Supporting information

Electrochemical methods for on-site multidrug detection at festivals

Robin Van Echelpoel,^{a,b‡} Jonas Schram, ^{a,b‡} Marc Parrilla,^{a,b} Devin Daems,^{a,b} Amorn Slosse,^c Filip Van Durme,^c Karolien De Wael^{*,a,b}

^a A-Sense Lab, Department of Bioscience engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.

^b NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.

^c Drugs and Toxicology Department, National Institute for Criminalistics and Criminology (NICC), Vilvoordsesteenweg 100, 1120, Brussels, Belgium.

‡ Shared first authors

***Corresponding author**: Karolien De Wael (karolien.dewael@uantwerpen.be)

Table of contents

Experimental section	SI-3
Portable Raman measurements	SI-3

Tables	SI-4
Table S1. Training set	SI-4
Table S2. Overview of adulterant peaks and potentials	SI-4
Table S3. Overview of drug peak potentials in binary mixtures	SI-5
Table S4. Composition and appearance of confiscated samples	SI-6
Table S5. Electrochemical and Raman results of confiscated sample analysis	SI-8

Figures	SI-11
Figure S1. Chemical structures target drugs	SI-11
Figure S2. Pre-processed SWVs of adulterants	SI-11
Figure S3. Pre-processed SWVs of binary mixtures	SI-12
Figure S4. Representation of the database used in dual sensor	SI-13
Figure S5. Pre-processed SWVs of confiscated samples	SI-15

Experimental section

Portable Raman measurements. A Bruker Bravo Handheld Raman spectrometer (Bruker Optik GmbH, Ettlingen, Germany) was used for all Raman measurements. The instrument uses a dual laser excitation feature with two laser diodes (wavelengths: 785 nm and 852 nm). Spectra were recorded from 170 cm⁻¹ to 3200 cm⁻¹. OPUS 8.2.28 (Bruker Optik GmbH, Ettlingen, Germany) software was used for data acquisition and analysis. All seized samples were processed by the partnered institutes into powdered form and kept in transparent Eppendorf tubes. All measurements were performed by placing the Eppendorf tubes containing the sample on the measuring tip. The TICTAC Drug Library (TICTAC Communications Ltd., London, United Kingdom) was used for identification.

Training set					
Cocaine	+ Benzocaine	MDMA	+ Amphetamine		
	+ Caffeine		+ Caffeine		
	+ Levamisole		+ Creatine		
	+ Lidocaine		+ Ketamine		
	+ Paracetamol		+ Paracetamol		
	+ Procaine		+ Phenacetin		
	+ Phenacetin				
Amphetamine	+ Caffeine	Ketamine	+ Amphetamine		
	+ Creatine		+ Benzocaine		
	+ Paracetamol		+ Caffeine		
			+ Creatine		
			+ Paracetamol		
Codeine	Procaine	Caffeine	Paracetamol		
Lidocaine	Benzocaine	Creatine	Phenacetin		

Table S1. Training set containing four drugs, eight adulterants and 21 binary mixtures.

Table S2. Overview of the peaks produced by each adulterant and the corresponding peak potential in the pH7F and pH12 measuring conditions.

		pH7F	pH12	
	Peak number	Peak potential (V)	Peak number	Peak potential (V)
	1	0.76	1	0.53
Ponzocaina	2	0.93		
Delizocalite	3	1.00		
	4	1.14		
Caffeine	1	1.33	1	1.28
	1	0.91	1	0.77
Codeine	2	1.04	2	0.91
	3	1.27	3	1.10
Creatine	1	/	1	/
	1	0.82	1	0.66
Lidocaine	2	0.99		
	3	1.18		
Paracetamol	1	0.38	1	0.10
Phenacetin	1	0.76	1	0.54
	2	1.13		
Procaine	1	0.80	1	0.69

2	1.08
3	1.26

Table S3. Overview of the potentials of drug peaks in their binary mixtures in pH7F and pH12. Between brackets is the potential change of the characteristic drug peaks compared to those of the pure compound. Deviations of 50 mV and more are indicated in red.

