SUPPLEMENTARY INFORMATION

Surface Diels-Alder adducts on multilayer graphene for the generation of edge-enriched single-atom FeN₄ sites for ORR and OER

electrocatalysis

Juan Amaro-Gahete,^{‡a} José A. Salatti-Dorado,^{‡b} Almudena Benítez,^{*c} Dolores Esquivel,^a Valentín García-Caballero,^b Miguel López-Haro,^d Juan J. Delgado,^d Manuel Cano,^{*b} Juan J. Giner-Casares^b and Francisco J. Romero-Salguero^{*a}

^{a.} Departamento Química Orgánica. Instituto de Química Fina y Nanoquímica, Universidad de Córdoba (IUNAN-UCO). Campus Universitario de Rabanales, Carretera N-IV, Ed. Marie Curie, 14071 Córdoba (Spain). E-mail: qo2rosaf@uco.es

^{b.} Departamento Química Física y Termodinámica Aplicada. IUNAN-UCO. Campus Universitario de Rabanales, Carretera N-IV, Ed. Marie Curie, 14071 Córdoba (Spain). E-mail: q82calum@uco.es

^{c.} Departamento Química Inorgánica e Ingeniería Química. IUNAN-UCO. Campus Universitario de Rabanales, Carretera N-IV, Ed. Marie Curie, 14071 Córdoba (Spain). E-mail: <u>q62betoa@uco.es</u>

^{d.} Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Cádiz (Spain); Instituto de Microscopía Electrónica y Materiales (IMEYMAT), Facultad de Ciencias, Universidad de Cádiz, Cádiz, (Spain).

‡ These authors contributed equally to this work.

Fig. S1 TGA curves of MLG-dppz (under a nitrogen atmosphere) and MLG-dppz@Fe (in nitrogen and oxygen atmospheres).

Fig. S2 XRD patterns of (a) pristine graphite powder and (b) MLG-dppz@Fe(240N₂) materials.

Fig. S3 TEM images of MLG-dppz@Fe(240N₂).

Fig. S4 N₂ adsorption/desorption isotherms of MLG-dppz materials.

Fig. S5 Pore size distribution of MLG-dppz materials.

Samples	S _{BET} (m ² g ⁻¹)	V _T (cm ³ g ⁻¹)	D _{pore} (nm)
MLG-dppz	50	0.161	13
MLG-dppz@Fe	128	0.236	7
MLG-dppz(240N ₂)	18	0.092	21
MLG-dppz@Fe(240N ₂)	74	0.185	10
MLG-dppz@Fe(240air)	92	0.183	8

 Table S1 Textural data of MLG-dppz materials.

Fig. S6 SEM representative images of MLG-dppz@Fe(240N₂).

Fig. S7 XPS spectra for the C1s photoemission peak of MLG-dppz materials.

C1s	MLG	MLG-dppz		ppz@Fe	MLG-dpj	<i>oz(240N₂)</i>	MLG-dpp	a@Fe(240N ₂)	MLG-dj	ppz@Fe(240air)
Surface groups	BE (eV)	Atom %	BE (eV)	Atom %	BE (eV)	Atom %	BE (eV)	Atom %	BE (eV)	Atom %
C=C/C-C	284.8	68.1	284.8	68.9	284.8	68.6	284.8	71.7	284.8	71.6
C-N	285.8	11.3	285.8	11.0	285.7	10.5	285.8	12.2	285.7	10.3
C-0	286.7	8.0	286.7	7.3	286.6	7.9	286.8	6.7	286.8	5.9
C=O	287.8	5.1	287.8	4.9	287.6	5.1	287.9	4.0	287.9	4.6
O-C=O/C=N	289.2	3.8	289.0	4.0	288.9	3.9	289.3	3.0	289.3	4.0
π-π*	291.0	3.9	290.8	4.0	290.8	4.0	291.3	2.4	291.1	3.7

Table S2 Contribution of the six components used in the fitting of the C 1s core level signal.

