Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2022

**Electronic Supplementary Information** 

## Visible light-induced enzymatic reactions using a NADH regeneration system of water-soluble porphyrin and homogeneously rhodium nanoparticles

Takayuki Katagiri<sup>a</sup> and Yutaka Amao\*<sup>a,b</sup>

a. Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
b. Research Centre for Artificial Photosynthesis (ReCAP), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan

E-mail: amao@osaka-cu.ac.jp

## **Table of contents for Supporting Information**

| Experimental section                                                                       | 2  |
|--------------------------------------------------------------------------------------------|----|
| Fig. S1. TEM images of Rh-PVP                                                              | 3  |
| Fig. S2. UV-Vis absorption spectrum of Rh-PVP.                                             | 3  |
| Fig. S3. Irradiance spectrum of halogen lamp                                               | 4  |
| Fig. S5. Fluorescence spectra of ZnTPPS (1.0 uM) in the presence and absence of Rh-PVP (25 | 50 |
| μM, —red) or NAD <sup>+</sup> (250μM, —blue) in HEPES-NaOH buffer (pH 7.4)                 | 5  |

## Experimental section TEM measurement of Rh-PVP

Transmission electron microscopy (TEM) was conducted to gain morphological information about the Rh nanoparticles in the catalyst. The particle size of Rh-PVP was estimated using TEM Image. For the transmission electron microscopy (TEM) measurements, a drop of the sample solutions was mounted on a carbon-covered copper mesh. The TEM images of Rh-PVP were recorded with a JEM-2100F (JEOL) electron microscope operated at 200 kV.

## Fluorescence quenching behavior of ZnTPPS by Rh-PVP or NAD<sup>+</sup>

Quenching of photoexcited state of ZnTPPS by Rh-PVP or NAD<sup>+</sup> was investigated using steady state fluorescence spectroscopy. The sample solution contined ZnTPPS (1.0  $\mu$ M) and Rh-PVP (250  $\mu$ M) or NAD<sup>+</sup> (1.25 mM) in 50 mM HEPES-NaOH buffer (pH 7.4). The excitation wavelength was 422 nm due to the Soret band of ZnTPPS. The fluorescence emission spectrum of ZnTPPS was measured using a fluorescence spectrophotometer (SHIMADZU, RF-5300PC) with a 150 W Xenon lamp as a visible excitation light source. Excitation and emission band-passes were 5.0 nm.



Fig. S1. TEM images of Rh-PVP.



Fig. S2. UV-Vis absorption spectrum of Rh-PVP.



Fig. S3. Irradiance spectrum of halogen lamp.



Fig. S4. The outline of an experimental setup for NAD<sup>+</sup> regeneration.



Fig. S5. Fluorescence spectra of ZnTPPS (1.0 uM) in the presence and absence of Rh-PVP (250  $\mu$ M, —red) or NAD<sup>+</sup> (250 $\mu$ M, —blue) in HEPES-NaOH buffer (pH 7.4).