Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information (ESI)

A two-dimensional perovskite oxyfluoride $Pb_3Fe_2O_5F_2$ as a

catalyst for electrochemical oxidation of water to oxygen

Ryusuke Mizuochi,^a Kengo Oka,^b Yoshiyuki Inaguma,^c and Kazuhiko Maeda^{*,a}

^{*a*} Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

^b Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-osaka City, Osaka 577-8502, Japan

^c Department of Chemistry, Faculty of Science, Gakushuin University,1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan

*To whom correspondence should be addressed.

Email: <u>maedak@chem.titech.ac.jp</u>

Experimental

Synthesis of Pb₃Fe₂O₅F₂ and PbFeO₂F

In accordance with a previous report,¹ Pb₃Fe₂O₅F₂ powder was synthesized through a solid-state reaction in vacuum. A mixture of PbO (99.9%, Rare Metallic Co. Ltd.), PbF₂ (99.9%, Mitsuwa Pure Chemical), and α -Fe₂O₃ (99.9%, FUJIFILM Wako Pure Chemical) powders, prepared in the ratio (molar basis) PbO:PbF₂: α -Fe₂O₃ = 2:1:1, was wrapped in a Pt sheet and then heated at 873 K for 12 hours in an evacuated Pyrex tube.

PbFeO₂F powder was synthesized through a solid-state reaction at high pressure, using a mixture of PbO (99.9%, Kanto Chemical), PbF₂ 99.999%, Soekawa Chemical) and Fe₂O₃ (99.99%, Rare Metallic).² A stoichiometric mixture of the starting materials was dried overnight by evacuating at ca. 573 K. The mixture was sealed in a gold capsule (0.2 mm thick, 3.1 mm inner diameter, and 3.2 mm depth), which was placed in a NaCl sleeve. The sample was then inserted into a pyrophyllite cube block (one side 13 mm) with a cylindrical graphite heater. The mixture was allowed to react in a TRY cubic multianvil-type high pressure apparatus (NAMO 2001) at 6.0 GPa and 1173 K for 30 min and then was quenched to room temperature.

The single-phase production of PbFeO₂F and Pb₃Fe₂O₅F₂ was confirmed by X-ray diffraction (XRD).

Characterization

The purity of the phases in the synthesized samples was confirmed by XRD using a Rigaku MiniFlex600 diffractometer (monochromatic radiation: Cu K α). Scanning electron microscopy (SEM) observations combined with energy-dispersive X-ray spectroscopy (EDS) measurements were conducted on a JEOL JSM-IT100 equipped with a KEYENCE VE-9800 apparatus.

Preparation of Pb₃Fe₂O₅F₂ and PbFeO₂F electrodes

A Pb₃Fe₂O₅F₂/FTO electrode was prepared by performing electrophoretic deposition in 50 mL of acetone (>99.5%, Kanto Chemical) containing ca. 100 mg Pb₃Fe₂O₅F₂ powder and ca. 20 mg iodine (>99.8%, FUJIFILM Wako Pure Chemical).³ Two fluorine-doped tin oxide (FTO) substrates in parallel were immersed in the solution with a separation of ca. 15 mm, and then a voltage of 30 V was applied between the substrates for 2 minutes using a stabilized DC power supply (PSW 80–13.5, GW Instek). The Pb₃Fe₂O₅F₂ deposited area was 3.8 cm² (ca. 1.5 cm × 2.5 cm). After that, the as-deposited Pb₃Fe₂O₅F₂/FTO electrode was heated at 573 K for one hour to enhance the conductivity in the electrode. A PbFeO₂F/FTO electrode was also prepared in the same way. The amount of particles deposited onto the FTO substrate was 4–5 mg.

