Supporting Information

A high-performance hybrid supercapacitor by encapsulating binder-less FeCoSe₂ nanosheets@NiCoSe₂ nanoflowers in graphene network

MaryamAmiri, Akbar Mohammadi Zardkhoshoui*, Saied Saeed Hosseiny Davarani* Majid Maghsoudi and Mohammad Kazem Altafi

Department of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran, Iran. Corresponding authors: *Tel: +98 21 22431661; Fax: +98 21 22431661; E-mail: sshosseiny@sbu.ac.ir (S.S.H. Davarani); and mohammadi.bahadoran@gmail.com (A. Mohammadi Zardkhoshoui)

Fig. S1 (A) Photograph of pure NF. (B, C) FE-SEM images of the pure NF. (D) Photograph of FC-LDH@NF. (E, F) FE-SEM images of the of FC-LDH@NF. (G) Photograph of FC-LDH@NC-LDH10@NF. (H, I) FE-SEM images of the of FC-LDH@NF.

Fig. S2 (A) Photograph of FCS@NCS2@NF. (B-D) FE-SEM images of the FCS@NCS2@NF. (E-E4) FE-SEM mapping of the FCS@NCS2@NF.

Fig. S3 XRD patterns of the NiCo-LDH, FeCo-LDH, and FeCo-LDH@NiCo-LDH.

Fig. S4 (A) CV curves of the FC-LDH@NC-LDH5@NF, FC-LDH@NC-LDH10@NF, and FC-LDH@NC-LDH15@NF electrodes at 50 mV/s. (B) GCD curves of the FC-LDH@NC-LDH5@NF, FC-LDH@NC-LDH10@NF, and FC-LDH@NC-LDH15@NF electrodes at 1 A/g. (C) Specific capacities of FC-LDH@NC-LDH5@NF, FC-LDH@NC-LDH10@NF, and FC-LDH@NC-LDH15@NF electrodes at 1 A/g.

Fig. S5 (A) CV curves of the FCS@NCS1@NF, FCS@NCS2@NF, and FCS@NCS3@NF electrodes at 50 mV/s. (B) GCD curves of the FCS@NCS1@NF, FCS@NCS2@NF, and FCS@NCS3@NF electrodes

at 1 A/g. (C) Specific capacities of FCS@NCS1@NF, FCS@NCS2@NF, and FCS@NCS3@NF electrodes at 1 A/g.

Fig. S6 (A) CV curves of the FCS@NCS-G1@NF, FCS@NCS-G2@NF, and FCS@NCS-G3@NF electrodes at 50 mV/s. (B) GCD curves of the FCS@NCS-G1@NF, FCS@NCS-G2@NF, and FCS@NCS-G3@NF electrodes at 1 A/g. (C) Specific capacities of FCS@NCS-G1@NF, FCS@NCS-G2@NF, and FCS@NCS-G3@NF electrodes at 1 A/g.

Fig. S7 (A) CV curves of the FC-LDH@NF at various scan rates from 10 to 80 mV/s. (B) CV curves of the FC-LDH@NC-LDH5@NF at various scan rates from 5 to 80 mV/s. (C) CV curves of the FC-LDH@NC-LDH10@NF at various scan rates from 5 to 80 mV/s. (D) CV curves of the FC-LDH@NC-LDH@NF15@NF at various scan rates from 5 to 80 mV/s. (E) CV curves of the FCS@NCS1@NF at various scan rates from 5 to 80 mV/s. (G) CV curves of the FCS@NCS3@NF at various scan rates from 5 to 80 mV/s. (I) CV curves of the FCS@NCS-G1@NF at various scan rates from 5 to 80 mV/s. (I) CV curves of the FCS@NCS-G3@NF at various scan rates from 5 to 80 mV/s. (I) CV curves of the FCS@NCS-G3@NF at various scan rates from 5 to 80 mV/s.

Fig. S8 (A) Capacitive contributions and diffusion-controlled contributions of FCS@NCS-G2@NF electrode at various scan rates from 5 to 80 mV/s. (B) Capacitive contributions and diffusion-controlled contributions of FCS@NCS2@NF electrode at various scan rates from 5 to 80 mV/s.

