Supporting Information

Coordination polymer-derived Al^{3+} -doped V_2O_3/C with rich oxygen vacancies for advanced aqueous zinc-ion battery with ultrahigh rate capability

Chang Lin Liu, Yang Liu, Xing Liu and Yun Gong*

Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China Tel: +86-023-65678932 E-mail: gongyun7211@cqu.edu.cn

(c)

(d)

(e)

(f)

Figure S1 SEM images of (\mathbf{a}, \mathbf{b}) [Me₂NH₂]V₃O₇ and $(\mathbf{c-f})$ Al³⁺-doped [Me₂NH₂]V₃O₇.

(c)

(d)

(e)

(f)

(g)

(h)

Figure S2 SEM images of (a, b) V_2O_3/C , (c, d) Zn^{2+} -doped V_2O_3/C , (e, f) Mn^{2+} -doped V_2O_3/C and (g-i) Al³⁺-doped V_2O_3/C .

(a)

Figure S3 EDS and elemental mappings (inset) of (a) V_2O_3/C , (b) Al³⁺-doped V_2O_3/C , (c) Zn²⁺-doped V_2O_3/C and (d) Mn²⁺-doped V_2O_3/C .

S1 Syntheses, compositions and morphologies of [C₅H₁₀NH₂]V₃O₇ and V₂O₃/C-p

S1.1 Syntheses of [C₅H₁₀NH₂]V₃O₇ and V₂O₃/C-p

The $[C_5H_{10}NH_2]V_3O_7$ precursor was prepared under the same condition except that piperidine $(C_5H_{10}NH)$ (0.375 mL, 2.5 mmol) was used instead of DMF (1 mL) in the synthesis of $[Me_2NH_2]V_3O_7$.¹ And V_2O_3/C -p was obtained via the same annealing method except that 100 mg $[C_5H_{10}NH_2]V_3O_7$ precursor was annealed instead of $[Me_2NH_2]V_3O_7$ in the synthesis of V_2O_3/C (Scheme S1).

Scheme S1 The synthesis procedures of [C₅H₁₀NH₂]V₃O₇ and V₂O₃/C-p.

S1.2 Structure and morphology of [C₅H₁₀NH₂]V₃O₇

Figure S4 (a) XRD pattern of $[C_5H_{10}NH_2]V_3O_7$ and the simulated profile; (b) $[V_3O_7]^$ anionic layers and lamellar $[C_5H_{10}NH_2]^+$ cations in $[C_5H_{10}NH_2]V_3O_7$; (c, d) SEM images of $[C_5H_{10}NH_2]V_3O_7$.

The XRD pattern of $[C_5H_{10}NH_2]V_3O_7$ is shown in **Figure S4a**, which meets well with the simulated profile based on the single crystal diffraction data (CCDC No.

235654),¹ indicating the successful preparation of the sample without impurity. As shown in **Figure S4b**, $[C_5H_{10}NH_2]V_3O_7$ possesses the same 2D $[V^{IV}_2V^VO_7]^-$ anionic skeleton, however, the interlayer uncoordinated cation is the protonated piperidine cation $[C_5H_{10}NH_2]^+$. The result elucidates the generality for the synthesis of the $[V_3O_7]^-$ -based coordination polymer.

As shown in **Figure S4(c, d)**, the morphology of $[C_5H_{10}NH_2]V_3O_7$ displays regular nanobelts, demonstrating that the different interlayer cations lead to different morphologies.

V₂O₃/C-p was synthesized via calcination of $[C_5H_{10}NH_2]V_3O_7$. The XRD pattern of V₂O₃/C-p is shown in **Figure S5a**, which meets well with that of the hexagonal V^{III}₂O₃ (PDF#71-0342). Similarly, the broad peak in the range of 10 ~15 ° is attributed to amorphous carbon, which originates from the decomposition of $[C_5H_{10}NH_2]^+$ cations during annealing, inferring the formation of V₂O₃/C composite. The result depicts that regardless of $[Me_2NH_2]V_3O_7$ and $[C_5H_{10}NH_2]V_3O_7$, their

annealed products are both V_2O_3/C composites, which is probably because they possess the same 2D $[V_3O_7]^-$ anionic skeleton.

