Electronic Supplementary Material (ESI) for Sensors & Diagnostics. This journal is © The Royal Society of Chemistry 2022

Nanostructured zirconia@reduced graphene oxide based ultraefficient nanobiosensing platform for food toxin detection

Dipti Chauhan[‡], Yogesh Kumar[‡], Ramesh Chandra, Suveen Kumar*

Department of Chemistry, University of Delhi, Delhi-110007 (India)

- * Corresponding Author's email id: suveendev@gmail.com
- [‡] These authors equally contributed to the work

1. Chemicals and biomolecules: Natural graphite flakes, zirconium ethoxide, N-ethyl-N-(3dimethylaminopropyl) carbodiimide (EDC), Aflatoxin B1 (AFB1) and bovine serum albumin (BSA) were purchased from Sigma-Aldrich (St. Louis, USA). Sodium hydroxide, cetyltrimethylammonium bromide (CTAB), sodium monophosphate, sodium diphosphate dihydrate and N-hydroxysulfosuccinimide (NHS) were purchased from Fisher Scientific (Maharashtra, India). 3-aminopropyl triethoxy silane (APTES) was procured from Alfa-aesar (Lancashire, UK). These materials were used without further purification. Milli-Q water (resistivity 18 M Ω cm) was used in all the buffer and solution preparation.

2. Characterization: The crystallinity and phase formation of the nanocomposite was examined through X-ray diffraction (XRD) studies [Bruker D-8 Advance] in which the spectrum was recorded through a monochromatic X-ray beam with Cu-k α radiation of wavelength (λ) 1.5406 Å. The structural and morphological studies were conducted through scanning electron microscopy (SEM, Hitachi SN-3700) and transmission electron microscopy (TEM, JEOL-JEM-2100F). Fourier transform infrared spectroscopy (FT-IR, Perkin-Elmer, model spectrum ATR accessory) was used to investigate the functional groups and bonds present on APTES/nZrO₂@RGO/ITO and anti-AFB1/APTES/nZrO₂@RGO/ITO electrodes. The electrochemical studies [cyclic voltammetry (CV) and differential pulse voltammetery (DPV)] were performed using Autolab, Potentiostat/Galvanostat (Netherlands). These measurements were conducted using a three-electrode system where modified ITO coated glass substrate was employed as the working electrode, platinum (Pt) as counter electrode and Ag/AgCl as the reference electrode in phosphate buffer saline (PBS) solution (50 mM, 0.9 % NaCl) of pH 7.0 containing 5 mM of [Fe (CN)₆^{3-/4-}] as redox species. All the electrochemical studies were conducted in triplicate.

Figure S1: FT-IR spectra of (a) GO and (b) nZrO₂@RGO.

AFB1/APTES/nZrO₂@RGO/ITO electrodes.

Equations

$I_{pa (APTES/nZrO2@RGO/ITO)} (mA) = [0.048 \pm 0.0004 (mA mV-1)]$	$^{/2} s^{1/2} v^{1/2} (mV^{1/2} s^{-1/2})] + [0.141 \pm$
0.004 mA],	$R^2 = 0.99(S1)$
$I_{pc (APTES/nZrO2@RGO/ITO)} (mA) = -[0.033 \pm 0.0003 (mA mV-10.0003)]$	$(1/2 s^{1/2}) v^{1/2} (mV^{1/2} s^{-1/2})] - [0.155 \pm$
0.003 mA],	$R^2 = 0.99(S2)$
$I_{\text{pa}((\text{BSA/anti-AFB1/APTES/nZrO2@RGO/ITO})} \text{ (mA)} = [0.047 \pm 0.0003]$	$3 \text{ (mA mV}^{-1/2} \text{ s}^{1/2}) \upsilon^{1/2} \text{ (mV}^{1/2} \text{ s}^{-1/2})]$
+ $[0.136 \pm 0.003 \text{ mA}],$	$R^2 = 0.99(S3)$
$I_{\text{pc}}(\text{BSA/anti-AFB1/APTES/nZrO2@RGO/ITO})} \text{(mA)} = -[0.035 \pm 0.0002]$	2 (mA mV ^{-1/2} s ^{1/2}) $\upsilon^{1/2}$ (mV ^{1/2} s ^{-1/2})]
$-[0.127\pm0.002 \text{ mA}],$	R ² =0.99(S4)
$\Delta E_{p (APTES/nZrO2@RGO/ITO)} (V) = [0.024 \pm 0.0002 (V^{1/2} mV^{-1/2})]$	$(mV^{1/2} s^{-1/2}) v^{1/2} (mV^{1/2} s^{-1/2})] + [0.1536 \pm$
0.002 V],	$R^2 = 0.99(S5)$
$\Delta E_{p (BSA/anti-CYFRA-21-1/APTES/nZrO2@RGO/ITO)} (V) = [0.032 \pm 0.0]$	004 (V ^{1/2} mV ^{-1/2} s ^{1/2}) $\upsilon^{1/2}$ (mV ^{1/2} s ^{-1/2})
$^{1/2}$)] + [0.185 ± 0.004] V,	R ² = 0.99,(S6)