Supplementary Material

Laser-induced fabrication of gold nanoparticles onto paper substrates and their application on paper-based electroanalytical devices

Iana V. S. Arantes^a, Vanessa N. Ataíde^a, Wilson A. Ameku^a, Juliana L. M. Gongoni^a, Jéssica

S. G. Selva^a, Helton P. Nogueira^{a,b}, Mauro Bertotti^a, Thiago R. L. C. Paixão^{a,*}.

^aDepartment of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil

^bDepartment of Physical Chemistry, Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil

*Corresponding Author

E-mail Address: trlcp@iq.usp.br

Phone: +55 11 30919150

S1. SECM characterization procedure

The Pt microelectrode was fabricated by sealing a 25 μ m diameter platinum wire (99.99%, Goodfellow) inside a borosilicate glass capillary (length: 10 cm; OD: 1.0 mm; ID: 0.50 mm, Sutter Instruments), using a P-2000 Micropipette Puller (Sutter Instrument Company). The radius of the fabricated Pt microelectrode was calculated from the diffusion limiting current obtained by recording cyclic voltammograms in [Fe(CN)₆]³⁻ solution (**Fig. S1-A**), and the value was found to be 10 μ m. SECM was used to estimate the RG value of the microelectrode (RG = Rg/a, where Rg = radius of the insulating glass surrounding the tip; a = radius of the Pt fiber). An approach curve was recorded in a 0.1 mol L⁻¹ KCl solution containing 10 mmol L⁻¹ [Fe(CN)₆]³⁻ using a silicon wafer as substrate (**Fig. S1-B**). After fitting the experimental data with theoretical equations, the RG was found to be 10.

Fig. S1 - (A) Cyclic voltammogram recorded with a Pt UME in 10 mmol L⁻¹ [Fe(CN)₆]³⁻ in 0.1 mol L⁻¹ KCl solution. Scan rate: 50 mV s⁻¹. **(B)** Approach curve recorded with the Pt UME ($r = 10 \mu m$) on a silicon wafer as an insulator substrate, where: (•) experimental data; (--) theoretical fit for an RG of 10.

Fig. S2 - Optical image of the LSAu-ePAD showing the 5 probed locations during the SECM characterization.

S2. BIA-ePAD operation

Fig. S3 – Image of the LSAu-ePAD operating in the BIA configuration.

S3. LSAu-ePAD optimization

Table S1 – Optimization of the CO_2 laser parameters for kraft paper carbonization, based on the sheet resistance (n=3).

Scan rate: 10 mm s ⁻¹		Scan rate:	10 mm s ⁻¹	Z-distance: 11 mm		
Z-distance: 11 mm		Power	r: 8 %	Power: 8 %		
Power (%)	Resistance (Ω)	Z-distance (mm)	Resistance (Ω)	Scan rate (mm s ⁻¹)	Resistance (Ω)	
7.0	$1.5k\pm0.3k$	8	190 ± 20	6	430 ± 15	
7.5	640 ± 26	10	295 ± 38	8	460 ± 23	
8.0	405 ± 23	11	405 ± 23	10	405 ± 23	
8.5	280 ± 21	12	300 ± 18	12	440 ± 50	
9.0	170 ± 36	15	325 ± 35	15	980 ± 180	

Fig. S4 – Optimization of the CO₂ laser parameters: (A) laser power, (B) scan rate, and (C) height for the thermal treatment of the Au/C surface (n=3), based on the anodic peak currents (Ip^a) and the peak-to-peak separation (Δ Ep) obtained from CVs of 5 mmol L⁻¹ [Fe(CN)₆]^{3-/4-} in 1 mol L⁻¹ KCl. Scan rate: 20 mV s⁻¹. HAuCl₄ volume and concentration: 20 µL of 20 mmol L⁻¹. Fixed parameters in (A): 10 mm s⁻¹ scan rate and 11 mm height, (B): 8% laser power and 11 mm height, and (C): 8% laser power and 10 mm s⁻¹ scan rate.

