Supporting Information

Single-channel digital LAMP multiplexing using Amplification Curve Analysis

Kenny Malpartida-Cardenas^{a,b,*}, Luca Miglietta^{a,b,*}, Tianyi Peng^a, Ahmad Moniri^b, Alison Holmes^a, Pantelis Georgiou^b and Jesus Rodriguez-Manzano^{a,†}

^a Department of Infectious Disease, Imperial College London, London W12 ONN, UK

^b Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK

*Authors contributed equally.

[†]**Correspondence:** Jesus Rodriguez-Manzano, PhD, Department of infectious Disease, Imperial College London, Room 8N9, Commonwealth Building, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN; j.rodriguez-manzano@imperial.ac.uk

Contents:

- Materials and Methods.
- Acknowledgements.
- **Table S1**: Primer sequences of the LAMP assays used for the 5plex-LAMP.
- Table S2: Synthetic DNA sequences (gBlocks) and GenBank accession numbers.
- **FigureS1**. Standard and melting curves of the 5plex-LAMP in a real-time quantitative fluorescencebased instrument.
- Figure S2. Amplification curves of the 5plex-LAMP in dLAMP using a single fluorescence channel.
- **Figure S3**. Histogram showing the distribution of time-to-positive values of the 5plex-LAMP in dLAMP using a single fluorescence channel.
- **Figure S4**. Confusion matrices showing the prediction performance of the four machine-learning based methods evaluated in this study: FFI, ACA, MCA and AMCA.
- References.

Materials and Methods

1. LAMP primer sequences

Primer sequences for each of the targets are summarised in Table S1. A LAMP assay was designed for the detection of the M gene of the influenza A virus. Genomic sequences were retrieved from NCBI (http://www.ncbi.nlm.nih.gov/genbank/) and sequence alignment was performed using the MUSCLE algorithm. A conserved region of interest was selected, and the sequence was uploaded into Primer Explorer for the generation of several sets of LAMP assays. Further manual optimisation and design of loops primers were performed using GENEious Prime 2020.1.2 (https://www.geneious.com). Primer sequences specific to each of the targets were analyzed with IDT OligoAnalyzer software (https://eu.idtdna.com/pages/tools/oligoanalyzer) using the J. SantaLucia thermodynamic table for melting temperature (Tm) evaluation, hairpin, self-dimer, and cross-primer formation. Primers were purchased from IDT and rehydrated in TE (pH 8.00) at 500 µM. A 50x primer mix was prepared for each target and subsequently, the 10x 5plex-LAMP was obtained by mixing each specific primer mix at equitable volumes.

2. Multiplex real-time LAMP

Real-time LAMP reactions consisted of 6 μ L final reaction volume including: 0.60 μ L of 10x custom isothermal buffer, 0.30 μ L of Mg SO4 (100 mM stock), 0.34 μ L of dNTPs (25 mM stock), 0.36 μ L of BSA (20 mg/mL), 0.48 μ L of Betaine (5 M stock), 0.60 μ L of 10x 5plex LAMP primer mix, 0.15 μ L of NaOH (0.2 M stock), 0.03 μ L of Bst 2.0 DNA polymerase (120 kU/ μ L stock), 0.30 μ L of EvaGreen (20x stock), 1.8 μ L of the target oligonucleotide and enough nuclease free water to have a final volume of 6 μ L. Amplification reaction was performed at 63°C for 35 cycles of 60 s duration reading at the end of each cycle. Melting curve analysis was performed after the amplification reaction and consisted of 1 cycle at 95°C for 10 s, 65°C for 60 s, and gradual temperature change from 65°C to 97°C with a step of 2.2 °C/s reading every 0.2 °C. LAMP protocol was based and adapted from Rodriguez-Manzano et al.¹