As shown **Figure S5(b-d)**, similar to the $[C_5H_{10}NH_2]V_3O_7$ precursor, V_2O_3/C -p preserves a nanobelt-like contour, which is composed of numerous nanoparticles (NPs). It is expected that the *in situ*-yielded carbon can combine oxygen to release CO_2 (C + $O_2 \rightarrow CO_2$) during the high temperature annealing process, leading to the formation of the porous nanobelt and the reduction of $[V^{IV}_2V^VO_7]^-$ into $V^{III}_2O_3$.

Figure S6 The survey spectrum of $A1^{3+}$ -doped V_2O_3/C .

Figure S7 (a) TG analysis of Al^{3+} -doped V_2O_3/C ; (b) Nitrogen adsorption-desorption isotherms and the corresponding pore-size distribution curve (inset) of Al^{3+} -doped V_2O_3/C .

Cathode	Electrolyte	Voltage	Specific	Cycle performance	Ref	
		window	capacity			
Mg _{0.34} V ₂ O ₅ ·0.8	$3 M 7n(CE_sSO_s)$	0 1-1 8 V	353 mAh g ⁻¹	97 % retained after	2	
4H ₂ O	5 Wi Zh(Ci 3503)2	0.1-1.8 V	at 0.05 A g ⁻¹	2000 cycles at 5 A g ⁻¹		
VO	$2 M T_{\rm p}({\rm CE} SO)$	0.3-1.5 V	357 mAh g ⁻¹	91.2 % retained after	3	
VO2	5 WI ZII(CI ⁺ 3503) ₂		at 0.1 A g ⁻¹	300 cycles at 0.75 A g ⁻¹		
No /rco	$3 M T_{p}(CESO)$	0.3-1.4 V	276 mAh g ⁻¹	99 % retained after	4	
V02/100	5 WI ZII(CI ⁺ 3503) ₂		at 0.1 A g ⁻¹	1000 cycles at 4 A g ⁻¹		
	$2 M T_{r}(CE SO)$	02161	372 mAh g ⁻¹	71 % retained after	5	
V ₂ O ₅ ·IIH ₂ O	$5 \text{ MI ZII}(CF_3SO_3)_2$	0.2-1.0 V	at 0.3 A g ⁻¹	900 cycles at 6 A g ⁻¹		
VO (UO	$2 M T_{r}(CE SO)$	0.2-1.6 V	354 mAh g ⁻¹	94 % retained after	6	
V ₅ O ₁₂ ·0H ₂ O	$3 \text{ MIZn}(\text{CF}_3\text{SO}_3)_2$		at 0.5 A g ⁻¹	1000 cycles at 2 A g ⁻¹		
Na ₂ V ₆ O ₁₆ ·1.63H ₂	3 M Zn(CF ₃ SO ₃) ₂	0.2-1.6 V	352 mAh g ⁻¹	90 % retained after	7	
О			at 0.05 A g ⁻¹	6000 cycles at 5 A g ⁻¹		
Mg _{0.1} V ₂ O ₅ ·H ₂ O	3 M Zn(CF ₃ SO ₃) ₂ PAM gel	0.1-1.6 V	470 mAh g ⁻¹	95 % retained after 3000	8	
			at 0.1 A g ⁻¹	cycles at 5 A g ⁻¹		
7.110	1 M ZnSO ₄	0.2-1.4 V	248 mAh g ⁻¹	85 % retained after	9	
ZII2 V 207			at 0.05 A g ⁻¹	1000 cycles at 4 A g ⁻¹		
шио	$3 M T_{r}(CESO)$	0.2-1.6 V	423.8 mAh g ⁻¹	94.3 % retained after	10	
112 V 308	5 WI ZII(CI ⁺ 3503) ₂		at 0.1 A g ⁻¹	1000 cycles at 5 A g ⁻¹		
Bar W.O 3H-O	2 M 7=50	02141	321.2 mAh g ⁻¹	95.6 % retained after	er 11	
	2 W 20504	0.3-1.4 V	at 0.1 A g ⁻¹	2000 cycles at 5 A g ⁻¹		
NaV ₆ O ₁₅ /V ₂ O ₅	2 M Zn(CF ₃ SO ₃) ₂	0.2-1.8 V	390 mAh g ⁻¹	92.3 % retained after	12	
			at 0.3 A g ⁻¹	3000 cycles at 5 A g ⁻¹		
$Ca_{0.23}V_2O_5{\cdot}0.95$	$3 M T_{p}(CESO)$	0.2-1.6 V	355.2 mAh g ⁻¹	97.7 % retained after	13	
H ₂ O	$5 \text{ IVI } 2n(CF_3SO_3)_2$		at 0.2 A g ⁻¹	2000 cycles at 5 A g ⁻¹		
Zn ₃ V ₂ O ₇ (OH) ₂ ·	1 M 7 n S O	0.2-1.8 V	213 mAh g ⁻¹	68 % retained after	14	
2H ₂ O	1 IVI $2nSO_4$		at 0.05 A g ⁻¹	300 cycles at 0.2 A g^{-1}		
V 0 1211 0	$2 M T_{r}(CESO)$	07171	164.5 mAh g ⁻¹ 80.1 % retained a		15	
v ₁₀ O ₂₄ ·12Π ₂ O	$\frac{5 \text{ IVI } \Sigma \Pi (CF_3 SO_3)_2}{2}$	U./-1./ V	at 0.2 A g ⁻¹	3000 cycles at 10 A g ⁻¹	.1	
Al ³⁺ -doped	$2 M T_{p}(CE SO)$	0.2.1.6.17	375 mAh g ⁻¹	94.7 % retained after	This	
V ₂ O ₃ /C	$5 \text{ IVI } \Sigma \Pi (\mathbb{CF}_3 \mathbb{SO}_3)_2$	0.2-1.0 V	at 0.2 A g ⁻¹	1000 cycles at 5 A g ⁻¹	work	

