.74 (d, *J* = 10.8 Hz, 1H), 4.49 (d, *J* = 10.8 Hz, 1H), 4.17 (dd, *J* = 8.4, 4.8 Hz, 1H), 4.11 (dd, *J* = 17.4, 4.8 Hz, 1H), 3.71 (dd, *J* = 17.4, 8.4 Hz, 1H), 2.30 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 197.3, 138.4, 137.0, 136.9, 135.4, 133.9, 133.1, 133.0, 132.9, 130.0, 129.2, 128.4 (2C), 128.1, 128.06, 128.0, 127.9, 127.6, 127.5, 127.2, 126.7, 126.11, 126.05, 125.6, 123.7, 117.9, 85.7, 69.3, 52.6, 39.6, 21.4; IR (ATR): 3059, 3030, 2921, 2864, 2233, 1686, 1597, 1490, 1449, 1267, 1092, 1067, 817, 749, 701 cm⁻¹; HRMS (FD+) Calcd for C₃₅H₂₉NO₂ [M]⁺ 495.2198, Found 495.2197; mp. 78.0-80.0 °C.

(2*S*,3*R*)-2-(3-chlorophenyl)-2-(naphthalen-2-ylmethoxy)-5-oxo-3,5-diphenylpentanenitrile (4ia):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 19/1); White solid (20.0 mg, 76% yield); HPLC analysis DAICEL Chiralcel IA-3 (Hexane/IPA = 92/8, 0.8 mL/min, 254 nm, 25 °C) 14.1 (minor), 16.6 (major) min; 85% ee; Optical rotation $[\alpha]_D^{22} = +107.9$ (*c* 0.5, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, *J* = 7.8 Hz, 2H), 7.83-7.81 (m, 1H), 7.78-7.76 (m, 2H), 7.65 (s, 1H), 7.50-7.47 (m, 3H), 7.36 (dd, *J* = 8.4, 7.8 Hz, 2H), 7.31-7.28 (m, 5H), 7.16-7.13 (m, 3H), 7.07-7.06 (m, 2H), 4.75 (d, *J* = 10.2 Hz, 1H), 4.42 (d, *J* = 10.2 Hz, 1H), 4.14 (dd, *J* = 7.8, 4.8 Hz, 1H), 4.10 (dd, *J* = 16.8, 4.8 Hz, 1H), 3.72 (dd, *J* = 16.8, 7.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 197.1, 136.8, 136.6, 135.3, 134.3, 133.4, 133.11, 133.07, 133.0, 129.2, 128.9, 128.5, 128.2 (2C), 128.1, 128.0 (2C), 127.9, 127.73, 127.67 (2C), 126.7, 126.22, 126.18, 125.5, 117.4, 85.2, 69.5, 52.7, 39.7; IR (ATR): 3059, 3030, 2921, 2864, 2233, 1686, 1597, 1449, 1270, 1217, 1083, 1002, 819, 747, 710 cm⁻¹; HRMS (FD+) Calcd for C₃₄H₂₆ClNO₂ [M]⁺ 515.1652, Found 515.1651; mp. 97.0-99.0 °C.

(2S,3R)-2-(naphthalen-2-ylmethoxy)-5-oxo-2,3-diphenyl-5-(p-tolyl)pentanenitrile (4bb):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 19/1); White solid (18.0 mg, 72% yield); HPLC analysis DAICEL Chiralcel IA-3 (Hexane/IPA = 92/8, 0.8 mL/min, 254 nm, 25 °C) 12.3 (minor), 18.4 (major) min; 92% ee; Optical rotation $[\alpha]_D^{22} = +99.2$ (*c* 1.4, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.83-7.80 (m, 3H), 7.77 (d, *J* = 7.8 Hz, 2H), 7.67 (s, 1H), 7.50-7.48 (m, 2H), 7.37-3.35 (m, 2H), 7.35-7.31 (m, 4H), 7.14-7.09 (m, 5H), 7.05 (dd, *J* = 7.8, 1.8 Hz, 2H), 4.74 (d, *J* = 11.4 Hz, 1H), 4.47 (d, *J* = 10.8 Hz, 1H), 4.18 (dd, *J* = 8.4, 4.8 Hz, 1H), 4.09 (dd, *J* = 16.8, 4.8 Hz, 1H), 3.70 (dd, *J* = 16.8, 8.4 Hz, 1H), 2.35 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 196.9, 143.8, 137.0, 135.6, 134.4, 133.8, 133.1, 133.0, 129.3, 129.2, 129.1, 128.6, 128.2, 128.1,

