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Figure S1. XRD patterns of (a) Ag/Mn3O4, Ag/MnO, (b) Mn3O4, Mn3O4-MnO, MnO.



Figure S2. XRD images of different calcining temperature.



Figure S3. The color contrast before and after loading Ag at the calcination 

temperature of 150 °C, 350 °C, and 550 °C respectively.



Figure S4. XRD patterns of Ag/Mn3O4−MnO before and after the catalytic reaction.



Figure S5. TEM image of Ag/Mn3O4−MnO.



Figure S6. The corresponding Mn–O bond force constant of Ag/Mn3O4, 
Ag/Mn3O4−MnO, Ag/MnO.



Figure S7. The full-survey-scan XPS spectrum of Ag/Mn3O4, Ag/Mn3O4−MnO, 

Ag/MnO.



Figure S8. UV-visible absorption spectra of Ag/Mn3O4, Ag/Mn3O4-MnO, Ag/MnO.



Figure S9. The catalytic hydrogen evolution performance of different component materials 
(Ag/Mn3O4-MnO, Ag/SiO2, Mn3O4, Mn3O4-MnO, MnO) and HCHO+H2O (T = 25 °C).



Figure S10. (a) The effect of different metal loading amount on the rate of H2 

evolution within 3 h reaction, (b) Comparison of mass specific activity of H2 evolution 

rate based on silver metal within 3 h reaction, the catalytic reactions were carried 

out with 1 M HCHO at room temperature (25 °C) in N2.



Figure S11. FT-IR spectra of fresh Ag/Mn3O4−MnO samples were collected different 
reaction times during HCHO solution dehydrogenation in the wavenumber range of 
500-4000 cm-1.



Figure S12. DMPO adducts recorded in the presence of (a) HCHO/H2O, (b) Mn3O4, 
Mn3O4−MnO, MnO catalysts. All reactions were conducted in 1 M HCHO solution at 
25 °C.



Figure S13. (a) (Mn8O10)2Ag4 model, (b) (Mn8O10)2Ag4-H2O-H2CO co-adsorption 
(conf#1), with an activation energy of −51.5 kJ mol-1, (c) Co-adsorbed state of H, CHO, 
and H2O (conf#3), the relative energy is −29.2 kJ mol-1, (d) Co-adsorbed state of 2H, 
CHO, and OH (conf#5) ( −72.3 kJ mol-1), (e) Co-adsorbed state of 2H and HCOOH 
(conf#7)( −1.8 kJ mol-1), (f) Co-adsorbed state of 2H and HCOOH (conf#8)(−111.7 kJ 
mol-1). The H atom bonded to Ag atoms is rotated to the H−O side, (g) Final 
configuration of H2 and HCOOH (conf#10) (−45.0 kJ mol-1).



Table S1. Comparisons of the catalysts properties during HCHO reforming reaction 
into H2.

a concentrations of HCHO, b reaction temperature, c reaction time, d the additives 
used in the catalytic systems.

Entry Catalyst [HCHO]/M a T/oC b TOF/h-1 t/h c Additive d Refs.

1 Cu NPs 0.5 18 1.67 3 NaOH Ref.1

2 Pd NPs 0.5 25 47.6 1.67 NaOH Ref.2

3 Ag NPs 0.5 25 62.6 0.83 NaOH Ref.3

4 U/MnO2 1.5 30 2.7 1 NaOH Ref.4

5 Pd/TiO2 0.6 25 71 0.5 NaOH Ref.5

6 Ag NPs/SiO2 1 25 0 3 －

7 AgNPs/Mn3O4-MnO 1 25 22.2 3 －

8 AgNPs/Mn3O4 1 25 0 3 －

This 
work

9 AgNPs/MnO 1 25 0 3 －

10 Mn3O4 1 25 0 3 －

11 MnO 1 25 0 3 －

12 Mn3O4-MnO 1 25 0 3 －
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