Table S1 The electrochemical performances of Al^{3+} -doped V_2O_3/C in comparison with some vanadium-based materials

S2 Electrochemical performance of V_2O_3/C -p in comparison with that of V_2O_3/C

In order to explore the effect of the morphology on the electrochemical behavior, the rate and cycling performances of V_2O_3/C -p was also measured in comparison with V_2O_3/C . As shown in **Figure S8a**, V_2O_3/C -p can deliver an average capacity of 308, 296, 298, 285, 265 and 195 mAh g⁻¹ at 0.1, 0.2, 0.5, 1, 2 and 5 A g⁻¹, respectively, and recover to 335 mAh g⁻¹ at 0.1 A g⁻¹, which are higher than those of V₂O₃/C. It is associated with the porous nanobelts built by numerous nanoparticles in V₂O₃/C-p, which is beneficial for the diffusion of electrolyte ions and facilitate the exposure of active sites, thus enhance the storage of Zn²⁺. However, the cycling performance of V₂O₃/C-p is inferior to that of V₂O₃/C though V₂O₃/C-p can provide a larger initial capacity of 263 mAh g⁻¹ at 5 A g⁻¹, it sharply declines to 20 mAh g⁻¹ at the end of 1000 cycles with a capacity retention of only 7.6 % (**Figure S8b**), suggesting the porous nanobelts also favor for the capacity decay.

Figure S8 (a) Rate capability and (b) long-life cycling performances of V_2O_3/C -p in comparison with V_2O_3/C .

Figure S9 Rate performance of the pure graphite

Figure S10 Discharge-charge curves of (a) V_2O_3/C , (b) Zn^{2+} -doped V_2O_3/C and (c) Mn^{2+} -doped V_2O_3/C at various current densities from 0.1 to 5 A g⁻¹.

Table S2 The parameters in the simulated equivalent circuit for Al³⁺-doped V₂O₃/C and V₂O₃/C

	$R_{ m s}~(\Omega~{ m cm}^{-2})$	$R_{ m ct}(\Omega~ m cm^{-2})$	CPE	$R_1 \left(\Omega \text{ cm}^{-2} \right)$
Al ³⁺ -doped V ₂ O ₃ /C	3.7	5.1	0.7	11.3
V_2O_3/C	2.2	13.5	0.6	8.9

Figure S11 XPS spectra of (a) survey, (b) C 1s and (c) N 1s of the Al³⁺-doped V_2O_3/C electrode at different states.