Fig. S8 Aberration corrected HAADF-STEM image of MLG-dppz@Fe(240N₂) sample (showed in **Fig. 4D**).

Fig. S9 Sum EDX spectrum of the area included in the HAADF image.

Fig. S10 Rotating-disk voltammograms at different rotation rates for (A) MLG-dppz, (B) MLG-dppz@Fe, (C) MLG-dppz(240N₂), (D) MLG-dppz@Fe(240N₂), (E) MLG-dppz@Fe(240air) and (F) 10 % wt. Pt/C in O₂ saturated 0.5 M KOH at scan rate of 10 mV·s⁻¹.

Fig. S11 Derivatives of the ORR data shown in Fig. 5C to obtain the half-wave potentials.

C/Fe based electrocatalyst	Fe Wt%	J (mA·cm ⁻²) and ω (rpm)	E _{onset} (V)	J _k (mA·cm ⁻²)	n	Potential (V)	Electrolyte	Reference electrode	Working electrode	Ref.
BINOL-CTF-10- 500	-	-3.00 and 2400	0.79	9.00	4.04	0.23	0.1M KOH	RHE (SCE)	GC	[1]
Fe ₂ O ₃ -NPCS	21.00	-5.80 and 2500	1.06	31.8	3.85	0.90	0.1M KOH	RHE (Ag/AgCl)	GC	[2]
CNT/PC	2.90	-6.00 and 1600	0.95	4.3	3.98	0.90	0.1M KOH	RHE (Ag/AgCl)	GC	[3]
Fe-N-CNT@RG O	30.00	-4.44 and 1600	0.93	1.85	4.00	0.85	0.1M KOH	RHE (SCE)	GC	[4]
Co,N-PCL	-	-5.20 and 1600	0.93	-	3.99	0.30	0.1M KOH	RHE (Ag/AgCl)	GC	[5]
Fe ₃ C/NG-800	0.81	-6.40 and 2500	1.03	100	3.70	0.70	0.1M KOH	RHE (SCE)	GC	[6]
Fe-N-C-800acid	2.20	-4.30 and 1600	0.93	-	3.70	0.56	0.1M KOH	RHE (Ag/AgCl)	GC	[7]
Fe _{1.6} -N- HCNS/rGO-900	1.60	-5.70 and 1600	0.7-0.9	-	4.02	0.70	0.1M KOH	RHE (SCE)	GC	[8]
Fe ₃ C/C-800	15.00	-5.50 and 2500	1.05	-	3.80- 4.00	0.99	0.1M KOH	RHE (SCE)	GC	[9]
Fe-N-C-800	0.24	-4.90 and 2025	0.98	-	3.95	0.75	0.1M KOH	RHE (Ag/AgCl)	GC	[10]
Fe-N-C/rGO	0.15 (atom)	-4.50 and 2025	0.94	-	4.00	0.60	0.1M KOH	RHE (Ag/AgCl)	GC	[11]
Fe@C-	0.42	-5.00 and 1600	0.93	-	4.00	0.80	0.1M KOH	RHE (SCE)	GC	[12]*

 Table S3 Summary table of ORR electrocatalysts based on NC and Fe-NC materials.

NG/NCNTs										
C-COP-C-Fe	4.95	-5.70 and 2025	0.89	4.00	3.93	0.75	0.1M KOH	RHE (SCE)	GC	[13]
Fe ₃ C-Co/NC	1.70	-5.50 and 1600	0.94	-	3.9	0.80	0.1M KOH	RHE (Ag/AgCl)	GC	[14]*
N-doped CoCx/FeCo@ C/rGO	-	-7.00 and 2500	1.02	-	3.84	0.46	0.1M KOH	RHE (SCE)	GC	[15]*
M-2	-	-7.90 and 2500	0.97	-	-	-	0.1M KOH	RHE (Ag/AgCl)	GC	[16]*
FeCo/N-DNC	52.80 (atom)	-6.20 and 1600	0.89	-	3.92	0.2	0.1M KOH	RHE (Ag/AgCl)	GC	[17]*
FeS/Fe ₃ C@N-S -C-800	2.17	-6.80 and 2500	1.02	-	3.9	0.2	0.1M KOH	RHE (Ag/AgCl)	GC	[18]*
MLG-dppz@Fe (240N ₂)	0.73	-5.50 and 2500	0.89	86.59	3.92	1.00	0.5M KOH	RHE (Ag/AgCl)	GC	This work*

*Materials with bi- or tri-functional character.

