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S1. SECM characterization procedure

The Pt microelectrode was fabricated by sealing a 25 μm diameter platinum wire 

(99.99%, Goodfellow) inside a borosilicate glass capillary (length: 10 cm; OD: 1.0 mm; ID: 

0.50 mm, Sutter Instruments), using a P-2000 Micropipette Puller (Sutter Instrument 

Company). The radius of the fabricated Pt microelectrode was calculated from the diffusion 

limiting current obtained by recording cyclic voltammograms in [Fe(CN)6]3- solution (Fig. 

S1-A), and the value was found to be 10 µm. SECM was used to estimate the RG value of the 

microelectrode (RG = Rg/a, where Rg = radius of the insulating glass surrounding the tip; a = 

radius of the Pt fiber). An approach curve was recorded in a 0.1 mol L-1 KCl solution 

containing 10 mmol L-1 [Fe(CN)6]3- using a silicon wafer as substrate  (Fig. S1-B). After 

fitting the experimental data with theoretical equations, the RG was found to be 10.

Fig. S1 - (A) Cyclic voltammogram recorded with a Pt UME in 10 mmol L-1 [Fe(CN)6]3- in 
0.1 mol L-1 KCl solution. Scan rate: 50 mV s-1. (B) Approach curve recorded with the Pt 
UME (r = 10 µm) on a silicon wafer as an insulator substrate, where: (●) experimental data; 
(▬) theoretical fit for an RG of 10.

Fig. S2 - Optical image of the LSAu-ePAD showing the 5 probed locations during the SECM 
characterization.



S2. BIA-ePAD operation

Fig. S3 – Image of the LSAu-ePAD operating in the BIA configuration.

S3. LSAu-ePAD optimization

Table S1 – Optimization of the CO2 laser parameters for kraft paper carbonization, based on 
the sheet resistance (n=3).

Scan rate: 10 mm s-1

Z-distance: 11 mm

Scan rate: 10 mm s-1

Power: 8 %

Z-distance: 11 mm

Power: 8 %

Power (%) Resistance 
(Ω)

Z-distance
(mm)

Resistance 
(Ω)

Scan rate 
(mm s-1)

Resistance 
(Ω)

7.0 1.5k ± 0.3k 8 190 ± 20 6 430 ± 15

7.5 640 ± 26 10 295 ± 38 8 460 ± 23

8.0 405 ± 23 11 405 ± 23 10 405 ± 23

8.5 280 ± 21 12 300 ± 18 12 440 ± 50

9.0 170 ± 36 15 325 ± 35 15 980 ± 180



Fig. S4 – Optimization of the CO2 laser parameters: (A) laser power, (B) scan rate, and (C) 
height for the thermal treatment of the Au/C surface (n=3), based on the anodic peak currents 
(Ipa) and the peak-to-peak separation (ΔEp) obtained from CVs of 5 mmol L-1 [Fe(CN)₆]³⁻/4- 
in 1 mol L-1 KCl. Scan rate: 20 mV s-1. HAuCl4 volume and concentration: 20 L of 20 mmol 
L-1. Fixed parameters in (A): 10 mm s-1 scan rate and 11 mm height, (B): 8% laser power and
11 mm height, and (C): 8% laser power and 10 mm s-1 scan rate.



Fig. S5 – Optimization of the HAuCl4 concentration (A) and volume (B) in the modification 
of the carbonized paper surface, based on the anodic peak currents (Ipa) and the peak-to-peak 
separation (ΔEp) obtained from CVs of 5 mmol L-1 [Fe(CN)₆]³⁻/4- in 1 mol L-1 KCl. Scan rate: 
20 mV s-1. Fixed laser parameters: 8% laser power, 6 mm s-1 scan rate, and 11 mm height. 
HAuCl4 volume in (A): 20 L, and HAuCl4 concentration in (B): 20 mmol L-1.



S4. Morphological characterization 

Fig. S6 – Raman spectra of the (A) bare kraft paper, (B) LS-ePAD, and (C) LSAu-ePAD.



Fig. S7 - EDS analysis of the (A) bare kraft paper, (B) LS-ePAD, and (C) LSAu-ePAD.



Fig. S8 – (A) SEM image of the LSAu-ePAD and the respective EDS elemental mapping 
showing (B) the element overlay of (C) carbon, (D) oxygen, (E) silicon, and (F) gold.



S5. Electrochemical characterization
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Fig. S9 - Cyclic voltammograms of 5 mmol L-1 [Fe(CN)6]3-/4- (solid lines) in 1 mol L-1 KCl 
(dashed lines) recorded with the LS-ePADs with one (black color) and two (grey color) 
carbonization steps, without HAuCl4 addition. Scan rate: 20 mV s-1.