3. Multiplex real-time digital LAMP

Real-time digital LAMP reactions consisted of 6 μ L final reaction volume including: 0.024 μ L of ROX (50 μ M stock), 0.60 μ L of 20x GE Sample Loading Reagent (Fluidigm), 0.60 μ L of 10x custom isothermal buffer, 0.30 μ L of MgSO₄ (100 mM stock), 0.34 μ L of dNTPs (25 mM stock), 0.36 μ L of BSA (20 mg/mL), 0.48 μ L of Betaine (5 M stock), 0.60 μ L of 10x 5plex LAMP primer mix, 0.15 μ L of NaOH (0.2 M stock), 0.03 μ L of Bst 2.0 DNA polymerase (120,000 U/ μ L stock), 0.30 μ L of EvaGreen (20x stock), 1.8 μ L of the target oligonucleotide and enough nuclease free water to have a final volume of 6 μ L. The qdPCR 37K integrated fluidic circuit (IFC) was used to perform the dLAMP experiments. Firstly, the 48.48 control lines fluid were injected into each accumulator of the qdPCR 37K IFC and primed in the IFC Controller MX. Secondly, reactions and 1x GE were loaded into the qdPCR 37K IFC following manufacturer's instructions and the qdPCR 37K IFC was loaded IFC Controller MX. Finally, the qdPCR 37K IFC was placed into the Fluidigm's Biomark HD system and the amplification reaction was performed at 63°C for 35 cycles of 1 min duration reading at the end of each cycle. Melting curve analysis was performed after the amplification reaction and consisted of 1 cycle at 95°C for 10 s, 65°C for 60 s, and gradual temperature change from 65°C to 97°C with a step of 2.2 °C/s reading every 0.2 °C. The qdPCR 37K IFC contains 48 inlets which correspond to 48 panels. Each of the panels contains 770 wells with a volume of 0.85 nL.

4. Synthetic oligonucleotides

Synthetic oligonucleotides (gBlock Gene Fragment) for each of the targets were purchased from IDT and resuspended at 5 ng/ μ L. Synthetic DNA sequences are included in Table S2.

5. Evaluation of the 5plex-LAMP assay

Performance of the 5plex-LAMP was evaluated by using 10-fold serial dilutions of synthetic DNA of each of the targets at concentrations ranging from 1.8×10^8 to 1.8×10^2 copies per reaction. A total of 8 replicates were performed per each concentration and target.

Specificity of the 5plex-LAMP assay was evaluated *in-silico* by testing the primers with the sequences of the target pathogens and experimentally by cross-testing each LAMP assay with all the other targets including non-template controls (NTC).

6. Machine learning methods for the detection of amplification events: ACA, MCA and FFI

Multiple standard packages and in-house scripts in Python (v3.7) were developed to analyse the data: (i) FFI values were extracted from each amplification curves, considering only the last values in the cycle time series. The FFI model consisted in a logistic regression classifier to distinguish different targets (please note that these assays are not optimised for improve FFI classification). (ii) A *k*-Nearest neighbour model was used to implement the ACA model using scikit-learn package with default parameters (for more information please see provided code and package documentation). The ACA classification accuracy (i.e., proportion of correctly identified events), sensitivity (i.e., true positive rate), and specificity (i.e., true negative rate) values in Tables 1 were computed for each binary classification subproblem in the one-vs-one multiclass classification scheme. (iii) The MCA classifier distinguished the melting peak temperature or peak T_m, using a supervised machine learning classifier, in this study we used a logistic regression. Performance of the models was evaluated based on out-of-sample classification accuracy, as determined by 10-fold cross-validation (using stratified splits). In order to assess the performance as a function of the volume of training data, shuffled stratified split was performed five times, with 5000 test samples. All data and code used in this study can be found at https://github.com/LMigliet/pyiACA.

Acknowledgements

This work was supported by the Imperial COVID-19 Research Fund (WDAI.G28059); the Department of Health and Social Care-funded Centre for Antimicrobial Optimisation (CAMO) at Imperial College London; the Imperial College Healthcare Trust NIHR Biomedical Research Centre (P80763); the EPSRC HiPEDS CDT (EP/ L016796/1 to K.M.C.); and EPSRC Doctoral Prize Fellowship (WDAI_PA2018 to K.M.-C.). Authors AH, PG and JRM are affiliated with the NIHR Health Protection Research Unit (HPRU) in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London in partnership with the UK Health Security Agency (previously PHE) in collaboration with, Imperial Healthcare Partners, the University of Cambridge and the University of Warwick. The views expressed in this publication are those of the authors and not necessarily those of the NHS, the National Institute for Health and Care Research, the Department of Health and Social Care, or the UK Health Security Agency. AH is a National Institute for Health and Care Research (NIHR) Senior Investigator.

