Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Au supported defect free TS-1 for Enhanced performance on gas phase propylene epoxidation with H_2 and O_2

Wenqian Li, a,b Minghuang Qiu, Wanting Li, a,b Lixia Ge, a,b Kun Zhang chen kun Z

 ${\it ^aCAS}\ Key\ Laboratory\ of\ Low-carbon\ Conversion\ Science\ and\ Engineering,\ Shanghai\ Advanced$

Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.

E-mail addresses: chenxq@sari.ac.cn

^bUniversity of Chinese Academy of Sciences, Beijing 100049, China.

^cShanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and

Molecular Engineering, East China Normal University, Shanghai 200062, China. E-mail

addresses: kzhang@chem.ecnu.edu.cn

Figure S1. N2 adsorption-desorption isotherms of TS-1, TS-1-urea, Au/ TS-1, and Au/ TS-1-urea.

Figure S2. SEM images of TS-1 zeolites synthesized with different amounts of urea.

- (a) TS-1, (b) TS-1-0.05urea, (c) TS-1-0.1urea, (d) TS-1-0.2urea,
- (e) TS-1-0.3urea, (f) TS-1-0.4urea.

Figure S3 Catalytic performance of zeolites synthesized with different amounts of urea.

Figure S4. XRD patterns of TS-1, TS-1-NH₄HCO₃, and TS-1-(NH₄)₂C₂O₄, respectively.

Figure S5. UV-vis spectra of TS-1, TS-1-NH₄HCO₃, and TS-1-(NH₄)₂C₂O₄, respectively.

Figure S6. SEM images of TS-1 zeolites synthesized with different additives.

 $(a) \ TS\text{--}1\text{-}NH_4HCO_3, \ (b) \ TS\text{--}1\text{-}(NH_4)_2C_2O_4.$

Figure S7. Propylene epoxidation over the Au/TS-1 and Au/TS-1-urea catalysts at different time on stream. Temperature, 230 °C.

Figure S8. Catalytic performance of zeolites synthesized with different additives.

Table S1 Textural properties of TS-1, TS-1-urea, Au/ TS-1, and Au/ TS-1-urea.

Samples	S _{BET} (m ² /g)	S _{micro} (m /g)	S_{ext} (m^2/g)	V _T (cm ³ /g)	V _{micro} (cm /g)
TS-1	138	89	43	0.12	0.046
TS-1-urea	200	152	46	0.15	0.079
Au/TS-1	171	109	62	0.16	0.056
Au/TS-1- urea	216	145	71	0.18	0.075