128.0, 127.9, 127.6, 127.5, 126.61, 126.57, 126.1, 126.0, 125.6, 117.8, 85.7, 69.3, 52.8, 39.5, 21.6; IR (ATR): 3060, 3031, 2922, 2866, 2233, 1683, 1605, 1449, 1270, 1223, 1180, 1081, 1004, 816, 753, 699 cm⁻¹; HRMS (FD+) Calcd for $C_{35}H_{29}NO_2$ [M]⁺ 495.2198, Found 495.2197; mp. 88.0-90.0 °C.

(2*S*,3*R*)-5-(4-methoxyphenyl)-2-(naphthalen-2-ylmethoxy)-5-oxo-2,3-diphenylpentanenitrile (4bc):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 10/1); White solid (12.8 mg, 50% yield); HPLC analysis DAICEL Chiralcel IA-3 (Hexane/IPA = 92/8, 0.8 mL/min, 254 nm, 25 °C) 19.1 (minor), 31.9 (major) min; 89% ee; Optical rotation $[\alpha]_D^{22} = +90.4$ (*c* 0.9, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, *J* = 9.0 Hz, 2H), 7.83-7.82 (m, 1H), 7.79-7.76 (m, 2H), 7.68 (s, 1H), 7.50-7.47 (m, 2H), 7.37-7.35 (m, 2H), 7.34-7.32 (m, 4H), 7.13-7.09 (m, 3H), 7.05 (dd, *J* = 7.8, 1.8 Hz, 2H), 6.81 (d, *J* = 9.0 Hz, 2H), 4.74 (d, *J* = 10.8 Hz, 1H), 4.46 (d, *J* = 10.8 Hz, 1H), 4.17 (dd, *J* = 17.4, 5.4 Hz, 1H), 4.07 (dd, *J* = 8.4, 5.4 Hz, 1H), 3.80 (s, 3H), 3.66 (dd, *J* = 17.4, 8.4 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 195.8, 163.3, 137.1, 135.6, 133.8, 133.1, 133.0, 130.4, 130.0, 129.25, 129.21, 128.6, 128.1, 128.0, 127.9, 127.6, 127.4, 126.61, 126.56, 126.1, 126.0, 125.6, 117.8, 113.6, 85.8, 69.3, 55.4, 52.9, 39.2; IR (ATR): 3060, 3019, 2933, 2840, 2234, 1676, 1600, 1510, 1259, 1220, 1169, 1030, 1004, 699 cm⁻¹; HRMS (FD+) Calcd for C₃₅H₂₉NO₃ [M]⁺ 511.2147, Found 511.2145; mp. 98.0-100.0 °C.

(2*S*,3*R*)-5-(4-chlorophenyl)-2-(naphthalen-2-ylmethoxy)-5-oxo-2,3-diphenylpentanenitrile (4bd):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 19/1); White solid (20.2 mg, 78% yield); HPLC analysis DAICEL Chiralcel IA-3 (Hexane/IPA = 92/8, 0.8 mL/min, 254 nm,

25 °C) 10.9 (minor), 14.2 (major) min; 92% ee; Optical rotation $[\alpha]_D^{22} = +60.3$ (*c* 0.8, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.85-7.83 (m, 1H), 7.80-7.76 (m, 4H), 7.64 (s, 1H), 7.52-7.49 (m, 2H), 7.37-7.32 (m, 5H), 7.31 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.26 (d, *J* = 8.4 Hz, 2H), 7.16-7.11 (m, 3H), 7.04 (d, *J* = 7.8 Hz, 2H), 4.69 (d, *J* = 10.2 Hz, 1H), 4.45 (d, *J* = 10.2 Hz, 1H), 4.16 (dd, *J* = 7.8, 5.4 Hz, 1H), 4.10 (dd, *J* = 17.4, 5.4 Hz, 1H), 3.58 (dd, *J* = 17.4, 7.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 196.1, 139.4, 136.8, 135.4, 135.2, 133.6, 133.1, 133.0, 129.42, 129.36, 129.2, 128.7, 128.6, 128.13, 128.08, 127.9, 127.7, 127.6, 126.8, 126.6, 126.23, 126.18, 125.7, 117.6, 85.8, 69.4, 52.9, 39.6; IR (ATR): 3060, 3031, 2917, 2871, 2233, 1686, 1589, 1399, 1269, 1091, 1004, 751, 698 cm⁻¹; HRMS (FD+) Calcd for C₃₄H₂₆ClNO₂ [M]⁺ 515.1652, Found 515.1650; mp. 100.0-102.0 °C.

