Supporting Information for

Ag/AgCl Clusters Derived from AgCu Alloy Nanoparticles as Electrocatalyst for Oxygen Reduction Reaction

Timuçin Balkan^{1,2,3}, Hüseyin Küçükkeçeci², Dilan Aksoy^{1,2}, Messaoud Harfouche⁴, Önder Metin^{1,2,5}, Sarp Kaya^{1,2,5,*}

¹Koç University Tüpraş Energy Center (KUTEM), 34450 Sarıyer, Istanbul, Turkey

²Department of Chemistry, Koç University, 34450 Sarıyer, Istanbul, Turkey

³n²STAR Koç University Nanofabrication and Nanocharacterization Center for Scientific and Technological Advanced Research, 34450 Sariyer, Istanbul, Turkey

⁴Synchrotron-light for Experimental Science and Applications in the Middle East (SESAME), Allan 19252, Jordan

⁵Koç University Surface Science and Technology Center (KUYTAM), 34450 Sarıyer, Istanbul, Turkey

Figure S1. FESEM images of (a) as-prepared, (b) dealloyed, and (c) annealed Ag₇Cu₃ alloy NPs.

Figure S2. Cu 2p spectra of (a) Ag₇Cu₃ and (b) Ag₃Cu₂.

Figure S3. (a-b) Ag 3d and (c) Cl 2p XPS spectral changes upon annealing and dealloying.

Figure S4. EDS analysis of (a) as-prepared and (b) annealed+dealloyed Ag₇Cu₃ NPs.

Table S1: Structural parameters around Ag derived	l from EXAFS data fitting
---	---------------------------

Ag ₇ Cu ₃	Bond	N (atoms)	R (Å)	σ ₂ (Å ²)
Dealloyed+annealed	Ag-Cl	0.12±0.1	1.70 ± 0.002	0.001 ± 0.0001
	Ag-Ag	8.36±0.4	2.74 ± 0.001	$0.0025 \pm 0.0003*$
	Ag-Ag	3.20±0.6	4.18 ± 0.005	$0.0025 \pm 0.0003*$

* parameters correlated

Note: The number of atoms is relative and under-estimated because of the significantly high noise at higher k.

Figure S5. CV curves of Ag_3Cu_2 NPs in (a) N_2 saturated and (b) O_2 saturated 0.1 M KOH. (c) RDE polarization curves of AgCu NPs at 1200 rpm in O_2 saturated 0.1 M KOH. d) Nyquist plots recorded in O_2 saturated 0.1 M KOH under bias (0.83 V_{RHE}). Solid lines represent fitting performed by adopting the equivalent circuit model.

Figure S6. CV curves of Ag NPs in (a) N_2 saturated and (b) O_2 saturated 0.1 M KOH. (c) RDE polarization curves of Ag NPs at 1200 rpm in O_2 saturated 0.1 M KOH. (d) Nyquist plots recorded in O_2 saturated 0.1 M KOH under bias (0.83 V_{RHE}). Solid lines represent fitting performed by adopting the equivalent circuit model.

Figure S7. The equivalent circuit model adopted to determine solution resistance R_s (from R1), charge transfer resistance R_{ct} (from R2), and Warburg resistanceW (from W2).

Table S2. Equivalent circuit modeling data of Ag₇Cu₃ NPs.

Circuit Elements	As-prepared	Dealloyed	Annealed	Annealed+dealloyed
R1 (ohm)	80.6±0.2	72.6±0.2	57±0.2	43.7±0.2
$R2 (R_{ct}) (ohm)$	699.9±1.2	3335±0.4	549.8±14.8	425.4±2.5
Q2 (F. $s^{(a-1)}$)	0.4×10 ⁻³ ±2.8×10 ⁻⁶	0.2×10 ⁻³ ±0.1×10 ⁻⁶	0.8×10 ⁻³ ±13.3×10 ⁻⁶	1×10-3±11.8×10-6
a2	0.9±0.5	0.9±0.5	0.9±0.5	1±0.5
W2 (ohm.s ^{-1/2})	174.6±0.5	-	430.6±0.6	198.3±0.7

