Electronic Supplementary Information (ESI)

The Strong Jahn-Teller Distortion in Mn₃O₄-MnO Heterointerface for Enhanced Silver Catalyzed Formaldehyde Reforming into H₂

Xuehan Yu,^a Kaicheng Qian,^a Leilei Du,^a Jiemei Zhang,^a Nan Lu,^a Ziqiang Miao,^a Yuezhou Li,^a Hisayoshi Kobayashi,^b Xiaoqing Yan,^c Renhong Li^{*}^a ^a National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.

^b Emeritus Professor of Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.

^c Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China.

Corresponding Author

*lirenhong@zstu.edu.cn (Renhong Li)

Figure S1. XRD patterns of (a) Ag/Mn₃O₄, Ag/MnO, (b) Mn₃O₄, Mn₃O₄-MnO, MnO.

Figure S2. XRD images of different calcining temperature.

Figure S3. The color contrast before and after loading Ag at the calcination temperature of 150 °C, 350 °C, and 550 °C respectively.

Figure S4. XRD patterns of Ag/Mn_3O_4 -MnO before and after the catalytic reaction.

Figure S5. TEM image of Ag/Mn₃O₄-MnO.

Figure S6. The corresponding Mn–O bond force constant of Ag/Mn_3O_4 , Ag/Mn_3O_4 –MnO, Ag/MnO.

Figure S7. The full-survey-scan XPS spectrum of Ag/Mn₃O₄, Ag/Mn₃O₄–MnO, Ag/MnO.

Figure S8. UV-visible absorption spectra of Ag/Mn₃O₄, Ag/Mn₃O₄-MnO, Ag/MnO.

Figure S9. The catalytic hydrogen evolution performance of different component materials (Ag/Mn₃O₄-MnO, Ag/SiO₂, Mn₃O₄, Mn₃O₄-MnO, MnO) and HCHO+H₂O (T = 25 °C).

Figure S10. (a) The effect of different metal loading amount on the rate of H_2 evolution within 3 h reaction, (b) Comparison of mass specific activity of H_2 evolution rate based on silver metal within 3 h reaction, the catalytic reactions were carried out with 1 M HCHO at room temperature (25 °C) in N₂.

Figure S11. FT-IR spectra of fresh Ag/Mn_3O_4 -MnO samples were collected different reaction times during HCHO solution dehydrogenation in the wavenumber range of 500-4000 cm⁻¹.

Figure S12. DMPO adducts recorded in the presence of (a) HCHO/H₂O, (b) Mn_3O_4 , Mn_3O_4 –MnO, MnO catalysts. All reactions were conducted in 1 M HCHO solution at 25 °C.

Figure S13. (a) $(Mn_8O_{10})_2Ag_4$ model, (b) $(Mn_8O_{10})_2Ag_4$ -H₂O-H₂CO co-adsorption (conf#1), with an activation energy of -51.5 kJ mol⁻¹, (c) Co-adsorbed state of H, CHO, and H₂O (conf#3), the relative energy is -29.2 kJ mol⁻¹, (d) Co-adsorbed state of 2H, CHO, and OH (conf#5) (-72.3 kJ mol⁻¹), (e) Co-adsorbed state of 2H and HCOOH (conf#7)(-1.8 kJ mol⁻¹), (f) Co-adsorbed state of 2H and HCOOH (conf#8)(-111.7 kJ mol⁻¹). The H atom bonded to Ag atoms is rotated to the H–O side, (g) Final configuration of H₂ and HCOOH (conf#10) (-45.0 kJ mol⁻¹).

Entry	Catalyst	[HCHO]/M ª	T∕°C b	TOF/h ⁻¹	t/h ˁ	Additive ^d	Refs.
1	Cu NPs	0.5	18	1.67	3	NaOH	Ref.1
2	Pd NPs	0.5	25	47.6	1.67	NaOH	Ref.2
3	Ag NPs	0.5	25	62.6	0.83	NaOH	Ref.3
4	U/MnO ₂	1.5	30	2.7	1	NaOH	Ref.4
5	Pd/TiO ₂	0.6	25	71	0.5	NaOH	Ref.5
6	Ag NPs/SiO ₂	1	25	0	3	_	
7	AgNPs/Mn ₃ O ₄ -Mn	0 1	25	22.2	3	_	
8	AgNPs/Mn ₃ O ₄	1	25	0	3	_	This work
9	AgNPs/MnO	1	25	0	3	_	
10	Mn ₃ O ₄	1	25	0	3	_	
11	MnO	1	25	0	3	_	
12	Mn₃O₄-MnO	1	25	0	3	_	

Table S1. Comparisons of the catalysts properties during HCHO reforming reaction into H_2 .

a concentrations of HCHO, b reaction temperature, c reaction time, d the additives used in the catalytic systems.

Notes and references

- 1. Y. Bi and G. Lu, *International J Hydrogen Energy*, 2008, **33**, 2225-2232.
- 2. H. Hu, Z. Jiao, J. Ye, G. Lu and Y. Bi, *Nano Energy*, 2014, **8**, 103-109.
- 3. Y. Bi, H. Hu, Q. Li and G. Lu, *J Hydrogen Energy*, 2010, **35**, 7177-7182.
- 4. L. Miao, Q. Nie, J. Wang, G. Zhang and P. Zhang, *Appl Catal B*, 2019, **248**, 466-476.
- 5. S. Li, H. Hu and Y. Bi, *J Mater Chem A*, 2016, **4**, 796-800.