Assay	Primer	Sequence (5' to 3')	Gene	LOD ^a	Author	Ref.
LAMP-FA1	F3	GGCTATGGAGCAAATGGCTG	м	180 copies/ reaction	This study	
LAMP-FA1	B3	CACTTGAACCGTTGCATCTG				
LAMP-FA1	LF	CTGACTAGCAACCTCCATGG				
LAMP-FA1	LB	GCTGGTCTGAAAAATGATCTTCTTG		(1.8 µL	i nis study	
LAMP-FA1	FIP	CGCTTGCACCATTTGCCTAGCGATCGAGTGAGCAAGCAGC		in 6 µL		
LAMP-FA1	BIP	TGGGACTCATCCTAGCTCCAGTCACCCCCATTCGTTTCTGA		reaction)		
LAMPcov	F3	ACCAATAGCAGTCCAGATGA		10		
LAMPcov	B3	CACGATTGCAGCATTGTTAGC	N	copies/		
LAMPcov	LF	GGACTGAGATCTTTCATTTTACCGT		reaction	Rodriguez-	1
LAMPcov	LB	ACTGAGGGAGCCTTGAATACA		(4 µL sample	et al.	
LAMPcov	FIP	TCTGGCCCAGTTCCTAGGTAGTCCAGACAAATTCGTGGTGG	-	in 10 µL reaction)		
LAMPcov	BIP	GGACTTCCCTATGGTGCTAACAAACGGGTGCCAATGTGATCT				
LAMP-FB1	F3	AGGGACATGAACAAAGA		1 copy (5 μL sample in 25 μL reaction)	Mahony et al.	2
LAMP-FB1	B3	CAAGTTTAGCAACAAGCCT	NS1			
LAMP-FB1	LF	TCAAACGGAACTTCCCTTCTTTC				
LAMP-FB1	LB	GGATACAAGTCCTTATCAACTCTGC				
LAMP-FB1	FIP	TCAGGGACAATACATTACGCATATCGATAAAGGAGGAAGTAAACACTCA		reactiony		
LAMP-FB1	BIP	TAAACGGAACATTCCTCAAACACCACTCTGGTCATAGGCATTC				
LAMP-HAdV	F3	GTGCGACAGGACCATGTG				
LAMP-HAdV	B3	GGTAGACGGCCTCGATGA	HEXON			
LAMP-HAdV	LF	GGCCCCCATGGACATGAA		1.9×10 ²	listal	3
LAMP-HAdV	LB	CCACCCTGCTTTATCTTCTTTCG	of	of DNA	Li el al.	
LAMP-HAdV	FIP	AGCATGTTCTGTCCCAGGTCGGCATTCCCTTCTCCAGCAA				
LAMP-HAdV	BIP	GAGGTGGATCCCATGGATGAGCACTCTGACCACGTCGAARAC				
LAMP-KPn	F3	GGATATCTGACCAGTCGG	RCSA /re (sa in rea	10 copies /reaction	Dong et al.	4
LAMP-KPn	B3	GGGTTTTGCGTAATGATCTG				
LAMP-KPn	LB	GAAGACTGTTTCGTGCATGATGA		(1 uL		
LAMP-KPn	FIP	CGACGTACAGTGTTTCTGCAGTTTTAAAAAACAGGAAATCGTTGAGG		sample		
LAMP-KPn	BIP	CGGCGGTGGTGTTTCTGAATTTTGCGAATAATGCCATTACTTTC		reaction)		

Table S1. Primer sequences of the LAMP assays used for the 5plex-LAMP.

^aLimit of detection (LOD).

Table S2. Synthetic DNA sequences (gBlocks) and accession numbers.