S2 *Ex situ* SEM, EDS and elemental mappings of the Al³⁺-doped V_2O_3/C electrode

In order to obtain deeper insight into the compositional evolution during the discharge/charge process, *ex situ* SEM (**Figure S12a-t**), EDS and elemental mappings (**Figure S13a-j**) of the Al³⁺-doped V₂O₃/C electrode were performed. As shown in **Figure S12(a, b)**, upon the 1st charge to 0.6 V, the sample exhibits stacked sheets with nanoparticles on the surfaces, which is similar to the morphology of the pristine sample (**Figure S2g-i**). The amount of carbon (64.15 at. %) (**Figure S13a** and **Table S3**) in the discharged cathode is larger than that in the pristine sample (23.97 at. %),

which is mainly due to the addition of conducting agent (graphite and acetylene black) for the fabrication of the electrode. As a result, the Al content is lowered to 1.68 at. % due to the dilution effect of the carbon additive. The F content (6.48 at. %) in the electrode mainly comes from the PVDF binder. Furthermore, the presence of Zn (1.73 at. %) in the discharged electrode illustrates the intercalation of Zn^{2+} . Upon further discharge to 0.2 V, the stacked sheets become loose and the electrode still keeps its original appearance because the 1st discharge process is short (ca. 40 min) (**Figure S12c, d**). Similarly, the morphologies of the Al³⁺-doped V₂O₃/C electrode are preserved upon the 1st charge to 0.6 (**Figure S12e, f**) and 1.0 V (**Figure S12g, h**). It is consistent with their XRD patterns, which are almost the same as the pristine sample, indicating they maintain the structural integrity of V₂O₃.

However, upon the 1st charge to 1.4 V, XRD pattern discloses the formation of $Zn_3(OH)_2V_2O_7\cdot 2H_2O$ with the disappearance of V_2O_3 , the morphological change of the electrode is minor, which still displays nanoparticles on the surface of sheets (**Figure S12i, j**), indicating the transformation of $V_2O_3 \rightarrow Zn_3(OH)_2V_2O_7\cdot 2H_2O$ occurs in the inner channel of corrundum-type V_2O_3 , which retains the original contour of the pristine sample. Although V_2O_3 is nonporous, the oxygen vacancies in the structure can provide accessible sites for the binding of Zn^{2+} . That is to say, with the oxidation reaction proceeding, the valence state of V is increased, the high-valent V can combine the intercalated Zn^{2+} into $Zn_3(OH)_2V_2O_7\cdot 2H_2O$. As a result, the amount of oxygen deficiencies is decreased, which is consistent with the O 1s spectra. Similar phenomenon is observed upon deeply charged to 1.6 V. Although the XRD pattern at the fully charged state suggests the further transformation of $V_2O_3 \rightarrow Zn_3(OH)_2V_2O_7\cdot 2H_2O$, there is not obvious morphological change of the electrode (**Figure S12k, l**). However, as shown in **Scheme 1**, the corrundum-type V_2O_3

possesses a nonporous 3D architecture without free inner space, it is expected the inner accessible sites of V_2O_3 is associated with its rich oxygen vacancies.

Based on XRD data, it is found Al³⁺-doped V₂O₃/C has been replaced by Al³⁺doped $Zn_3(OH)_2V_2O_7 \cdot 2H_2O/C$ after the 1st fully charged to 1.6 V, the subsequent Al³⁺-doped discharge/charge process involves the redox reactions of Zn₃(OH)₂V₂O₇·2H₂O/C. As a result, upon the 2nd discharge to 1.0 V, ultrathin nanosheets are observed on the outer surface of the Al³⁺-doped $Zn_3(OH)_2V_2O_7 \cdot 2H_2O/C$ sample (Figure S12m, n). The ultrathin nanosheets become more and more upon further discharge to 0.6 (Figure S120, p) and 0.2 V (Figure **S12q, r**), which is the result of the H^+ intercalation as evidenced by previous work,¹⁶⁻ ¹⁸. With the intercalation of H^+ during the 2^{nd} discharge process, the concentration of OH^{-} in the aqueous solution is excessive, which can combine $Zn_x(CF_3SO_3)_v$ from the electrolyte solution into insoluble Zn_x(CF₃SO₃)_v (OH)_{2x-v}·nH₂O on the outer surface of the electrode.¹⁷⁻¹⁹ And the expectation can be proved by the ex situ EDS results. As shown in Figure S13(g-i) and Table S3, the F/S contents in the electrode increase from $5.43/0.15 \rightarrow 7.55/0.80 \rightarrow 9.18/1.85$ at. % upon the 2nd discharge from $1.0 \rightarrow 0.6$ \rightarrow 0.2 V. Furthermore, the (de)intercalation of H⁺ is almost reversible, upon the 2nd charge to 1.4 V, most of the ultrathin nansheets have disappeared (Figure S12s, t) with the F/S contents drop to 6.36/0.24 at. % (Figure S13j and Table S3).