C/Fe based catalyst	Fe Wt%	η10 (mV)	Tafel Slope (mV/dec)	Electrolyte	Reference electrode	Working electrode	Ref.
Fe/Fe ₃ C-MC	2.40	320	51.0	1M KOH	RHE	GC	[19]*
Fe@C-NG/NCNTs	0.42	450	163.0	1M KOH	RHE (SCE)	GC	[12]*
Fe ₃ C-Co/NC	1.70	340	108.8	1M KOH	RHE (Ag/AgCl)	GC	[14]*
Fe ₃ O ₄ /NiS@CC	1.18	310	82.0	1M KOH	RHE (Ag/AgCl)	GC	[20]
N-doped CoCx/FeCo@C/rGO	-	390	77.1	0.1M KOH	RHE (SCE)	GC	[15]*
PNG-NiCo	-	564	156.0	0.1M KOH	RHE (Ag/AgCl)	Hybrid films	[21]
M-2	-	710	54.0	0.1M KOH	RHE (Ag/AgCl)	GC	[16]*
N-doped SWNT	-	430	-	0.1M KOH	RHE	GC	[22]
FeCo/N-DNC	52.80 (atom)	390	68.0	0.1M KOH	RHE (Ag/AgCl)	GC	[17]*
FeS/Fe ₃ C@N-S-C-800	2.17	570	81.0	1M KOH	RHE (Ag/AgCl)	GC	[18]*
Fe ₃ C@C–N	3.50	608	89.0	0.1M KOH	RHE (SCE)	GC	[23]
Ni1.95Fe-MOP@CNTs	2.69	256	58.0	1M KOH	RHE (Ag/AgCl)	GC	[24]
C0 ₃ O ₄ /N–C	-	390	44.0	1M KOH	RHE (Ag/AgCl)	GC	[25]
Fe/C-doped-MoS ₂ /Ni ₃ S ₂ -450	-	273	66.0	1M KOH	RHE (SCE)	GC	[26]
MLG-dppz@Fe (240N ₂)	0.73	500	100.5	0.5M KOH	RHE (Ag/AgCl)	GC	This work*

 Table S4 Summary table of OER electrocatalysts based on NC and Fe-NC materials.

*Materials with bi- or tri-functional character.

References

1. H. S. Jena, C. Krishnaraj, S. Parwaiz, F. Lecoeuvre, J. Schmidt, D. Pradhan, and P. Van Der Voort, *ACS Applied Materials & Interfaces*, 2020, **12**, 44689-44699.

2. X. Cheng, P. Yan, S. Liu, M. Qian, B. Wang, Z. Wan, J. Tian, S. Xing-Can, T. Taylor Isimjan, X. Yang, *Int. J. Hydrog. Energy*, 2019, **44**, 12127-12137.

3. Y. Jin Sa, D.J. Seo, J. Woo, J. Tae Lim, J. Yeong Cheon, S. Yong Yang, J. Myeong Lee, D. Kang, T. Joo Shin, H. Suk Shin, H. Young Jeong, C. Sung Kim, M. Gyu Kim, T.Y. Kim, S. Hoon Joo, *J. Am. Chem. Soc.*, 2016, **138**, 15046-15056.

4. Y. Zheng, F. He, J. Wu, D. Ma, H. Fan, S. Zhu, X. Li, Y. Lu, Q. Liu, X. Hu, *ACS Applied Nano Materials*, 2019, **2**, 3538-3547.

