Supporting Information

Defect passivation in perovskite solar cells using an amino-functionalized BODIPY fluorophore

Anastasia Soultati,1,* Marinos Tountas,2 Azhar Fakharuddin,3,* Maria-Christina Skoulikidou,1 Apostolis Verykios,1 Konstantina-Kalliopi Armadorou,1 Nikolaos Tzoganakis,2 Veroniki P. Vidalì,1 Ilias Sakellis,1 Panagiota Koralli,4 Christos L. Chochos,4 Ioannis Petsalakis,5 Emmanouil Nikoloudakis,6 Leonidas C. Palilis,7 Dimitris Davazoglou,1 Panagiotis Argitis,1 Abd. Rashid bin Mohd Yusoff,8 Emmanuel Kymakis,2 Athanassios G. Coutsolelos,6,* Maria Vasilopoulou1,*

1Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
2Department of Electrical & Computer Engineering, Hellenic Mediterranean University, Estavromenos, Heraklion, GR-71410, Crete, Greece
3Department of Physics, University of Konstanz, 78457 Konstanz, Germany
4Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
5Institute of Theoretical and Physical Chemistry, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
6Department of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus, Heraklion 70013, Crete, Greece
7Department of Physics, University of Patras, 26504, Patras, Greece
8Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
Figure S1. Absorption spectrum of BDP-NH$_2$ deposited on glass substrate.

Figure S2. Raman spectra of fresh and aged a) MAPbI$_3$ and b) MAPbI$_3$:BDP-NH$_2$ perovskite films deposited on FTO/SnO$_2$ substrates. c) and d) Absorption spectra of the same samples. Photographs of MAPbI$_3$ and MAPbI$_3$:BDP-NH$_2$ perovskite films exposed in ambient environment (average temperature 20 °C, 40% humidity and diffused sun light) for 20 days are shown as inset in c) and d), respectively.
Figure S3. (a) – (c) Enlarged XRD patterns of MAPbI₃ and MAPbI₃:BDP-NH₂ deposited on SnO₂ substrates.

Figure S4. XRD diffractograms of MAPbI₃ and MAPbI₃:BDP-NH₂ films, fresh and aged (exposed to ambient conditions for a period of 3 weeks).
Figure S5. Top view SEM images (scale 1μm) of fresh (a) MAPbI$_3$ and (b) MAPbI$_3$:BDP-NH$_2$, and aged (c) MAPbI$_3$ and (d) MAPbI$_3$:BDP-NH$_2$ perovskite films deposited on FTO/SnO$_2$ substrates.

Figure S6. UV-Vis absorbance spectra of MAPbI$_3$ and MAPbI$_3$:BDP-NH$_2$ films (unencapsulated) exposed to real world conditions in the terrace of the Institute of Nanoscience and Nanotechnology of the National Centre for Scientific Research Demokritos, Athens, Greece.
Figure S7. UV-Vis absorbance spectra of BDP-NH$_2$ solution in CB with a concentration of 0.1 mg/ml.

Figure S8. Absorbance spectra of RbCsMAFA films using antisolvent treatment without and with BDP-NH$_2$ (with concentration of 0.1 mg/ml in CB).
Figure S9. Energy level diagram corresponding to the reference inverted PSC of Figure 5a.