As for the content of Zn, it is increased from $2.96 \rightarrow 4.74 \rightarrow 6.68$ at. % from the 2nd discharge to $1.0 \rightarrow 0.6 \rightarrow 0.2$ V (**Figure S13g-i** and **Table S3**), which originate from the increase of the intercalated Zn²⁺ and adsorbed Zn²⁺ during the discharge process, agreeing with the Zn 2p spectra. And the Zn content drops to 6.68 at. % upon the 2nd charge to 1.4 V (**Figure S13j** and **Table S3**).

(a) (b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(k)

(l)

(m)

(n)

(0)

(p)

(q)

Figure S12 *Ex situ* SEM images of the Al³⁺-doped V₂O₃/C electrode at different states: 1st discharge to (**a**, **b**) 0.6 and (**c**, **d**) 0.2 V; 1st charge to (**e**, **f**) 0.6, (**g**, **h**) 1.0, (**i**, **j**) 1.4, and (**k**, **l**) 1.6 V; 2nd discharge to (**m**, **n**) 1.0, (**o**, **p**) 0.6 and (**q**, **r**) 0.2 V; (**s**, **t**) 2nd charge to 1.4 V.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure S13 *Ex situ* EDS and elemental mappings of the Al³⁺-doped V₂O₃/C electrode at different states: 1st discharge to (**a**) 0.6 and (**b**) 0.2 V; 1st charge to (**c**) 0.6, (**d**) 1.0, (**e**) 1.4 and (**f**) 1.6 V; 2nd discharge to (**g**) 1.0, (**h**) 0.6 and (**i**) 0.2 V, (**j**) 2nd charge to 1.4 V.

Table S3 Comparison of the contents of C, N, O, Al, V, Zn, F, S and Ti elements in the Al^{3+} -doped V₂O₃/C electrode at the different states

	С	Ν	0	Al	V	Zn	F	S	Ti
1 st dis 0.6 V	64.15	4.37	12.23	1.68	8.84	1.73	6.48	0.43	0.10
1 st dis 0.2 V	70.48	3.76	7.88	1.22	8.95	1.27	5.92	0.37	0.15
1 st cha 0.6 V	71.16	4.69	7.28	0.85	9.54	1.1 2	4.86	0.24	0.26
1 st cha 1.0 V	71.57	3.05	8.45	1.19	6.08	1.98	6.91	0.72	0.05
1 st cha 1.4 V	73.06	3.66	10.33	0.40	5.24	1.42	5.72	0.06	0.11
1 st cha 1.6 V	74.34	1.69	7.39	0.41	8.14	2.15	5.54	0.15	0.19
2 nd dis 1.0 V	67.61	2.64	11.02	0.43	9.45	2.96	5.43	0.15	0.31
2 nd dis 0.6 V	63.20	2.49	14.91	0.34	5.87	4.74	7.55	0.80	0.10
2 nd dis 0.2 V	61.44	1.61	12.09	0.26	6.72	6.68	9.18	1.85	0.16
2 nd cha 1.4 V	63.58	1.85	13.76	0.58	8.98	4.72	6.36	0.24	0.38

Figure S14 (a) XRD pattern and (b) EDS as well as elemental mappings (inset) of the Al^{3+} -doped V₂O₃/C electrode after 1000 discharge/charge cycles at 5 A g⁻¹.