Circuit Elements	As-prepared	Dealloyed	Annealed	Annealed+dealloyed
R1 (ohm)	56.7±0.2	78±0.2	48±0.2	76.8±0.2
$R2(R_{ct})$ (ohm)	602.3±15.7	2445±0.4	447.4±37	530.2±1.5
Q2 (F. $s^{(a-1)}$)	0.4×10 ⁻³ ±8.8×10 ⁻⁶	0.2×10 ⁻³ ±0.2×10 ⁻⁶	1.0×10 ⁻³ ±31.7×10 ⁻⁶	0.7×10 ⁻³ ±5.7×10 ⁻⁶
a2	0.9±0.5	0.9±0.5	$0.9{\pm}0.5$	0.9±0.5
W2 (ohm.s ^{-1/2})	589.1±1.4	-	497.7±2.7	114.9±0.6

Table S3. Equivalent circuit modeling data of Ag₃Cu₂ NPs.

Table S4. Equivalent circuit modeling data of Ag NPs.

Circuit Elements	As-prepared	Annealed	Annealed+dealloyed
R1 (ohm)	47.7±0.2	64.4±0.2	44.1±0.2
$R2 (R_{ct}) (ohm)$	3789±10.5	1839±7.4	802±6.9
Q2 (F.s ^(a-1))	0.6×10 ⁻³ ±2×10 ⁻⁶	0.8×10 ⁻³ ±1.4×10 ⁻⁶	1.1×10-3±3.5×10-6
a2	0.9±0.5	0.9±0.5	0.9±0.5
W2 (ohm.s ^{-1/2})	-	73.48±1	52.7±1.2

Figure S8. (a-d) CV curves of dealloyed and dealloyed+annealed Ag_7Cu_3 and Ag with scan rates from 10 mV/s to 60 mV/s.

Figure S9. SAXS pattern of dealloyed+annealed Ag, Ag₇Cu₃, and Ag₃Cu₂ NPs.

Figure S10. Koutecky-Levich plots for (a) Ag, (b) Ag_7Cu_3 , and (c) Ag_3Cu_2 extracted from RDE polarization curves at 0.5 V_{RHE} . Experimental data represents electrocatalysts after annealing+dealloying treatment and were compared with the theoretical calculations assuming 2 and 4 electron transfer processes.

Figure S11. (a) Comparison of RDE curves of annealed+dealloyed Ag₇Cu₃ NPs and commercial Pt/C. Stability test of annealed+dealloyed Ag₇Cu₃ under constant potential in O₂ saturated 0.1 M KOH.

Figure S12. SEM images of annealed+dealloyed Ag₇Cu₃ (a) before and (b) after electrochemical test at 0.8V vs. RHE for 3 hours.

Sample	E _{onset} (V _{RHE})	$E_{1/2}(V_{RHE})$	Study
Ag ₉ Pd ₁ Alloy	1.02	0.89	1
Ag@N-C	0.96	0.82	2
Ag@Ag ₂ WO ₄	0.89	0.66	3
Ag/ZrO ₂ /MWCNT	0.97	0.79	4
CuAg@Ag/N-GNS	0.94	0.85	5
Fe-NC	0.96	0.88	6
Ann.+Dea. Ag ₇ Cu ₃	0.97	0.83	This work

Table S5. Selected onset and half-wave potentials from the literature.

References

- 1X. Qiu, X. Yan, K. Cen, H. Zhang, G. Gao, L. Wu, D. Sun and Y. Tang, *Journal of Energy Chemistry*, 2019, **28**, 111–117.
- 2L. Zhang, X. Wang, T. Zhang, C. Liu, D. Li and S. Xing, *Journal of Alloys and Compounds*, 2019, **785**, 491–498.
- 3K. Nubla and N. Sandhyarani, *Electrochimica Acta*, 2020, 340, 135942.
- 4A. Meng, L. Lin, X. Yuan, T. Shen, Z. Li and Q. Li, ChemCatChem, 2019, 11, 2900–2908.
- 5T. D. Thanh, N. D. Chuong, H. V. Hien, N. H. Kim and J. H. Lee, *ACS Appl. Mater. Interfaces*, 2018, **10**, 4672–4681.
- 6 Y. Wang, Y. Pan, L. Zhu, H. Yu, B. Duan, R. Wang, Z. Zhang and S. Qiu, *Carbon*, 2019, **146**, 671–679.