Fig. S5 – Optimization of the HAuCl₄ concentration (A) and volume (B) in the modification of the carbonized paper surface, based on the anodic peak currents (Ip^a) and the peak-to-peak separation (Δ Ep) obtained from CVs of 5 mmol L⁻¹ [Fe(CN)₆]^{3-/4-} in 1 mol L⁻¹ KCl. Scan rate: 20 mV s⁻¹. Fixed laser parameters: 8% laser power, 6 mm s⁻¹ scan rate, and 11 mm height. HAuCl₄ volume in (A): 20 µL, and HAuCl₄ concentration in (B): 20 mmol L⁻¹.

S4. Morphological characterization

Fig. S6 – Raman spectra of the (A) bare kraft paper, (B) LS-ePAD, and (C) LSAu-ePAD.

Fig. S7 - EDS analysis of the (A) bare kraft paper, (B) LS-ePAD, and (C) LSAu-ePAD.

Fig. S8 – (A) SEM image of the LSAu-ePAD and the respective EDS elemental mapping showing (B) the element overlay of (C) carbon, (D) oxygen, (E) silicon, and (F) gold.

S5. Electrochemical characterization

Fig. S9 - Cyclic voltammograms of 5 mmol L^{-1} [Fe(CN)₆]^{3-/4-} (solid lines) in 1 mol L^{-1} KCl (dashed lines) recorded with the LS-ePADs with one (black color) and two (grey color) carbonization steps, without HAuCl₄ addition. Scan rate: 20 mV s⁻¹.

Fig. S10 – Cyclic voltammograms of 5 mmol L⁻¹ [Fe(CN)₆]^{3-/4-} in 1 mol L⁻¹ KCl recorded with (A) the same LSAu-ePAD device (n=10) to attest the repeatability; (B) different devices fabricated in the same day (n=5) for reproducibility evaluation; and (C) different devices post 1, 3, 5, 7, 15, and 30 days of fabrication, to attest the Au modification stability over time in the LSAu-ePAD surface. Scan rate: 20 mV s⁻¹.

S6. SECM characterization results

Device	1	2	3	4	5	Average
	(%)	(%)	(%)	(%)	(%)	(%)
LS-ePAD	83.6	71.9	75.3	51.6	50.8	66.6 ± 14.7
LSAu-ePAD	85.2	88.4	87.2	87.2	86.1	86.8 ± 1.2

Table S2 – Percentage of ferricyanide consumption on the surface device after polarization.

S7. Hypochlorite detection

Fig. S11 – Cyclic voltammograms recorded with the LS-ePADs in 5 mmol L⁻¹ NaClO (solid lines) in 0.04 mol L⁻¹ BR buffer pH 8 (dashed lines) with one (black trace) and two (grey trace) carbonization steps, without HAuCl₄ addition. Scan rate: 50 mV s⁻¹.

Fig. S12 – (**A**) Hydrodynamic voltammogram obtained from triplicate injections of 0.5 mmol L⁻¹ NaClO in the BIA LSAu-ePAD at different potentials ranging from +0.4 to -0.2 V vs. Ag. Injected volume: 10 μ L; Dispensing rate: 260 μ L s⁻¹. (**B**,**C**) Amperometric current plots obtained from injections of 0.5 mmol L⁻¹ NaClO by varying the (**B**) injected volume from 10 to 40 μ L, with a fixed dispensing rate of 260 μ L s⁻¹; and the (**C**) dispensing rate, from 25 to 260 μ L s⁻¹, with a fixed volume of 10 μ L. The electronic micropipette controlled both parameters. Applied potential: -0.2 V vs Ag. Supporting electrolyte: 0.04 mol L⁻¹ BR buffer pH 8.

S9. Reproducibility of the BIA-ePAD

Fig. S13 - Reproducibility study for different fabricated BIA-ePADs obtained from injections of 0.5 mmol L⁻¹ NaClO (RSD = 5.3%; n = 6). Applied potential: -0.2 V vs Ag; Injected volume: 20 μ L; Dispensing rate: 135 μ L s⁻¹; Supporting electrolyte: 0.04 mol L⁻¹ BR buffer pH 8.

