Supplementary information

Highly efficient and stable perovskite cathode with *in-situ* exsolved NiFe alloy nanoparticles for CO₂ electrolysis

Mengmeng Wang, Naizhi Li, Qing shen, Zhongliang Zhan*, Chusheng Chen **

CAS Key Laboratory of Materials for Energy Conversion, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Materials Science and

Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P.

R. China

* Corresponding author.

** Corresponding author.

E-mail addresses: ccsm@ustc.edu.cn (C. Chen), zzhan@ustc.edu.cn (Z. Zhan).

Fig. S1 (a) XRD patterns of LSCrF, LSCrFN and NiFe@LSCrFN. (b) Enlarged XRD patterns at 30-36° of (a).

Fig. S2 XPS spectra of Cr 2p for LSCrFN and NiFe@LSCrFN.

Fig. S3 TPR profiles in hydrogen for LSCrFN and LSCrF sample.

Fig. S4 The impedance spectra of Cell-2 before and after the stability test.

(d) Cathode-3 after stability test.

Fig. S6 Electrical conductivity relaxation curves of (a) LSCrFN-YSZ and (b) NiFe@LSCrFN-YSZ at 650-800°C

sample	Ni ⁰ (at%)	Ni ²⁺ (at%)
LSCrFN	0	100
NiFe@LSCrFN	33.3	72.2

Table S1 XPS analysis of Ni 3p for the LSCrFN and NiFe@LSCrFN.

Table S2 XPS analysis of Fe 2p for the LSCrFN and NiFe@LSCrFN.

sample	Fe ⁰ (at%)	Fe ³⁺ (at%)	Fe ²⁺ (at%)
LSCrFN	0	61.9	38.1
NiFe@LSCrFN	6.6	54.9	38.5

sample	Cr ⁶⁺ (at%)	Cr ⁴⁺ (at%)	Cr ³⁺ (at%)
LSCrFN	28.5%	16.7%	54.8%
NiFe@LSCrFN	0	24.3%	75.7%

 Table S3 XPS analysis of Cr 2p for the LSCrFN and NiFe@LSCrFN.

Table S4 XPS analysis of *O* 1s for the LSCrFN and NiFe@LSCrFN.

sample	O _L (at%)	O _V (at%)	O _C (at%)
LSCrFN	46.3	25.3	28.4
NiFe@LSCrFN	41.0	35.3	23.7

Table S5 Comparison of performance at 800°C and 1.5 V for direct CO_2 electrolysis of Cell-2 with other SOECs.

Fuel electrode	Exsolved nanoparticles	Electrolyte	Current	Polarization	
		Thickness	density	resistance	Refs
		(µm)	$(A \cdot cm^{-2})$	$(\Omega \cdot cm^2)$	
LSCMC-SDC	Cu	YSZ (50)	0.25	0.50 at 2 V	[1]
LSTMN-YSZ	Ni	YSZ (46)	0.075	2.20 at 1.6V	[2]
LSTCN1-SDC	Ni	YSZ (28)	0.4	0.51 at 1.6 V	[3]
LSTCN2-SDC	Ni	LSGM	0.6	0.43 at 1.6 V	٢/٦
		(55.5)			[4]
LCFN-GDC	NiFe	YSZ (300)	0.9	0.40 at 1.3V	[5]
LSCrFN-YSZ	NiFe	YSZ (13)	1.15	0.27@1.5V	This
					work

Notes: LSCMC = $(La_{0.75}Sr_{0.25})_{0.9}(Cr_{0.5}Mn_{0.5})_{0.9}Cu_{0.1}O_{3-\delta}$,

$$\begin{split} & \text{LSTMN} = (\text{La}_{0.2}\text{Sr}_{0.8})_{0.9}(\text{Ti}_{0.9}\text{Mn}_{0.1})_{0.9}\text{Ni}_{0.1}\text{O}_{3-\delta}, \\ & \text{LSTCN1} = (\text{La}_{0.2}\text{Sr}_{0.8})_{0.95}\text{Ti}_{0.85}\text{Cr}_{0.1}\text{Ni}_{0.05}\text{O}_{3+\delta}, \\ & \text{LSTCN2} = (\text{La}_{0.2}\text{Sr}_{0.8})_{0.85}\text{Ti}_{0.8}\text{Cr}_{0.1}\text{Ni}_{0.1}\text{O}_{3-\delta}, \\ & \text{LCFN} = \text{La}_{0.6}\text{Ca}_{0.4}\text{Fe}_{0.8}\text{Ni}_{0.2}\text{O}_{3-\delta}, \\ & \text{SDC} = \text{Ce}_{0.8}\text{Sm}_{0.2}\text{O}_{2-\delta}, \\ & \text{LSGM} = \text{La}_{0.9}\text{Sr}_{0.1}\text{Ga}_{0.8}\text{Mg}_{0.2}\text{O}_{3-\delta} \end{split}$$

References

- H. Li, G. Sun, K. Xie, W. Qi, Q. Qin, H. Wei, S. Chen, Y. Wang, Y. Zhang and Y. Wu, *Int. J. Hydrogen Energy*, 2014, **39**, 20888-20897.
- Y. Li, K. Xie, S. Chen, H. Li, Y. Zhang and Y. Wu, *Electrochim. Acta*, 2015, 153, 325-333.
- 3. L. Ye, M. Zhang, P. Huang, G. Guo, M. Hong, C. Li, J. T. Irvine and K. Xie, *Nat. Commun.*, 2017, **8**, 1-10.
- 4. L. Bai, H. Li, Z. Yan, X. Hao, M. Ke, K. Xie and B. Li, *Adv. Mater. Interfaces*, 2021, **8**, 2001598.
- 5. Y. Tian, Y. Liu, A. Naden, L. Jia, M. Xu, W. Cui, B. Chi, J. Pu, J. T. Irvine and J. Li, *J. Mater. Chem. A*, 2020, **8**, 14895-14899.