Fig. S9 (A) GCD curves of the FC-LDH@NF at various current densities from 1 to 30 A/g. (B) GCD curves of the FC-LDH@NC-LDH5@NF at various current densities from 1 to 30 A/g. (C) GCD curves of the FC-LDH@NC-LDH10@NF at various current densities from 1 to 30 A/g. (D) GCD curves of the FC-LDH@NC-LDH@NF15@NF at various current densities from 1 to 30 A/g. (E) GCD curves of the FCS@NCS1@NF at various current densities from 1 to 30 A/g. (F) GCD curves of the FCS@NCS1@NF at various current densities from 1 to 30 A/g. (F) GCD curves of the FCS@NCS2@NF at various current densities from 1 to 30 A/g. (F) GCD curves of the FCS@NCS2@NF at various current densities from 1 to 30 A/g. (F) GCD curves of the FCS@NCS2@NF at various current densities from 1 to 30 A/g. (G) GCD curves of the FCS@NCS3@NF at various current densities from 1 to 30 A/g. (I) GCD curves of the FCS@NCS-G1@NF at various current densities from 1 to 30 A/g. (I) GCD curves of the FCS@NCS-G3@NF at various current densities from 1 to 30 A/g. (I) GCD curves of the FCS@NCS-G3@NF at various current densities from 1 to 30 A/g. (I) GCD curves of the FCS@NCS-G3@NF at various current densities from 1 to 30 A/g. (I) GCD curves of the FCS@NCS-G3@NF at various current densities from 1 to 30 A/g. (I) GCD curves of the FCS@NCS-G3@NF at various current densities from 1 to 30 A/g. (I) GCD curves of the FCS@NCS-G3@NF at various current densities from 1 to 30 A/g.

Fig. S10 (A) Specific capacities vs. current densities of the FCS@NCS-G1@NF, FCS@NCS-G2@NF, and FCS@NCS-G3@NF electrodes. (B) Specific capacities vs. current densities of the FCS@NCS1@NF, FCS@NCS2@NF, and FCS@NCS3@NF electrodes. (C) Specific capacities vs. current densities of the FC-LDH@NC-LDH5@NF, FC-LDH@NC-LDH10@NF, and FC-LDH@NC-LDH15@NF electrodes.

Fig. S11 (A) Durability of the FCS@NCS-G1@NF and FCS@NCS-G3@NF electrodes at 10 A/g. (B) Durability of the FCS@NCS1@NF, FCS@NCS2@NF, and FCS@NCS3@NF electrodes at 10 A/g. (C) Durability of the FC-LDH@NC-LDH10@NF, FC-LDH@NC-LDH15@NF, FC-LDH@NC-LDH5@NF, and FC-LDH@NF electrodes at 10 A/g.

Fig. S12 (A-C) FE-SEM images of the FCS@NCS-G2@NF after 11,000 GCD cycles. (D, E) FE-SEM images of the FCS@NCS2@NF after 11,000 GCD cycles.

Fig. S13 (A) XRD patterns of the FCS@NCS-G2 sample before and after 11000 GCD cycles. (B) Raman patterns of the FCS@NCS-G2 sample before and after 11,000.

Fig. S14 (A) CV plots of the AC@NF electrode from 10 to 80 mV/s. (B) GCD plots of the AC@NF from 1 to 30 A/g. (c) Specific capacities vs. current densities of the AC@NF electrode.

Table S1. Comparison of the electrochemical performance of the FCS@NCS-G2@NF in three and two electrode systems with other previously reported electrode materials.