(2*S*,3*R*)-2-(naphthalen-2-ylmethoxy)-5-oxo-2,3-diphenyl-5-(4-(trifluoromethyl)phenyl) pentanenitrile (4be):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 19/1); White solid (13.8 mg, 50% yield); HPLC analysis DAICEL Chiralcel IA-3 (Hexane/IPA = 92/8, 0.8 mL/min, 254 nm, 25 °C) 9.5 (minor), 13.0 (major) min; 80% ee; Optical rotation $[\alpha]_D^{22} = +54.4$ (*c* 0.7, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.92 (d, *J* = 7.8 Hz, 2H), 7.83-7.81 (m, 1H), 7.76-7.73 (m, 2H), 7.63 (s, 1H), 7.52 (d, *J* = 8.4 Hz, 2H), 7.51-7.49 (m, 2H), 7.39-7.34 (m, 5H), 7.29 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.18-7.12 (m, 3H), 7.04 (d, *J* = 7.8 Hz, 2H), 4.67 (d, *J* = 10.8 Hz, 1H), 4.45 (d, *J* = 10.8 Hz, 1H), 4.20-4.15 (m, 2H), 3.61-3.55 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 196.4, 139.6, 136.6, 135.3, 134.1 (q, *J* = 33.0 Hz), 133.5, 133.1, 133.0, 129.4, 129.2, 128.7, 128.3, 128.1 (2C), 127.8, 127.72, 127.65, 126.9, 126.6, 126.3, 126.2, 125.7, 125.4 (q, *J* = 4.2 Hz), 123.5 (q, *J* = 271.5 Hz), 117.6, 85.8, 69.4, 52.9, 40.0; ¹⁹F NMR (565 MHz, CDCl₃) δ -63.0; IR (ATR): 3061, 3033, 2926, 2875, 2233, 1693, 1451, 1409, 1324, 1219, 1170, 1129, 1066, 772, 701 cm⁻¹; HRMS (FD+) Calcd for C₃₅H₂₉F₃NO₂ [M]⁺ 549.1916, Found 549.1915; mp. 99.0-101.0 °C.

(2S,3R)-2-(naphthalen-2-ylmethoxy)-5-oxo-2,3-diphenyl-5-(*m*-tolyl)pentanenitrile (4bf):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 19/1); White solid (17.5 mg, 70% yield); HPLC analysis DAICEL Chiralcel IA-3 (Hexane/IPA = 92/8, 0.8 mL/min, 254 nm, 25 °C) 9.7 (minor), 11.4 (major) min; 89% ee; Optical rotation $[\alpha]_D^{22} = +104.6$ (*c* 1.2, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.83-7.82 (m, 1H), 7.79-7.76 (m, 2H), 7.74 (d, *J* = 7.8 Hz, 1H), 7.68 (s, 2H), 7.50-7.47 (m, 2H), 7.38-7.35 (m, 2H), 7.35-7.31 (m, 4H), 7.29-7.25 (m, 2H), 7.13-7.10 (m, 3H), 7.06-7.05 (m, 2H), 4.75 (d, *J* = 11.4 Hz, 1H), 4.47 (d, *J* = 11.4 Hz, 1H), 4.18 (dd, *J* = 8.4,

4.8 Hz, 1H), 4.11 (dd, J = 17.4, 4.8 Hz, 1H), 3.71 (dd, J = 17.4, 8.4 Hz, 1H), 2.29 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 197.4, 138.3, 137.0, 136.9, 135.6, 133.81, 133.75, 133.1, 133.0, 129.3, 129.2, 128.6 (2C), 128.3, 128.1, 128.0, 127.9, 127.7, 127.5, 126.60, 126.57, 126.13, 126.06, 125.6, 125.3, 117.8, 85.7, 69.2, 52.7, 39.7, 21.2; IR (ATR): 3060, 3031, 2921, 2864, 2233, 1684, 1602, 1449, 1344, 1272, 1219, 1081, 814, 771, 751, 700 cm⁻¹; HRMS (FD+) Calcd for C₃₅H₂₉NO₂ [M]⁺ 495.2198, Found 495.2196; mp. 127.0-129.0 °C.