	pH7F			pH12
	Peak	Peak potential (V)	Peak	Peak potential (V)
	name		name	
Amphatamina Looffaina	A1	1.01 (+0.00)		
Amphetamine + carreine	A2	1.33 (+0.10)		
American	A1	1.01 (+0.00)		
Amphetamine + creatine	A2	1.25 (+0.02)		
Amehatamina I navaaatamal	A1	1.02 (+0.01)		
Amphetamine + paracetamoi	A2	1.26 (+0.03)		

Cocaine + benzocaine	C1	0.94 (-0.04)	C2	0.92 <mark>(+0.09)</mark>
Cocaine + caffeine	C1	1.02 (+0.04)	C2	0.83 (+0.00)
Cocaine + levamisole	C1	0.96 (-0.02)	C2	0.87 (+0.04)
Cocaine + lidocaine	C1	1.04 (+0.06)	C2	0.85 (+0.02)
Cocaine + paracetamol	C1	1.03 (+0.05)	C2	0.82 (-0.01)
Cocaine + procaine	C1	0.97 (-0.01)	C2	0.90 (+0.07)
Cocaine + phenacetin	C1	1.02 (+0.04)	C2	0.83 (+0.04)

Katamina Lamahatamina	K1	1.04 <mark>(+0.05)</mark>	K2	1.01 (+0.03)
Ketamine + amphetamine			КЗ	1.26 (+0.00)
Katamina L hanzaasina	K1	1.01 (+0.02)	К2	1.07 (+0.09)
Ketamine + benzocaine			КЗ	/
	K1	1.03 (+0.04)	К2	0.94 (-0.04)
Ketamine + caffeine			КЗ	1.27 (+0.01)
Katamina Laractina	K1	1.03 (+0.04)	К2	0.96 (-0.02)
Ketamine + creatine			КЗ	1.24 (-0.02)
	K1	1.04 (+0.05)	К2	0.96 (-0.02)
Ketamine + paracetamol			К3	1.23 (-0.03)

	M1	0.80 (-0.01)	M3	/
MDMA + amphetamine	M2	1.00 (-0.03)	M4	0.93 (-0.02)
			M5	1.28 (+0.04)

	M1	0.83 (+0.02)	M3	0.82 (+0.01)
MDMA + caffeine	M2	1.02 (-0.01)	M4	0.93 (-0.02)
			M5	1.30 (+0.06)
	M1	0.82 (+0.01)	M3	0.82 (+0.01)
MDMA + creatine	M2	1.01 (-0.02)	M4	0.93 (-0.02)
			M5	1.24 (+0.00)
	M1	0.79 (-0.02)	M3	/
MDMA + ketamine	M2	0.98 <mark>(-0.05)</mark>	M4	0.92 (-0.03)
			M5	1.27 (+0.03)
	M1	0.84 (+0.03)	M3	0.82 (+0.01)
MDMA + paracetamol	M2	1.02 (-0.01)	M4	0.93 (-0.02)
			M5	1.24 (+0.00)
	M1	0.79 (-0.02)	M3	0.82 (+0.01)
MDMA + phenacetin	M2	0.99 (-0.04)	M4	0.94 (-0.01)
			M5	1.25 (+0.01)

Table S4. Overview of the composition and appearance of street samples. Identification and weight

 percentages were determined at NICC using GC-MS and GC-FID respectively.

Name	Sample nature (+ color)	Composition	wt.%
1A	Tablet (off-white)	Amphetamine	25.8
2A	Paste (orange)	Amphetamine	52.2
		Caffeine	29.2
3A	Tablet (red)	Amphetamine	6.6
		Caffeine	13.3
		Ketamine	/
		MDMA	1.36
		3-Fluoroamphetamine	1.84
4A	Powder (yellow)	Amphetamine	20.9
		Caffeine	48.4
5A	Powder (white)	Amphetamine	47.9
		Caffeine	41.8
6A	Powder (white)	Amphetamine	57.6
		Caffeine	31.2
7A	Paste (yellow)	Amphetamine	67.7
		Caffeine	20.7
8A	Paste (yellow)	Amphetamine	36.4
		Caffeine	1.3
9A	Powder (white)	Amphetamine	77.8
		Caffeine	13.4
10A	Powder (yellow)	Amphetamine	62.1

