NiO-Ti nanocomposites for contact electrification and energy harvesting: Experimental and DFT+U studies

¹Aneeta Manjari Padhan, ¹Sugato Hajra, ²Jagadish Kumar, ¹Manisha Sahu, ³Sanjib Nayak, ⁴Hamideh Khanbaerh, ^{1,5*}Hoe Joon Kim, ^{6*}Perumal Alagarsamy

¹Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-42988, Republic of Korea

²Department of Physics, Utkal University, Vani Vihar, Bhubaneswar-751004, India

³Department of Physics, Indian Institute of Technology-Madras, Tamilnadu-600036, India

⁴Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK

⁵Robotics and Mechatronics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-42988, South Korea

⁶Department of Physics, Indian Institute of Technology-Guwahati, Assam-781039, India

#Corresponding Authors: Dr. Hoe Joon Kim: joonkim@dgist.ac.kr

Prof. Perumal Alagarsamy: perumal@iitg.ac.in

Figure S1: Milling time-dependent mechanochemical reduction of NiO by a reactive Ti to form an *in-situ* NiO-Ni-TiO₂ nanocomposite (a); The enlarged version of the peaks within 2θ = 40-48° showing the formation of Ni at the critical activation time of 10 h.

Figure S2: Bright-field TEM images and selected area electron diffraction patterns of NiO-Ti powders prepared at different milling periods with (a) Bulk NiO; (b) $t_{mill} = 5$ h; (c) $t_{mill} = 10$ h; (d) $t_{mill} = 30$ h.

Figure S3: (a) Milling time-dependent magnetic hysteresis (*M-H*) loops measured at room temperature; (b) Percentage of Ni estimated for the NiO-Ti powders at different milling periods.

Figure S4: AFM (surface roughness) and KPFM (surface potential) features of the NiO-Ni-TiO₂ nanocomposite.

Figure S5: Voltage and current of the TENG based on NiO and Kapton triboelectric layers.

Figure S6: Electrical current output for single unit TENG and two units of TENG (multi) connected in parallel connection.

Figure S7: Surface micrographs of bare copper and NiO-Ni-TiO₂ particles attached to copper electrode.

SI.	Device structure	Working Mode	Active Materials	Voltage (V)	Current (µA)	Ref.
1	Spring Type Contact Separation	TENG	Kapton/ZnO	57	1.21	1
2	Spring Type Contact Separation	TENG- PENG hybrid	Ti _{0.8} O ₂ -Ag co- doped BaTiO ₃ / PDMS	150	0.32	2
3	Flapper type single electrode mode	TENG	ZnO nanorods/PDMS	5.34	0.181	3
4	Vertical contact mode	TENG	Ba ₃ Fe ₂ TeO ₉ / Kapton	88	2.69	4
5	Square shape vertical contact separation	TENG	Al ₂ O ₃ -PDMS	34	1.77	5
6	Square shape vertical contact separation	TENG	SiO ₂ -TiO ₂	0.2	-	
7	Square shape vertical contact separation	TENG	TiO ₂ -HfO ₂	0.2	-	6
8	Square shape vertical contact separation	TENG	Al ₂ O ₃ -HfO ₂	0.25	-	
9	Vertical contact separation	TENG	TiO ₂ -Natural rubber	45-78	4.5-7.0	7
10	Spring Type contact separation (2 cm × 2 cm)	TENG	NiO-Mg/ Kapton	35	0.13	
11	Spring Type contact separation (2 cm × 2 cm) two units in parallel	TENG	NiO-Mg/ Kapton	35	0.49	8
12	Spring Type contact separation (3.5 cm × 3.5 cm)	TENG	NiO-Mg/ Kapton	80	1.0	
13	Eye-shaped vertical contact separation	TENG	NiO-Ni-TiO ₂ / Kapton	60	0.6	This work

 Table S1: Comparison of different metal-oxide based TENG with present work.

References:

- 1. M. Sahu, S. Šafranko, S. Hajra, A.M. Padhan, P. Živković, S. Jokić, H.J. Kim, Materials Letters 301 (2021) 130290
- S. Sriphan, T. Charoonsuk, T. Maluangnont, N. Vittayakorn, ACS Appl. Energy Mater. 2, 5 (2019) 3840-3850
- 3. Y.H. Ko, G. Nagaraju, S.H. Lee, J.S. Yu, ACS Applied Mater. Interfaces 6 (2014) 6631-6637
- J. Kojčinović, M. Sahu, S. Hajra, D. Tatar, T. Klaser, Ž. Skoko, Z. Jagličić, E. Sadrollahi, F. Jochen Litterst, H.J. Kim, I. Djerdj, Mater. Chem. Front. (2022); DOI: 10.1039/D1QM01565F
- 5. H.J. Hwang, Y. Lee, C. Lee, Y. Nam, J. Park, D. Choi, D. Kim, Micromachines 9 (2018) 656
- 6. Y.J. Kim, J. Lee, S. Park, C. Park, C. Park, H.-J. Choi, RSC Adv. 7 (2017) 49368
- 7. W. Bunriw, V. Harnchana, C. Chanthad, V. Ngoc Huynh, Polymers 13 (2021) 2213.
- A.M. Padhan, S. Hajra, S. Nayak, J. Kumar, M. Sahu, H.J. Kim, P. Alagarsamy, Nano Energy 91 (2022) 106662.