(2S,3R)-2-(naphthalen-2-ylmethoxy)-5-oxo-2,3-diphenyl-5-(o-tolyl)pentanenitrile (4bg):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 19/1); White solid (12.4 mg, 50% yield); HPLC analysis DAICEL Chiralcel IA-3 (Hexane/IPA = 92/8, 0.8 mL/min, 220 nm, 25 °C) 7.3 (minor), 9.3 (major) min; 41% ee; Optical rotation $[\alpha]_D^{22} = +23.2$ (*c* 0.4, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.85-7.83 (m, 1H), 7.82-7.80 (m, 2H), 7.74 (s, 1H), 7.62 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.52-7.49 (m, 2H), 7.40-7.36 (m, 3H), 7.35-7.32 (m, 3H), 7.30 (ddd, *J* = 7.8, 7.2, 1.2 Hz, 1H), 7.20 (dd, *J* = 7.8, 7.2 Hz, 1H), 7.16-7.10 (m, 3H), 7.07 (d, *J* = 7.8 Hz, 1H), 7.02 (d, *J* = 7.2 Hz, 2H), 4.77 (d, *J* = 11.4 Hz, 1H), 4.48 (d, *J* = 11.4 Hz, 1H), 4.10 (dd, *J* = 9.0, 4.8 Hz, 1H), 4.01 (dd, *J* = 16.8, 4.8 Hz, 1H), 3.70 (dd, *J* = 16.8, 9.0 Hz, 1H), 2.09 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 201.4, 138.1, 138.0, 136.8, 135.6, 133.9, 133.2, 133.0, 131.7, 131.1, 129.34, 129.29, 128.6, 128.21, 128.18, 128.0, 127.9, 127.7, 127.5, 126.9, 126.6, 126.2, 126.1, 125.8, 125.5, 117.7, 85.6, 69.4, 52.8, 42.7, 20.7; IR (ATR): 3060, 3029, 2926, 2865, 2233, 1687, 1602, 1450, 1216, 1081, 856, 815, 748, 699 cm⁻¹; HRMS (FD+) Calcd for C₃₅H₂₉NO₂ [M]⁺ 495.2198, Found 495.2197; mp. 100.0-102.0 °C.

(2*S*,3*R*)-2-(naphthalen-2-ylmethoxy)-5-oxo-2,3-diphenyl-5-(thiophen-2-yl)pentanenitrile (4bh):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 12/1); White solid (15.8 mg, 65% yield); HPLC analysis DAICEL Chiralcel IA-3 (Hexane/IPA = 92/8, 0.8 mL/min, 254 nm, 25 °C) 13.1 (minor), 14.8 (major) min; 79% ee; Optical rotation $[\alpha]_D^{22} = +102.5$ (*c* 0.7, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.83 (dd, *J* = 4.8, 3.6 Hz, 1H), 7.81-7.79 (m, 2H), 7.77 (d, *J* = 8.4 Hz, 1H), 7.67 (s, 1H), 7.51-7.47 (m, 3H), 7.37-7.35 (m, 2H), 7.34-7.31 (m, 4H), 7.16-7.11 (m, 3H), 7.06-7.03 (m, 3H), 4.73 (d, *J* = 10.8 Hz, 1H), 4.46 (d, *J* = 11.4 Hz, 1H), 4.16 (dd, *J* = 7.8, 6.0 Hz, 1H), 4.06 (dd, *J* = 16.2, 6.0 Hz, 1H), 3.60 (dd, *J* = 16.2, 7.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 190.1, 144.3, 136.7, 135.5, 133.7 (2C), 133.1, 132.9, 131.9, 129.3, 129.2, 128.6, 128.11, 128.05, 128.0, 127.9, 127.63, 127.58, 126.6, 126.5, 126.1, 126.0, 125.5, 117.6, 85.8, 69.3, 52.8, 40.5; IR (ATR): 3060, 3031, 2956, 2926, 2860, 2232, 1662, 1518, 1415, 1220, 1080, 771, 700 cm⁻¹; HRMS (FD+) Calcd for C₃₂H₂₅NO₂S [M]⁺ 487.1606, Found 487.1604; mp. 156.0-158.0 °C.