1C	Powder (white)	Cocaine	97.5
2C	Powder (white)	Cocaine	57.0

		Levamisole	41.0
3C	Powder (white)	Cocaine	19.2
		Paracetamol	73.2
		Levamisole	1.6
4C	Powder (white)	Cocaine	31.0
		Phenacetin	2.8
		Levamisole	5.7
5C	Powder (white)	Cocaine	29.6
		Boric acid	/
6C	Powder (white)	Cocaine	22.0
		Phenacetin	8.3
		Caffeine	15.5
		Lidocaine	12.0
		Levamisole	2.2
		Benzocaine	25.7
7C	Powder (white)	Cocaine	75.5
		Caffeine	3.1
		Hydroxyzine	9.6
		Lidocaine	<1
8C	Powder (brown)	Cocaine	20.0
9C	Powder (white)	Cocaine	>90.0
10C	Powder (white)	Cocaine	57.0
		Levamisole	41.0

1K	Powder (off-white)	Ketamine	83.0
2К	Powder (off-white)	Ketamine	5.0
3К	Powder (white)	Ketamine	82.0
4K	Crystals (white)	Ketamine	72.0
5K	Powder (white)	Ketamine	100.0
6K	Powder (white)	Ketamine	84.0
7К	Powder (white)	Ketamine	99.0
8K	Crystals (white)	Ketamine	99.0
9К	Powder (white)	Ketamine	100.0
10K	Powder (white)	Ketamine	100.0

1M	Powder (white)	MDMA	93.7
2M	Powder (off-white)	MDMA	92.6
3M	Crystals (white)	MDMA	88.0
4M	Tablet (pink)	MDMA	40.4
5M	Tablet (grey)	MDMA	24.7
6M	Tablet (purple)	MDMA	57.2
7M	Tablet (grey)	MDMA	54.1
8M	Crystals (white)	MDMA	96.8

9M	Tablet (orange)	MDMA	39.5
10M	Tablet (yellow)	MDMA	54.4

Table S5. Potentials of the peaks detected in the voltammograms of the confiscated samples in pH7F and pH12, as well as the results of the peak recognition software and the portable Raman analysis. For the flowchart, the result after the first analysis (pH7F) and, if applicable, second analysis (pH12) are displayed. For the dual-sensor, the result of the double analysis (pH7F + pH12 in parallel) is shown. For the Raman results, the three main components resulting from the library search were considered. The result displayed in the table is the most relevant one according to the analysis by the standard method (**Table S4**). Incorrect results are indicated in red. ACK: joint interval amphetamine, cocaine and ketamine; AMP: amphetamine; COC: cocaine; COC(b): cocaine after activation of extended interval due to benzocaine detection (0.45 - 0.55 V in pH12); KET: ketamine.

	pH7F	pH12	Flowchart result		Dual-sensor result	Raman
Name	Peak potential (V)	Peak potential (V)	First analysis	Second analysis	Double analysis	result
	0.97	1.34				Nor-
1A	1.17		ACK	AMP	AMP	ephedrine
	0.99	1.34				
2A	1.18		ACK	AMP	AMP	Phenethyl-
	1.34					amine
3A	0.97	1.34	ACK	AMP	AMP	Caffeine
	1.30					
	0.96	1.34	ACK	AMP	AMP	AMP
4A	1.33					
	0.97	1.35				AMP
5A	1.17		ACK	AMP	AMP	
	1.34					
	0.99	1.34				AMP
6A	1.18		ACK	AMP	AMP	
	1.34					
	0.98	1.33				Nor-
7A	1.18		ACK	AMP	AMP	ephedrine
	1.35					
8A	0.96	1.34	ACK	AMP	AMP	Creatine
	1.17					
	0.98	1.34				Nor-
9A	1.18		ACK	AMP	AMP	ephedrine
	1.33					
	0.98	1.34				Nor-