Electrochemical measurements

Electrochemical measurements were performed using a potentiostat (HZ-Pro, Hokuto Denko) and an electrochemical cell at room temperature. The cell body was made of Pyrex glass, and was a three-electrode-type system equipped with a Pt wire and an Ag/AgCl electrode (saturated KCl aqueous solution) as the counter and reference electrodes, respectively. 0.1 M aqueous K₃PO₄ (>98.0%, Sigma-Aldrich) solution served as the electrolyte, which was saturated with argon gas prior to undertaking measurements. The potentials measured by the Ag/AgCl reference electrode were converted to those with respect to the reversible hydrogen electrode (RHE, $E_{RHE} = E_{Ag/AgCl} + 0.059 \text{ pH} + 0.197 \text{ at } 298 \text{ K}$). In this work, the electrocatalytic activities were reported based on the use of current densities per geometric area of electrode ($\mu A \text{ cm}^{-2}_{geo}$).

Electrochemical impedance spectroscopy measurement was conducted using the same potentiostat and electrochemical setup. This measurement conditions were set to an AC amplitude of 10 mV and a frequency range of 100 kHz to 0.1 Hz.

Quantification of electrochemical O₂ evolution

Quantification of the O_2 evolved during controlled-potential electrolysis was performed with a gastight H-type electrochemical cell that had two chambers parted by a perfluorinated membrane (Nafion 117, Sigma-Aldrich). The Pb₃Fe₂O₅F₂/FTO working and the Ag/AgCl reference electrode were separated from a Pt wire counter electrode in each chamber. The cell operating conditions

Electronic Supplementary Information (ESI)

were identical to those in the above description of the electrochemical measurements. The evolved O_2 was detected using a gas chromatograph (MGC3000A, Inficon) equipped with a thermal conductivity detector and an MS-5A column. Argon gas was used as the carrier gas in the gas chromatograph.

Fig. S1. XRD patterns for the synthesized $Pb_3Fe_2O_5F_2$ and the reference. The pattern for the reference was drawn based on published crystallographic data.¹

Fig. S2. Current–potential curves in each cycle for the $Pb_3Fe_2O_5F_2/FTO$ electrode in aqueous 0.1 M K₃PO₄ solution (pH 12.6), as recorded at a sweep rate of 10 mV s⁻¹. After the 10th scan, no change in the CV profile was observed, indicating that this electrode was sufficiently stable for water oxidation. The oxidation wave observed at +1.6–1.7 V vs. RHE in the 1st scan might show the oxidation of Fe and/or Pb species in the Pb₃Fe₂O₅F₂, as already mentioned in the main text.

Fig. S3. Pb 4f, Fe 2p, O 1s and F 1s XPS data for the $Pb_3Fe_2O_5F_2$ and $PbFeO_2F$ electrodes before (red) and after (blue) the controlled-potential electrolysis (Fig. 5).

Table S1. Surface atomic ratios of the Pb ₃ Fe ₂ O ₅ F ₂ and PbFeO ₂ F electrodes before and a	fter the
controlled-potential electrolysis (Fig. 5)	

Entry	Electrode	Surface atomic ratios ^{<i>a</i>}		
		Pb/Fe	F/Fe	
1	Pb ₃ Fe ₂ O ₅ F ₂ (before)	0.61	0.11	
2	$Pb_3Fe_2O_5F_2$ (after)	0.51	0.14	
3	PbFeO ₂ F (before)	0.73	0.20	
4	PbFeO ₂ F (after)	0.15	0.06	

^{*a*} Determined by the corresponding XPS peak area.

References

- 1 K. Oka, Y. Nambu, M. Ochi, N. Hayashi, Y. Kusano, T. Aoyama, Y. Ishii, K. Kuroki, S. Mori, M. Takano, M. Iwasaki, N. Noma and H. Kageyama, Spin orientation switching in layered perovskite oxyfluoride Pb₃Fe₂O₅F₂, 2021, DOI: 10.21203/rs.3.rs-678519/v1.
- 2 Y. Inaguma, J.-M. Greneche, M.-P. Crosnier-Lopez, T. Katsumata, Y. Calage and J.-L. Fourquet, Structure and Mössbauer Studies of F–O Ordering in Antiferromagnetic Perovskite PbFeO₂F, *Chem. Mater.*, 2005, **17**, 1386-1390.
- 3 L. Besra and M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD), *Prog. Mater Sci.*, 2007, **52**, 1-61.