(2S,3R)-2-(naphthalen-2-ylmethoxy)-5-oxo-2,5-diphenyl-3-(p-tolyl)pentanenitrile (4bi):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 19/1); White solid (20.7 mg, 84% yield); HPLC analysis DAICEL Chiralcel IA-3 (Hexane/IPA = 92/8, 0.8 mL/min, 254 nm, 25 °C) 9.9 (minor), 15.0 (major) min; 87% ee; Optical rotation $[\alpha]_D^{22} = +116.0$ (*c* 1.5, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, *J* 7.2 Hz, 2H), 7.83-7.81 (m, 1H), 7.79-7.76 (m, 2H), 7.67 (s, 1H), 7.50-7.46 (m, 3H), 7.39-7.32 (m, 8H), 6.94 (d, *J* = 8.4 Hz, 2H), 6.92 (d, *J* = 8.4 Hz, 2H), 4.74 (d, *J* = 11.4 Hz, 1H), 4.46 (d, *J* = 11.4 Hz, 1H), 4.15 (dd, *J* = 8.4, 4.8 Hz, 1H), 4.10 (dd, *J* = 17.2, 4.8 Hz, 1H), 3.70 (dd, *J* = 17.2, 8.4 Hz, 1H), 2.23 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 197.4, 137.1, 136.9, 135.7, 133.84, 133.82, 133.1, 133.0, 132.9, 129.2, 129.0, 128.7, 128.6, 128.4, 128.11, 128.07, 127.9, 127.6, 126.6 (2C), 126.13, 126.05, 125.6, 117.8, 85.8, 69.3, 52.3, 39.6, 21.0; IR (ATR): 3059, 3024, 2968, 2917, 2866, 2232, 1686, 1598, 1492, 1448, 1360, 1272, 1213, 1082, 1002, 815, 731 cm⁻¹; HRMS (FD+) Calcd for C₃₅H₂₉NO₂ [M]⁺ 495.2198, Found 495.2198; mp. 92.0-94.0 °C.

(2*S*,3*R*)-3-(4-methoxyphenyl)-2-(naphthalen-2-ylmethoxy)-5-oxo-2,5-diphenylpentanenitrile (4bj):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 12/1); White solid (23.1 mg, 90% yield); HPLC analysis DAICEL Chiralcel IA-3 (Hexane/IPA = 92/8, 0.8 mL/min, 254 nm, 25 °C) 12.1 (minor), 20.3 (major) min; 91% ee; Optical rotation $[\alpha]_D^{22} = +115.4$ (*c* 0.5, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, *J* = 7.2 Hz, 2H), 7.83-7.81 (m, 1H), 7.79-7.77 (m, 2H), 7.68 (s, 1H), 7.49-7.46 (m, 3H), 7.38-7.32 (m, 8H), 6.96 (d, *J* = 9.0 Hz, 2H), 6.65 (d, *J* = 9.0 Hz, 2H), 4.74 (d, *J* = 11.4 Hz, 1H), 4.46 (d, *J* = 11.4 Hz, 1H), 4.12 (dd, *J* = 8.4, 4.8 Hz, 1H), 4.08 (dd, *J* = 16.8, 4.8 Hz, 1H), 3.72 (s, 3H), 3.69 (dd, *J* = 16.8, 8.4 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 197.4, 158.8, 136.9, 135.7, 133.8, 133.1, 133.0, 132.9, 130.2, 129.2, 128.9, 128.6, 128.4, 128.12, 128.06, 127.9, 127.7, 126.64, 126.60, 126.14, 126.06, 125.6, 117.8, 113.4, 85.8, 69.3, 55.1, 51.9, 39.7; IR (ATR): 3059, 3024, 2932, 2836, 2232, 1685, 1513, 1448, 1361, 1250, 1180, 1080, 1034, 816, 752, 701 cm⁻¹; HRMS (FD+) Calcd for C₃₅H₂₉NO₃ [M]⁺ 511.2147, Found 511.2146; mp. 83.0-85.0 °C.

