Supporting information

Synthesis of Quantum Dot-Based Polymer Nanocomposites: Assessment of Their Thermoelectric Performances

Shivani Shisodia ^a*, Benoit Duponchel ^a, Gérard Leroy ^b, Abdelhak Hadj Sahraoui ^a, Dharmendra Pratap Singh ^b, Christophe Poupin ^c, Lucette Tidahy ^c, Renaud Cousin ^c, Patrick Ropa ^b, Michael Depriester ^a

Mobility and charge carrier concentration calculation:

The dielectric properties of the TQDGO/PEDOT: PSS pellets in the low frequency region is shown in figure 1. These properties were analyzed using the Uemura model by using^{1–3}:

$$\varepsilon'(f) = A \cdot f^{3/2} + B$$

$$\varepsilon''(f) = C \cdot f^{-1}$$

Where $A = \frac{2 n q^2 D^{3/2}}{\varepsilon_0 \sqrt{\pi} d k_B T}$, $B = \varepsilon_{\infty}$, and $C = \frac{2 n q^2 D}{\varepsilon_0 k_B T}$

Dividing the coefficient A by C, we can calculate the diffusion constant, D, by:

$$D = \left(\frac{A}{C}\right)^2 \pi \ d^2$$

The charge carrier concentration, n, is calculated by:

$$n = \frac{C \varepsilon_0 k_B T}{2q^2 D}$$

And finally the mobility, μ , was calculated from $\mu = \frac{\sigma}{n q}$

Where, f is the frequency, q is the electronic charge, k_B is the Boltzmann constant, ε_0 is the permittivity of free space, T is the absolute temperature, d is the sample thickness. The values of the constant A, B, C and the diffusion constant, D, charge carrier concentration, n, and mobility, μ , are given in the table 1.

SI Table 1: The calculated values of the constants A, B, C, dielectric constant (D), carrier concentration (n), and mobility (μ) of the TQDGO/PEDOT: PSS pellets.

TQDGO wt. %	Α	В	С	D (m².s)	n (m ⁻³)	μ (m².V ⁻¹ .s ⁻¹)
0%	3.96 e ⁴	0.0015	1.73 e ⁵	7.14 e ⁻⁹	1.74 e ¹⁹	6.101 e ⁻⁵
1%	1.79 e⁵	0.02	3.37 e ⁶	2.02 e ⁻⁹	1.19 e ²¹	3.04 e ⁻⁴
2%	1.09 e ⁶	0.132	6.07 e ⁷	1.6 e ⁻¹⁰	6.18 e ²²	3.71 e ⁻⁴

SI Figure 1: Dielectric permittivity as a function of frequency for (a) 1%, (b) 2%, and (c) 5% TQDGO/PEDOT: PSS pellets.

SI Figure 2: Dielectric loss as a function of frequency for (a) 1%, (b) 2%, and (c) 5% TQDGO/PEDOT: PSS pellets.

Thermoelectric properties of ethylene glycol treated TQDGO/PEDOT: PSS pellets

SI Figure 3: (a) Seebeck coefficient, (b) Electrical conductivity, and (c) Power factor of ethylene glycol treated TQDGO/PEDOT: PSS pellets as a function of TQDGO vol. fraction.

Effect of aging (1 year in ambient environment):

The FTIR and Seebeck coefficient measurements have been done to test the stability of the samples. The samples were kept in an ambient environment for 1 year for the aging process (in North Europe climate).

1. **FTIR:** The FTIR showed a broad hump corresponding to the OH group. This indicates that the samples have absorbed the environmental water due to the humidity.

SI Figure 4: FTIR of PEDOT: PSS and TQDGO/ PEDOT: PSS before and after aging in ambient environment.

2. Seebeck coefficient measurements: The Seebeck coefficient measurement shows that the performance of the 5% TQDGO/PEDOT: PSS has decreased from 37 to 27.67 μ V/K (32.43 %). It may be due to the FTIR-observed trapped water.

SI Figure 5: Long term stability performance of TQDGO/PEDOT: PSS pellets Seebeck coefficient as a function of TQDGO vol. fraction.

References:

- 1. S. Uemura, J. Polym. Sci. Part -2 Polym. Phys., 1972, 10, 2155-2166.
- 2. S. Uemura, J. Polym. Sci. Polym. Phys. Ed., 1974, 12, 1177-1188.
- 3. B. P. Singh, S. Sikarwar, K. K. Pandey, R. Manohar, M. Depriester and D. P. Singh, *Electron. Mater.*, 2021, **2**, 466–481.