References

Composition	Capacity 3 and 2 electrodes (C/g)	Cycles, retention 2 and 3 electrode	Rate capabilit y, 2 and 3 electrod es	ED (W h kg ⁻¹) 2 Electrode	Reference
Ni _{0.85} Se@MoSe ₂	387 at 1 A/g (3 E)	1000, 95% (3 E 5000, 88% (2 E)	63% at 15 A/g (3 E)	25.5	1
NiCoSe4	504 at 0.5 A/g (3 E) 156.48 at 0.5 A/g (2 E)	5000, 80% (3 E) 10000, 65% (2 E)	85.2% at 20 A/g (3 E)	34.8	2
CuCo ₂ Se ₄	265 at 1 A/g (3 E) 37.75 at 1 A/g (2 E)	6000, 83.7% (3 E) 6000, 88% (3 E)	70.8% at 6 A/g (3 E)	9.45	3
NiCo2Se4	881.05 at 1 A/g (3 E) 107.7 at 1 A/g (2 E)	10000, 82% (3 E) 10000, 94% (3 E)	62.5% at 20 A/g (3 E)	24.03	4
Ni _{0.95} Co _{2.05} Se ₄	519.4 at 1 A/g(3 E)	5000, 85% (3 E) 10000, 78.6% (2 E)	67% at 20 A/g (3 E)	37.22	5
NiSe-graphene	512 at 1 A/g (3 E) 225.6 at 1 A/g (2 E)	2500, 98% (3 E) 3000, 84.4% (2 E)	80% at 10 A/g (2 E) 70% at 10 A/g (2 E)	50.1	6
NiMn-LDH	1082 at 1 A/g (3 E)	10000, 91.4% (3 E) 10000, 90.8% (2 E)	-	48.9	7
Cu ₂ Se@Co ₃ Se	502.5 at 1 A/g (3 E) 139.2 at 1 A/g (2 E)	10000, 94.2% (3 E) 10000, 85.8% (3 E)	83.4% at 10 A/g (3 E)	30.9	8
NiCo ₂ Al _{0.5} -LDH	630 at 1 A/g (3 E)	6000, 91.7% (3 E)		39	9
CoNi-LDH2	1031.4 at 1 A/g (3 E)	5000, 60.7% (2 E)	71% at 25 A/g (3 E)	49	10
FCS@NCS- G@NF	1156C/g at 1 A/g (3 E) 280 C/g at 1 A/g (2 E)	11000, 92.3 (3 E) 11000, 90.8 (2 E)	81% at 48 A/g (3 E)	62.2	This study

1 H. Peng, C. Wei, K. Wang, T. Meng, G. Ma, Z. Lei and X. Gong, *ACS Appl. Mater. Interfaces* 2017, **9**, 17067–17075.

- 2 Z. Xie, D. Qiu, J. Xia, J. Wei, M. Li, F. Wang and R. Yang, ACS Appl. Mater. Interfaces 2021,
 13, 12006–12015.
- 3 F. Tavakoli, B. Rezaei, A. R. Taghipour Jahromi and A. A. Ensafi, *ACS Appl. Mater. Interfaces* 2020, **12**, 418–427.
- 4 Z. Guo, Y. Diao, X. Han, Z. Liu, Y. Ni and L. Zhang, CrystEngComm, 2021, 23, 2099-2112.
- 5 B. Jiang, Y. Liu, J. Zhang, Y. Wang, X. Zhang, R. Zhang, L.-L. Huang and D. Zhang, *RSC Adv.*, 2022, **12**, 1471-1478.
- 6 B. Kirubasankar, V. Murugadoss, J. Lin, M. Dong, H. Liu, J. Zhang, T. Li, N. Wang, Z. Guo andS. Angaiah, *Nanoscale*, 2018, 10, 20414-20425.
- 7 Y. Tang, Z. Liang, Y. Jin, S. Gao and R. Zou, J. Mater. Chem. A, 2021, 9, 23286-23295.
- 8 A. Li, M. Zhai, M. Luan and J. Hu, Chem. Eur. J. 2021, 27, 10134-10141.
- 9 Y. Chen, Y. Ouyang, J. Yang, L. Zheng, B. Chang, C. Wu, X. Guo, G. Chen and X. Wang, ACS Appl. Energy Mater. 2021, 4, 9384–9392.
- 10 Z. Li, H. Mi, F. Guo, C. Ji, S. He, H. Li and J. Qiu, Inorg. Chem. 2021, 60, 12197–12205.