(2*S*,3*R*)-3-(4-chlorophenyl)-2-(naphthalen-2-ylmethoxy)-5-oxo-2,5-diphenylpentanenitrile (4bk):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 19/1); White solid (19.3 mg, 75% yield); HPLC analysis DAICEL Chiralcel IA-3 (Hexane/IPA = 92/8, 0.8 mL/min, 254 nm,

25 °C) 9.8 (minor), 15.3 (major) min; 86% ee; Optical rotation $[\alpha]_D^{22} = +109.5$ (*c* 1.3, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, J = 7.2 Hz, 2H), 7.84-7.82 (m, 1H), 7.79-7.78 (m, 2H), 7.69 (s, 1H), 7.51-7.49 (m, 3H), 7.39-7.36 (m, 7H), 7.34 (dd, J = 9.0, 1.8 Hz, 1H), 7.09 (d, J = 8.4 Hz, 2H), 7.00 (d, J = 8.4 Hz, 2H), 4.75 (d, J = 10.8 Hz, 1H), 4.47 (d, J = 10.8 Hz, 1H), 4.14 (dd, J = 9.0, 4.8 Hz, 1H), 4.08 (dd, J = 17.4, 4.8 Hz, 1H), 3.71 (dd, J = 17.4, 9.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 197.0, 136.7, 135.5, 135.3, 133.6, 133.4, 133.2, 133.1, 133.0, 130.5, 129.5, 128.8, 128.5, 128.3, 128.2, 128.0, 127.9, 127.7, 126.8, 126.5, 126.21, 126.16, 125.6, 117.6, 85.3, 69.4, 52.1, 39.5; IR (ATR): 3059, 3029, 2924, 2874, 2233, 1685, 1598, 1493, 1448, 1264, 1206, 1068, 1052, 954, 752, 700 cm⁻¹; HRMS (FD+) Calcd for C₃₄H₂₆ClNO₂ [M]⁺ 515.1652, Found 515.1650; mp. 91.0-93.0 °C.

(2*S*,3*R*)-2-(naphthalen-2-ylmethoxy)-5-oxo-2,5-diphenyl-3-(4-(trifluoromethyl)phenyl) pentanenitrile (4bl):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 19/1); White solid (16.4 mg, 59% yield); HPLC analysis DAICEL Chiralcel IA-3 (Hexane/IPA = 92/8, 0.8 mL/min, 254 nm, 25 °C) 8.6 (minor), 13.3 (major) min; 76% ee; Optical rotation $[\alpha]_D^{22} = +100.6$ (*c* 0.9, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, J = 7.2 Hz, 2H), 7.84-7.82 (m, 1H), 7.81-7.78 (m, 2H), 7.70 (s, 1H), 7.52-7.48 (m, 3H), 7.40-7.35 (m, 10H), 7.19 (d, J = 7.2 Hz, 2H), 4.77 (d, J = 10.8 Hz, 1H), 4.49 (d, J = 10.8 Hz, 1H), 4.23 (dd, J = 9.0, 4.8 Hz, 1H), 4.12 (dd, J = 17.4, 4.8 Hz, 1H), 3.78 (dd, J = 17.4, 9.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 196.8, 141.1, 136.6, 135.1, 133.5, 133.3, 133.1, 133.0, 129.70 (q, J = 31.5 Hz), 129.65, 129.6, 128.9, 128.6, 128.3, 128.0, 127.9, 127.7, 126.8, 126.5, 126.24, 126.20, 125.6, 125.0 (q, J = 2.9 Hz), 123.9 (q, J = 270.0 Hz), 117.5, 85.1, 69.5, 52.5, 39.4; ¹⁹F NMR (565 MHz, CDCl₃) δ -62.5; IR (ATR): 3059, 3028, 2958, 2929, 2861, 2233, 1724, 1687, 1449, 1324, 1166, 1117, 1065, 816, 753, 701 cm⁻¹; HRMS (FD+) Calcd for C₃₅H₂₆F₃NO₂ [M]⁺ 549.1916, Found 549.1914; mp. 113.0-115.0 °C.