Target gene	Sequence (5' to 3')				
	ATGTCAACGATGATTATGGATTTGTGCAGCTATACCCGGTTGGGATTGACGGGA				
	TATCTGACCAGTCGGGGAATTAAAAAACAGGAAATCGTTGAGGTCAACAGTGCT				
	GCGGATCTGCAGAAACACTGTACGTCGTGTTGCCCGGCGGTGGTGTTTCTGAAT				
Klobsialla	GAAGACTGTTTCGTGCATGATGATGAAAGTAATGGCATTATTCGCCAGATCATT				
Decumoniao	ACGCAAAACCCGGCGACGCTGTTTGTTATCTTTATGTCGCTGGCGAACATCCAT				
(PCSA)	TTTGACCGCTATTTGCGGGTACGGAAGAATCTGCTAATCAGTTCAAAATCGATA				
(NCSA)	ACCCCAAAAGACCTTGATGTTATTCTGGTTAATTATCTTAAATACAAAAACACC				
NC 012731 1	AGTGTAGGGCAGTTAACTTTACCGACATTGTCACTGAGTAAAACAGAATCAAAT				
NC_012751.1	ATGCTGCAAATGTGGATGGCCGGGCATGGTACTTCGCAAATCTCAACGCAAATG				
	AACATCAAAGCGAAGACGGTATCGTCGCATAAAGGCAATATTAAAAAGAAAATA				
	CAAACGCATAATAAGCAGGTGATTTATCATATCGTTCGGCTGACCGAAAACATC				
	ACCTCCGGTATTCAGGTAAATATGCGCTGA				
	AGGTCTCCATCATGTTTGACTCCTCAGTCAGCTGGCCTGGCAATGACAGGCTGT				
	TGAGCCCAAATGAGTTTGAAATCAAGCGCACTGTGGACGGGGAAGGATACAACG				
	TGGCACAATGCAACATGACCAAAGACTGGTTCCTAGTTCAGATGCTTGCCAACT				
	ACAACATTGGCTACCAGGGCTTTTACATCCCTGAGGGATACAAGGATCGCATGT				
Human	ACTCTTTTTTCAGAAACTTCCAGCCTATGAGCAGGCAGGTGGTTGATGAGGTTA				
Adopovirus	ATTACACTGACTACAAAGCCGTCACCTTACCATACCAACAACAACACTCTGGCT				
	TTGTAGGGTACCTTGCACCTACTATGAGACAAGGGGAACCTTACCCAGCCAATT				
(IILXON)	ATCCATACCCGCTCATCGGAACTACTGCCGTTAAGAGTGTTACCCAGAAAAAGT				
AE5/210/ 1	TCCTGTGCGACAGGACCATGTGGCGCATTCCCTTCTCCAGCAACTTCATGTCCA				
AI 342104.1	TGGGGGCCCTTACCGACCTGGGACAGAACATGCTCTATGCCAACTCAGCCCATG				
	CGCTGGACATGACTTTTGAGGTGGATCCCATGGATGAGCCCACCCTGCTTTATC				
	TTCTTTTCGAAGTCTTCGACGTGGTCAGAGTGCACCAGCCACACCGCGGCGTCA				
	TCGAGGCCGTCTACCTGCGCACACCGTTCTCGGCCGGCAACGCCACCACATAA				
	TAATACGACTCACTATAGGGAGTAAAAATGATGAAAGTACTCCTATTTATGAATC				
	CGTCTGCTGGAATTGAAGGGTTTGAGCCATACTGTATGAAAAGTTCCTCAAATAGC				
	AACTGTCCGGAATACAATTGGACCGATTACCCTTCAACACCAGGGAGGTGCCTTGA				
	TGACATAGAAGAAGAACCAGAGGATGTTGATGGCCCAACTGAAATAGTATTAAGGG				
	ACATGAACAACAAGATGCAAGGCAAAAGATAAAGGAGGAAGTAAACACTCAGAAA				
Influenza B	GAAGGGAAGTTCCGTTTGACAATAAAAAGGGATATGCGTAATGTATTGTCCTTGAG				
(NS1)	AGTGTTGGTAAACGGAACATTCCTCAAACACCCCAATGGATACAAGTCCTTATCAA				
	CTCTGCATAGATTGAATGCATATGACCAGAGTGGAAGGCTTGTTGCTAAACTTGTT				
CY120033.1	GCTACTGATGATCTTACAGTGGAGGATGAAGAAGATGGCCATCGGATCCTCAACTC				
	ACTCTTCGAGCGTCTTAATGAAGGACATTCAAAGCCAATTCGAGCAGCTGAAACTG				
	CGGTGGGAGTCTTATCCCAATTTGGTCAAGAGCACCGATTATCACCAGAAGAGGGA				
	GACAATTAGACTGGTCACGGAAGAACTTTATCTTTTAAGTAAAAGAATTGATGATA				
	ACATATTGTTCCACAAAACAGTAATAGCTAACAGCTCCATAATAGCTGCTTTAGTG				
	AGGGTTAATT				
	TAATACGACTCACTATAGAGCGAAAGCAGGTAGATATTGAAAGATGAGTCTTCTAAC				
Influenza A (M)	CGAGGTCGAAACGTACGTTCTCTCTATCATCCCGTCAGGCCCCCTCAAAGCCGAGAT				
	CGCACAGAGACTTGAAGATGTCTTTGCAGGGAAGAACACCGATCTTGAGGTTCTCAT				
NC_002016	GGAATGGCTAAAGACAAGACCAATCCTGTCACCTCTGACTAAGGGGATTTTAGGATT				
	TGTGTTCACGCTCACCGTGCCCAGTGAGCGAGGACTGCAGCGTAGACGCTTTGTCCA				