Fig. S10 – Cyclic voltammograms of 5 mmol L-1 [Fe(CN)6]3-/4- in 1 mol L-1 KCl recorded with 
(A) the same LSAu-ePAD device (n=10) to attest the repeatability; (B) different devices
fabricated in the same day (n=5) for reproducibility evaluation; and (C) different devices post
1, 3, 5, 7, 15, and 30 days of fabrication, to attest the Au modification stability over time in
the LSAu-ePAD surface. Scan rate: 20 mV s-1.



S6. SECM characterization results

Table S2 – Percentage of ferricyanide consumption on the surface device after polarization.

Device 1

(%)

2

(%)

3

(%)

4

(%)

5

(%)

Average

(%)

LS-ePAD 83.6 71.9 75.3 51.6 50.8 66.6 ± 14.7

LSAu-ePAD 85.2 88.4 87.2 87.2 86.1 86.8 ± 1.2

S7. Hypochlorite detection
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Fig. S11 – Cyclic voltammograms recorded with the LS-ePADs in 5 mmol L-1 NaClO (solid 
lines) in 0.04 mol L-1 BR buffer pH 8 (dashed lines) with one (black trace) and two (grey 
trace) carbonization steps, without HAuCl4 addition. Scan rate: 50 mV s-1.



S8. BIA-ePAD optimization parameters

Fig. S12 – (A) Hydrodynamic voltammogram obtained from triplicate injections of 0.5 mmol 
L-1 NaClO in the BIA LSAu-ePAD at different potentials ranging from +0.4 to -0.2 V vs. Ag.
Injected volume: 10 µL; Dispensing rate: 260 µL s-1. (B,C) Amperometric current plots
obtained from injections of 0.5 mmol L-1 NaClO by varying the (B) injected volume from 10
to 40 µL, with a fixed dispensing rate of 260 µL s-1; and the (C) dispensing rate, from 25 to
260 µL s-1, with a fixed volume of 10 µL. The electronic micropipette controlled both
parameters. Applied potential: -0.2 V vs Ag. Supporting electrolyte: 0.04 mol L-1 BR buffer
pH 8.



S9. Reproducibility of the BIA-ePAD 

Fig. S13 - Reproducibility study for different fabricated BIA-ePADs obtained from injections 
of 0.5 mmol L-1 NaClO (RSD = 5.3%; n = 6). Applied potential: -0.2 V vs Ag; Injected 
volume: 20 µL; Dispensing rate: 135 µL s-1; Supporting electrolyte: 0.04 mol L-1 BR buffer 
pH 8.



S10. Analytical application 
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Fig. S14 - Amperometric responses obtained from triplicate injections of NaClO in the BIA-
ePAD for a linearity study with a concentration range from 20 to 750 µmol L−1 (a - h) and the 
respective calibration curve of the peak currents vs. NaClO concentration (insert). Applied 
potential: −0.2 V vs. Ag; Injected volume: 20 µL; Dispensing rate: 135 µL s−1; Supporting 
electrolyte: 0.04 mol L−1 BR buffer pH 8.



Table S3 - Analytical characteristics obtained for the amperometric measurements in 
the BIA-ePAD compared to other electrochemical devices presented in the literature for 
NaClO detection.

Electrode
Detection 

method
LR (ppm)

Sensitivity

(μA ppm−1)
LOD (ppm) Ref.

Au disk electrode DPV 1 - 5 0.0818 0.04 [1]

Multiwall carbon 
nanotubes 
composite 
electrode

FIA-AMP 0.02 - 4 0.1460 0.02 [2]

Pencil lead 
graphite-based 

electrode modified 
w/ ammonium 

carbamate

AMP 0 - 6 0.3020 - [3]

Graphite screen-
printed electrode 

modified w/ 
carbon black

AMP 0.05 - 200 0.3200 0.01 [4]

Au interdigitated 
microelectrode 

arrays
LSV 0 – 4.5 0.0004 0.01 [5]

Au thin film 
electrode AMP 0 - 6 0.3270 - [6]

Laser-scribed 
paper-based 

electrode modified 
w/ AuNPs

BIA-AMP 1.5 - 56 0.2280 0.50 This 
work

LR – Linear range. DPV – Differencial pulse voltammetry. FIA – Flow injection analysis. 
AMP – Amperometric. LSV – Linear sweep voltammetry. 



Fig. S15 – Amperogram responses corresponding to successive injections of 100 mol L-1

NaClO and the most common interferents found in swimming pool waters, i.e., Na2SO4, 
Na2CO3, NaHCO3, and NaCl (500 mol L-1). Applied potential: -0.2 V vs Ag; Injected 
volume: 20 µL; Dispensing rate: 135 µL s-1; Supporting electrolyte: 0.04 mol L-1 BR buffer 
pH 8.
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