(2S,3R)-2-(naphthalen-2-ylmethoxy)-5-oxo-2,5-diphenyl-3-(*m*-tolyl)pentanenitrile (4bm):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 19/1); White solid (21.6 mg, 87% yield); HPLC analysis DAICEL Chiralcel IA-3 (Hexane/IPA = 92/8, 0.8 mL/min, 254 nm, 25 °C) 8.7 (minor), 10.7 (major) min; 90% ee; Optical rotation $[\alpha]_D^{22} = +107.9$ (*c* 1.4, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.92 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.83-7.82 (m, 1H), 7.78-7.76 (m, 2H), 7.68 (s, 1H), 7.49-7.47 (m, 3H), 7.37-7.32 (m, 8H), 7.01 (dd, *J* = 7.8, 7.2 Hz, 1H), 6.94 (d, *J* = 7.2 Hz, 1H), 6.87 (d, *J* = 7.8 Hz, 1H), 6.81 (s, 1H), 4.75 (d, *J* = 11.4 Hz, 1H), 4.47 (d, *J* = 11.4 Hz, 1H), 4.14-4.08 (m, 2H), 3.71 (dd, *J* = 16.8, 7.8 Hz, 1H), 2.17 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 197.3, 137.5, 136.9, 136.8, 135.7, 133.8, 133.1, 133.0, 132.9, 130.1, 129.2, 128.5 (2C), 128.4, 128.2, 128.11, 128.07, 127.9, 127.8, 127.6, 126.64, 126.62, 126.12, 126.05, 125.6, 117.7, 85.7, 69.3, 52.6, 39.5, 21.3; IR (ATR): 3058, 3026, 2920, 2866, 2233, 1686, 1598, 1448, 1360, 1270, 1217, 1082, 1002, 752, 699 cm⁻¹; HRMS (FD+) Calcd for C₃₅H₂₉NO₂ [M]⁺ 495.2198, Found 495.2197; mp. 58.0-60.0 °C.

(2S,3R)-2-(naphthalen-2-ylmethoxy)-5-oxo-2,5-diphenyl-3-(o-tolyl)pentanenitrile (4bn):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 19/1); White solid (16.8 mg, 68% yield); HPLC analysis DAICEL Chiralcel IA-3 (Hexane/IPA = 92/8, 0.8 mL/min, 254 nm, 25 °C) 7.2 (minor), 8.4 (major) min; 68% ee; Optical rotation $[\alpha]_D^{22} = +84.7$ (*c* 0.9, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.89 (d, *J* = 7.2 Hz, 2H), 7.86-7.84 (m, 1H), 7.83-7.81 (m, 2H), 7.76 (s, 1H), 7.73 (d, *J* = 8.4 Hz, 1H), 7.52-7.47 (m, 3H), 7.41 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.38-7.28 (m,

7H), 7.19 (t, J = 7.8 Hz, 1H), 7.07 (t, J = 7.8 Hz, 1H), 6.89 (d, J = 7.8 Hz, 1H), 4.85 (d, J = 10.8 Hz, 1H), 4.58 (d, J = 10.8 Hz, 1H), 4.44 (dd, J = 9.0, 4.8 Hz, 1H), 4.06 (dd, J = 17.4, 4.8 Hz, 1H), 3.76 (dd, J = 17.4, 9.0 Hz, 1H), 1.88 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 197.5, 138.2, 136.9, 135.8, 135.2, 133.9, 133.2, 133.00, 132.96, 130.3, 129.2, 128.5, 128.4, 128.2, 128.0, 127.9, 127.7, 127.3, 127.2, 126.64, 126.59, 126.2, 126.1, 125.8, 125.6, 118.2, 85.2, 69.2, 46.7, 41.0, 19.4; IR (ATR): 3058, 3026, 2920, 2863, 2233, 1686, 1598, 1513, 1448, 1360, 1270, 1219, 1083, 1002, 815, 752, 700, 688 cm⁻¹; HRMS (FD+) Calcd for C₃₅H₂₉NO₂ [M]⁺ 495.2198, Found 495.2196; mp. 117.0-119.0 °C.

Transformation of product

To a dried test tube were added **4ba** (24.1 mg, 0.050 mmol, 92% ee), Pt catalyst **5** (4.3 mg, 0.010 mmol), EtOH (0.40 mL) and H₂O (0.10 mL) under argon atmosphere. The reaction mixture was stirred at 80 °C for 12 h. After cooled to room temperature, the mixture was diluted with EtOAc (2.0 mL) and H₂O (2.0 mL), and the product was extracted with EtOAc (2.0 mL × 3). The combined organic phase was washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash chromatography (Hexane/EtOAc = 3/1) to afford **6** (14.7 mg, 61% yield) as a white solid with 92% ee.