5. H. Park, S. Oh, S. Lee, S. Choi, M. Oh, *Appl. Catal. B Environ.*, 2019, 246, 322-329.

6. M. Xiao, J. Zhu, L. Feng, C. Liu, y W. Xing, *Adv. Mater.*, 2015, **27**, 2521-2527.

7. C. Li, C. He, F. Sun, M. Wang, J. Wang, Y. Lin, ACS Applied Nano Materials, 2018, 1, 1801-1810.

8. H. Tan, J. Tang, J. Henzie, Y. Li, X. Xu, T. Chen, Z. Wang, J. Wang, Y. Ide, Y. Bando, Y. Yamauchi, *ACS Nano*, 2018, **12**, 5674-5683.

9. M.Sc. Yang Hu, J. Oluf Jensen, W. Zhang, L. N. Cleemann, W. Xing, N. J. Bjerrum, Q. Li, *Angew. Chem. Int. Ed.*, 2014, **53**, 3675-3679.

10. W. Niu, L. Li, X. Liu, N. Wang, J. Liu, W. Zhou, Z. Tang, S. Chen, J. Am. Chem. Soc., 2015, 137, 5555-5562.

11. C. Zhang, J. Liu, Y. Ye, Z. Aslam, R. Brydson, C. Liang, ACS Appl. Mater. Interfaces, 2018, 10, 2423-2429.

12. Q. Wang, Y. Lei, Z. Chen, N. Wu, Y. Wang, B. Wang, Y. Wang, J. Mater. Chem. A, 2018, 6, 516-526.

13. Z. Xiang, Y. Xue, D. Cao, L. Huang, J.-F. Chen, L. Dai, *Angew. Chem. Int. Ed.*, 2014, **53**, 2433-2437.

14. C. C. Yang, S. F. Zai, Y. T. Zhou, L. Du, Q. Jiang, *Adv. Funct. Mater.*, 2019, **29**, 1901949-19011961.

15. H. Fang, T. Huang, Y. Sun, B. Kang, D. Liang, S. Yao, J. Yu, M. Mayilvel Dinesh, S. Wu, J. Yong Lee, *J. Catal.*, 2019, **371**, 185-195.

16. J. Ding, P. Wang, S. Ji, H. Wang, V. Linkov, R. Wang, *Electrochimica Acta*, 2019, **296**, 653-661.

17. G. Fu, Y. Liu, Y. Chen, Y. Tang, J. B. Goodenough, J.-M. Lee, *Nanoscale*, 2018, **10**, 19937-19944.

18. F. Kong, X. Fan, A. Kong, Z. Zhou, X. Zhang, Y. Shan, *Adv. Funct. Mater.*, 2018, **28**, 1803973-18033987.

19. X. Liang, J. Xiao, W. Weng, W. Xiao, Angew. Chem. Int. Ed., 2021, 60, 2120-2124.

20. S. Jiang, H. Shao, G. Cao, H. Li, W. Xu, J. Li, J. Fang, X. Wang, *J. Mater. Sci. Technol.*, 2020, **59**, 92-99.

21. S. Chen, S.-Z. Qiao, ACS Nano, 2013, 7, 10190-10196.

22. G. Murdachaew, K. Laasonen, J. Phys. Chem. C, 2018, **122**, 25882-25892.

23. S. Asad Abbas, A. Ma, D. Seo, H. Jung, Y. Ji Lim, A. Mehmood, K. Min Nam, *Appl. Surf. Sci.*, 2021, **551**, 149445-149454.

24. D. Song, L. Wang, M. Yao, W. Sun, R. Vajtai, P. M. Ajayan, Y. Wang, *Adv. Sustainable Syst.*, 2020, **4**, 2000227-2000235.

25. S. Farid, W. Qiu, J. Zhao, D. Wu, X. Song, S. Ren, C. Hao, *Electrocatalysis*, 2020, **11**, 46-58.

26. X. Lv, G. Liu, S. Liu, W. Chen, D. Cao, T. Song, N. Wang, Y. Zhu, *Crystals*, 2021, **11**, 340-352.