Fig. S14 - Amperometric responses obtained from triplicate injections of NaClO in the BIAePAD for a linearity study with a concentration range from 20 to 750 μ mol L⁻¹ (a - h) and the respective calibration curve of the peak currents vs. NaClO concentration (insert). Applied potential: -0.2 V vs. Ag; Injected volume: 20 μ L; Dispensing rate: 135 μ L s⁻¹; Supporting electrolyte: 0.04 mol L⁻¹ BR buffer pH 8.

Table S3 - Analytical characteristics obtained for the amperometric measurements in the BIA-ePAD compared to other electrochemical devices presented in the literature for NaClO detection.

Electrode	Detection method	LR (ppm)	Sensitivity (µA ppm ⁻¹)	LOD (ppm)	Ref.
Au disk electrode	DPV	1 - 5	0.0818	0.04	[1]
Multiwall carbon nanotubes composite electrode	FIA-AMP	0.02 - 4	0.1460	0.02	[2]
Pencil lead graphite-based electrode modified w/ ammonium carbamate	AMP	0 - 6	0.3020	-	[3]
Graphite screen- printed electrode modified w/ carbon black	AMP	0.05 - 200	0.3200	0.01	[4]
Au interdigitated microelectrode arrays	LSV	0-4.5	0.0004	0.01	[5]
Au thin film electrode	AMP	0 - 6	0.3270	-	[6]
Laser-scribed paper-based electrode modified w/ AuNPs	BIA-AMP	1.5 - 56	0.2280	0.50	This work

LR – Linear range. DPV – Differencial pulse voltammetry. FIA – Flow injection analysis. AMP – Amperometric. LSV – Linear sweep voltammetry.

Fig. S15 – Amperogram responses corresponding to successive injections of 100 μ mol L⁻¹ NaClO and the most common interferents found in swimming pool waters, *i.e.*, Na₂SO₄, Na₂CO₃, NaHCO₃, and NaCl (500 μ mol L⁻¹). Applied potential: -0.2 V vs Ag; Injected volume: 20 μ L; Dispensing rate: 135 μ L s⁻¹; Supporting electrolyte: 0.04 mol L⁻¹ BR buffer pH 8.

REFERENCES

- S. Saputro, K. Takehara, K. Yoshimura, S. Matsuoka, Narsito, Differential pulse voltammetric determination of free chlorine for water disinfection process, Electroanalysis. 22 (2010) 2765–2768. https://doi.org/10.1002/elan.201000322.
- [2] R. Olivé-Monllau, A. Pereira, J. Bartrolí, M. Baeza, F. Céspedes, Highly sensitive CNT composite amperometric sensors integrated in an automated flow system for the determination of free chlorine in waters, Talanta. 81 (2010) 1593–1598. https://doi.org/10.1016/J.TALANTA.2010.03.008.
- [3] S. Pan, M.J. Deen, R. Ghosh, Low-Cost Graphite-Based Free Chlorine Sensor, Anal. Chem. 87 (2015) 10734–10737. https://doi.org/10.1021/acs.analchem.5b03164.
- [4] M.R. Tomei, F. Arduini, D. Neagu, D. Moscone, Carbon black-based disposable sensor for an on-site detection of free chlorine in swimming pool water, Talanta. 189 (2018) 262–267. https://doi.org/10.1016/j.talanta.2018.07.005.
- [5] I. Seymour, B. O'Sullivan, P. Lovera, J.F. Rohan, A. O'Riordan, Electrochemical

Detection of Free-Chlorine in Water Samples Facilitated by in-situ pH Control using Interdigitated Microelectrodes, ChemRxiv. 325 (2020). https://doi.org/10.26434/chemrxiv.11898126.v1.

[6] A.U. Alam, D. Clyne, W. Lush, M.J. Deen, A reusable, reagent-less free chlorine sensor using gold thin film electrode, Analyst. 146 (2021) 2626–2631. https://doi.org/10.1039/d1an00038a.