	AAATGCCCTTAATGGGAACGGGGATCCAAATAACATGGACAAAGCAGTTAAACTGTA
	TAGGAAGCTCAAGAGGGAGATAACATTCCATGGGGCCAAAGAAATCTCACTCA
	TTCTGCTGGTGCACTTGCCAGTTGTATGGGCCTCATATACAACAGGATGGGGGCTGT
	GACCACTGAAGTGGCATTTGGCCTGGTATGTGCAACCTGTGAACAGATTGCTGACTC
	CCAGCATCGGTCTCATAGGCAAATGGTGACAACAACCAAC
	GAACAGAATGGTTTTAGCCAGCACTACAGCTAAGGCTATGGAGCAAATGGCTGGATC
	GAGTGAGCAAGCAGCAGAGGCCATGGAGGTTGCTAGTCAGGCTAGGCAAATGGTGCA
	AGCGATGAGAACCATTGGGACTCATCCTAGCTCCAGTGCTGGTCTGAAAAATGATCT
	TCTTGAAAATTTGCAGGCCTATCAGAAACGAATGGGGGTGCAGATGCAACGGTTCAA
	GTGATCCTCTCGCTATTGCCGCAAATATCATTGGGATCTTGCACTTGATATTGTGGA
	TTCTTGATCGTCTTTTTTCAAATGCATTTACCGTCGCTTTAAATACGGACTGAAAG
	GAGGGCCTTCTACGGAAGGAGTGCCAAAGTCTATGAGGGAAGAATATCGAAAGGAAC
	AGCAGAGTGCTGTGGATGCTGACGATGGTCATTTTGTCAGCATAGAGCTGGAGTAAA
	AAACTACCTTGTTTCTACTCTTTAGTGAGGGTTAATT
SARS-CoV-2 (N)	IDT 2019-nCoV_N Positive Control

Figure S1. Standard and melting curves of the 5plex-LAMP in a real-time quantitative fluorescence-based instrument. (A) Standard curve for Influenza A virus. (B) Standard curve for Influenza B virus. (C) Standard curve for human adenovirus. (D) Standard curve of *Klebsiella Pneumoniae*. (E) Standard curve for severe acute respiratory syndrome coronavirus 2. (F) Specific melting curves of all the targets.

Figure S2. Amplification curves of the 5plex-LAMP in dLAMP using a single fluorescence channel.

Figure S3. Histogram showing the distribution of Time-To-Positive (TTP) values of the 5plex-LAMP in dLAMP using a single fluorescence channel.

Figure S4. Confusion matrices showing the prediction performance of the four methods evaluated in this study: FFI, ACA, MCA and AMCA.

References

- 1 J. Rodriguez-Manzano, K. Malpartida-Cardenas, N. Moser, I. Pennisi, M. Cavuto, L. Miglietta, A. Moniri, R. Penn, G. Satta, P. Randell, F. Davies, F. Bolt, W. Barclay, A. Holmes and P. Georgiou, *ACS Cent. Sci.*, 2021, acscentsci.0c01288.
- 2 J. Mahony, S. Chong, D. Bulir, A. Ruyter, K. Mwawasi and D. Waltho, *J. Clin. Virol.*, 2013, **58**, 127–131.
- 3 F. Li, L. Zhao, J. Deng, R. Zhu, Y. Sun, L. Liu, Y. Li and Y. Qian, *Zhonghua er ke za zhi = Chinese J. Pediatr.*, 2013, **51**, 52–7.
- 4 D. Dong, W. Liu, H. Li, Y. Wang, X. Li, D. Zou, Z. Yang, S. Huang, D. Zhou, L. Huang and J. Yuan, *Front. Microbiol.*, , DOI:10.3389/fmicb.2015.00519.