Hydrotreating of bio-crude obtained from hydrothermal liquefaction of biopulp: Effect of aqueous phase recirculation on the hydrotreated oil

Komeil Kohansal^a, Kamaldeep Sharma^a, Muhammad Salman Haider^a, Saqib Sohail Toor^a, Daniele Castello^a, Lasse Aistrup Rosendahl^a, Joscha Zimmermann^b, and Thomas Helmer Pedersen^{*a}

a. Department of Energy Technology, Aalborg University, Pontoppidanstræde 111, 9220 Aalborg Øst, Denmark

b. Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

Table S1. Ultimate, proximate, and biochemical properties of the biomass.

Analysis	Value
Ultimate analysis (wt. %)	
С	51.7 ± 0.4
Н	7.5 ± 0.1
Ν	3.3 ± 0.1
0*	27.8 ± 0.6
HHV (MJ/kg) ^a	23.2 ± 0.02
Proximate analysis (wt. %)	
Moisture	78.5 ± 0.9
Ash ^b	9.7 ± 0.4
Volatile matter ^a	71.9 ± 1.8
Fixed carbon ^a	18.4 ± 0.8
Biochemical analysis (wt. %)	
Crude fats	19.2 ± 2.1
Crude proteins	20.6 ± 0.6
Carbohydrate and extractives ^c	50.5 ± 2.7

^a DAF basis ^b Dry basis *Calculated by difference

Substance	Quantifier	Qualifier	Calibration curve	R ²		
2-Piperidone	113	56	$y = 16904,4247 \cdot x$	0.9463		
Quinoline	99	43	$y = 127674,4240 \cdot x$	0.9596		
Indole	117	89	$y = 130280,3948 \cdot x$	0.9525		
Quinoline, 2-methyl	143	128	$y = 159483,2547 \cdot x$	0.9599		
Indole, 2-methyl	130	131	$y = 167490,8118 \cdot x$	0.9529		
Quinoline, 2,6-dimethyl	157	146	$y = 176516,6541 \cdot x$	0.9663		
Indole, 2,3-dimethyl	144	130	$y = 118984,6070 \cdot x$	0.9679		
Hexadecanamide	59	72	y = 43705,2335 · x - 15858,5964	0.9926		
Hexadecanamide, N-methyl	73	86	Hexadecanamide as calibration reference			
Hexadecanamide, N-ethyl	87	100	Hexadecanamide as calibration reference			
Octadecanamide	59	72	y = 37350,2247 · x - 10180,5311	0.9962		
Octadecanamide, N-methyl	73	86	Octadecanamide as calibration reference			
Octadecanamide, N-ethyl	87	100	Octadecanamide as calibration reference			

Table S2. The chemicals utilized to quantify the N-species in the bio-crude and upgraded oil samples.

Figure S1. Schematic view of a) HTL and b) HT setups.

Figure S2. The gas composition of HTL experiments.

Figure S3. The gas composition of HT experiments.

Figure S4. a) Carbon and b) Nitrogen distribution among different HTL products.

Figure S5. ¹³C-NMR spectra of C0 and C3 bio-crudes and the corresponding hydrotreated bio-crudes.

Туре	Compound	Concentration (ppm)							
	1	C0	C3	C0-350	C0-400	C3-350	C3-400		
N-heterocyclic	Quinoline	6.24	6.95	0.71	2.30	1.35	4.37		
	Quinoline, 2-Methyl	3.23	3.73	1.26	9.73	4.21	14.53		
	Quinoline, 2,6-Dimethyl	1.57	1.91	3.17	17.35	5.25	21.45		
	$ \begin{matrix} \vdash & - & - & - & - & - & - & - & - & - &$	1.31	1.62	12.13	32.88	$1 - \overline{15.20}$	42.22		
	Indole, 3-Methyl	14.96	17.49	15.23	55.76	21.49	54.28		
	Indole, 2,3-Dimethyl	[¬] - <u>4</u> 3.43 -	44.45	60.07	67.12	$\frac{1}{63.58}$	68.28		
	2-Piperidone	48.94	29.19	2.44	1.34	1.19	2.60		
Amide	Hexadecanamide	455.08	550.96	277.14	105.83	312.78	106.66		
	Hexadecanamide, N-methyl	[¬] - <u>3</u> 07.83 [−] -	441.21	4.77	1.57	21.94	1.25		
	Hexadecanamide, N-ethyl	1113.97	1492.84	16.70	5.60	44.36	8.70		
	Octadecanamide	7 - 170.77	212.76	352.30	62.44	418.97	85.27		
	Octadecanamide, N-methyl	119.76	149.73	11.54	2.15	27.81	2.63		
	Octadecanamide, N-ethyl	464.59	685.74	37.71	5.55	65.42	5.30		

Table S3. The absolute concentration of the N-containing class representative compounds.