(3*S*,4*R*)-3-(naphthalen-2-ylmethoxy)-3,4,6-triphenyl-3,4-dihydropyridin-2(1*H*)-one (6):

Purified by silica gel flash column chromatography (Hexane/EtOAc = 3/1); White solid (14.7 mg, 61% yield); HPLC analysis DAICEL Chiralcel AD-3 (Hexane/IPA = 90/10, 0.9 mL/min, 254 nm, 30 °C) 17.6 (minor), 19.2 (major) min; 92% ee; Optical rotation $[\alpha]_D^{22} = +414.6$ (*c* 0.1, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.83 (s, 1H), 7.82-7.79 (m, 1H), 7.76 (d, *J* = 8.4 Hz, 1H), 7.73-7.66

(m, 2H), 7.50-7.37 (m, 8H), 7.19 (tt, J = 7.2, 1.2 Hz, 1H), 7.17-7.11 (m, 5H), 7.06 (dd, J = 7.8, 7.2 Hz, 2H), 6.80 (d, J = 7.2 Hz, 2H), 5.77 (dd, J = 5.4, 1.8 Hz, 1H), 4.86 (d, J = 12.6 Hz, 1H), 4.78 (d, J = 12.6 Hz, 1H), 4.13 (d, J = 5.4 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 169.0, 136.6, 136.0, 135.7, 135.0, 134.5, 133.3, 132.8, 129.4, 129.00, 128.99, 128.2, 127.98, 127.96, 127.92, 127.61, 127.56, 127.3, 127.2, 125.9, 125.71, 125.68, 125.5, 125.0, 107.3, 83.8, 67.9, 54.2; IR (ATR): 3220, 3060, 3029, 2934, 1681, 1496, 1453, 1376, 1257, 1057, 786, 758 cm⁻¹; HRMS (FD+) Calcd for C₃₄H₂₇NO₂ [M]⁺ 481.2042, Found 481.2041; mp. 96.0-98.0 °C.

4. ¹H NMR and ¹³C NMR Spectra

150 MHz, CDCl₃

S38

S56

5. HPLC Chart

	Peak 1	Peak 2
Retention time (min)	11.8	14.0
Area (%)	4.1	95.9

	Peak 1	Peak 2
Retention time (min)	11.4	12.3
Area (%)	28.4	71.6

	Peak 1	Peak 2
Retention time (min)	10.4	13.5
Area (%)	6.1	93.9

	Peak 1	Peak 2
Retention time (min)	21.5	27.3
Area (%)	13.5	86.5

	Peak 1	Peak 2
Retention time (min)	11.6	15.1
Area (%)	6.8	93.2

	Peak 1	Peak 2
Retention time (min)	14.0	17.7
Area (%)	8.2	91.7

	Peak 1	Peak 2
Retention time (min)	9.7	13.4
Area (%)	13.5	86.5

	Peak 1	Peak 2
Retention time (min)	8.3	9.8
Area (%)	5.9	94.1

	Peak 1	Peak 2
Retention time (min)	14.1	16.6
Area (%)	7.5	92.5

	Peak 1	Peak 2
Retention time (min)	12.3	18.4
Area (%)	3.8	96.2

	Peak 1	Peak 2
Retention time (min)	19.1	31.9
Area (%)	5.5	94.5

	Peak 1	Peak 2
Retention time (min)	10.9	14.2
Area (%)	4.0	96.0

	Peak 1	Peak 2
Retention time (min)	9.5	13.1
Area (%)	10.0	90.0

	Peak 1	Peak 2
Retention time (min)	9.7	11.4
Area (%)	5.5	94.5

	Peak 1	Peak 2
Retention time (min)	7.3	9.3
Area (%)	29.4	70.6

	Peak 1	Peak 2
Retention time (min)	13.1	14.8
Area (%)	10.5	89.4

	Peak 1	Peak 2
Retention time (min)	9.9	15.0
Area (%)	6.6	93.4

	Peak 1	Peak 2
Retention time (min)	12.1	20.3
Area (%)	4.4	95.6

	Peak 1	Peak 2
Retention time (min)	16.4	27.8
Area (%)	6.9	93.1

	Peak 1	Peak 2
Retention time (min)	8.6	13.3
Area (%)	11.6	88.4

	Peak 1	Peak 2
Retention time (min)	8.7	10.7
Area (%)	4.7	95.2

	Peak 1	Peak 2
Retention time (min)	7.2	8.4
Area (%)	16.0	84.0

6. References:

S1 K. Iwanami and T. Oriyama, *Chem. Lett.* 2004, **33**, 1324–1325.