(a)

Figure S15 3D architectures of (**a**, **b**) $Zn_3(OH)_2V_2O_7 \cdot 2H_2O$ and (**c**, **d**) Al-doped $Zn_3(OH)_2V_2O_7 \cdot 2H_2O$ (H atoms omitted for clarity).

Figure S16 The optimized configurations and the corresponding energies with Zn^{2+} adsorbed on sites (**a**) A, (**b**) B, (**c**) C, (**d**) D, (**e**) E and (**f**) F in $Zn_3(OH)_2V_2O_7 \cdot 2H_2O$ (H atoms omitted for clarity). The intercalated Zn^{2+} ions are denoted in yellow.

Reference

- S. T. Lutta, N. A. Chernova, P. Y. Zavalij and M. S. Whittingham, J. Mater. Chem., 2004, 14, 2922-2928.
- F. Ming, H. Liang, Y. Lei, S. Kandambeth, M. Eddaoudi and H. N. Alshareef, ACS Energy Lett., 2018, 3, 2602-2609.
- J. Ding, Z. Du, L. Gu, B. Li, L. Wang, S. Wang, Y. Gong and S. Yang, *Adv. Mater.*, 2018, 30, e1800762.
- 4. X. Dai, F. Wan, L. Zhang, H. Cao and Z. Niu, Energy Stor. Mater., 2019, 17, 143-150.
- M. Yan, P. He, Y. Chen, S. Wang, Q. Wei, K. Zhao, X. Xu, Q. An, Y. Shuang, Y. Shao, K. T. Mueller, L. Mai, J. Liu and J. Yang, *Adv. Mater.*, 2018, **30**, 1703725.
- N. Zhang, M. Jia, Y. Dong, Y. Wang, J. Xu, Y. Liu, L. Jiao and F. Cheng, *Adv. Funct. Mater.*, 2019, 29, 1807331.
- P. Hu, T. Zhu, X. Wang, X. Wei, M. Yan, J. Li, W. Luo, W. Yang, W. Zhang, L. Zhou, Z. Zhou and L. Mai, *Nano Lett.*, 2018, 18, 1758-1763.
- W. Deng, Z. Zhou, Y. Li, M. Zhang, X. Yuan, J. Hu, Z. Li, C. Li and R. Li, ACS Nano, 2020, 14, 15776-15785.
- B. Sambandam, V. Soundharrajan, S. Kim, M. H. Alfaruqi, J. Jo, S. Kim, V. Mathew, Y. K. Sun and J. Kim, J. Mater. Chem. A, 2018, 6, 3850-3856.
- 10. P. He, Y. Quan, X. Xu, M. Yan, W. Yang, Q. An, L. He and L. Mai, Small, 2017, 13, 1702551.
- X. Wang, B. Xi, X. Ma, Z. Feng, Y. Jia, J. Feng, Y. Qian and S. Xiong, *Nano Lett.*, 2020, 20, 2899-2906.
- 12. L. Fan, Z. Li, W. Kang and B. Cheng, J.Energy Chem., 2021, 55, 25-33.
- 13. W. Zhou, M. Chen, A. Wang, A. Huang, J. Chen, X. Xu and C. P. Wong, *J.Energy Chem.*, 2021, **52**, 377-384.
- 14. C. Xia, J. Guo, Y. Lei, H. Liang, C. Zhao and H. N. Alshareef, Adv. Mater., 2018, 30, 7.
- 15. T. Wei, Q. Li, G. Yang and C. Wang, Electrochim. Acta, 2018, 287, 60-67.
- 16. L. L. Wang, K. W. Huang, J. T. Chen and J. R. Zheng, Sci. Adv., 2019, 5, 10.
- 17. L. Wang, K.-W. Huang, J. Chen and J. Zheng, Sci. Adv., 2019, 5, eaax4279.
- 18. M. Du, F. Zhang, X. Zhang, W. Dong, Y. Sang, J. Wang, H. Liu and S. Wang, *Sci China Chem*, 2020, 63, 1767-1776.
- 19. W. Leng, L. Cui, Y. Liu and Y. Gong, Adv. Mater. Interfaces, 2021, 8, 2101705.