10A	1.18		АСК	AMP	AMP	ephedrine
	1.32					
		•	•		•	
	1.09	0.83				
1C	1.30	1.10	No drug	/	No drug	COC
		1.34				
	1.05	0.84		COC		Paracetamol
2C	1.26	1.07	АСК		COC	
		1.41				
	0.39	0.15				
3C	1.02	0.85	ACK	COC	COC	COC
	1.19					
	0.78	0.51				
4C	1.01	0.81	ACK	COC	COC(b)	Unknown
	1.21	1.38				
5C	1.04	0.83	ACK	COC	COC	COC
		1.33	1			
	0.75	0.54				1
6C	1.02	0.92	АСК	COC	COC(b)	Unknown
	1.33		1			
	0.76	0.69				
7C	0.98	0.84	АСК	COC	сос	Unknown
	1.30	1.31				
8C	1.03	0.83	АСК	COC	COC	COC
	1.22	1.37				
	1.09	0.83				
9C	1.34	1.12	No drug	/	No drug	сос
		1.35	1			
	1.05	0.86		COC	сос	сос
10C	1.26	1.08	АСК			
		1.29	1			
		•	•			•
·	0.83	1.01				
1K	1.01	1.38	MDMA	/	KET	KET
	1.28		1			
2K	1.06	1.00	ACK	KET	KET	KET
	1.31	1.35	1			
	0.84	1.00	1		İ	
3К	1.03		MDMA	/	KET	KET
	1.29	1.37	-			
	0.83	0.99	1		1	

/

/

KET

MDMA

MDMA

ACK

KET

KET

AMP

1.05

1.28

0.83

0.99

1.36 0.83

0.96

1.35

1.00

1.36

1.01

1.38

4K

5K

6K

сос

KET

KET

	1.30					
7K	0.83	1.01	MDMA	/	KET	KET COC
	0.99	1.37				
	1.34					
	0.83	1.00				
8K	0.99	1.38	MDMA	/	KET	
	1.37		-			
	0.83	1.00				
9К	0.98	1.36	АСК	KET	KET	KET
	1.32					
	0.83	1.00				
10K	0.97	1.36	АСК	KET	KET	KET
	1.35		-			
	-	-	-			
1M	0.85	0.93	MDMA	/	MDMA	MDMA
	1.05	1.30	-			
2M	0.85	0.93	MDMA	/	MDMA	2-amino
	1.03	1.29				propane
3M	0.85	0.93	MDMA	/	MDMA	MDMA
	1.04	1.30				
	0.84	0.93				
4M	1.03	1.25	MDMA	/	MDMA	MDMA
		1.41			KET	
5M	0.84	0.92	MDMA	/		2-amino
	1.03	1.38			MDMA	propane MDMA
	0.84	0.94				
6M	1.03	1.26	MDMA	/		
	1.30			/	MDMA	
	0.84	0.83				
7M	1.03	0.95	MDMA			2-amino
	1.31	1.25	-			propane
8M	0.85	0.91	MDMA	/	KET MDMA	MDMA
	1.05	1.30				
	0.84	0.93				
9M	1.03	1.24	MDMA			MDMA
		1.40	1			
10M	0.84	0.95	MDMA	/	MDMA	MDMA
•	•	-	•		•	•
Accuracy confiscated samples		32/40 (80.0%)		35/40	24/40	

(60.0%)

(87.5%)

Figures

Figure S1. Chemical structures of the four target drugs.

Figure S2. Overview of the pre-processed EPs of the adulterants in the training set, recorded in pH7F (left) and pH12 (right). Concentrations in pH7F: 1 mM. Concentrations in pH12: 0.5 mM.

Figure S3. Overview of the pre-processed EPs of the binary mixtures in the training set, recorded in pH7F (left) and pH12 (right). Yellow: amphetamine mixtures, green: cocaine mixtures, blue: ketamine

mixtures, red: MDMA mixtures. Ratio in all mixtures: 1:1. Concentrations in pH7F: 1 mM. Concentrations in pH12: 0.5 mM.

Figure S4. Representation of the database used in the dual-sensor method (pH7F + pH12).

Figure S5. Overview of the pre-processed EPs of the confiscated samples, recorded in pH7F (left) and pH12 (right). The potential intervals defined for each drug's peaks are visually shown in the color assigned to each drug. Yellow: amphetamine samples, green: cocaine samples, blue: ketamine samples, red: MDMA samples. Concentrations in pH7F: 2.0 mg mL⁻¹. Concentrations in pH12: 0.3 mg mL⁻¹.