Supplementary Information

A Multifunctional Separator Modified by Y2O3/C03O4

Heterostructures Boosting Polysulfides Catalytic Conversion for

Advanced Li-S Batteries

Mingkun Zhang,^a Lin Peng,^a Qichong Yuan,^a Liyuan Zheng,^a Yi Wang,^{*b} Aiju Li^{*a} ^a School of Chemistry, South China Normal University, Guangzhou, 510006, China ^b Department of Mechanic and Electronic Engineering, Zhongkai University of Agriculture and Engineering Guangzhou, 510225, China

* Corresponding Author

*E-mail address: liaiju@scnu.edu.cn (A. Li), wangyi163_2001@163.com (Yi Wang).

1.Experimental Section

1.1 Synthesis of Y₂O₃/Co₃O₄/AB and Co₃O₄/AB composite

Cobalt acetate tetrahydrate (II) and yttrium nitrate hexahydrate (III) were purchased from Aladdin Reagent Co., LTD. (Shanghai, China), and acetylene black was obtained

from Power Source Battery Material Co., LTD. (Shanxi, China).

 $Y_2O_3/Co_3O_4/AB$ composite was made by a simple one-pot process. 1 g cobalt acetate tetrahydrate (II), 0.255 g yttrium nitrate hexahydrate (III) and 3 g urea were added into 80 ml deionized water. After that, the prepared solution was stirred magnetically for 1 h to mix and dissolve and then transferred to a 100 ml teflon reactor at 180 °C for 12 h. Then, the reactant solution was washed with deionized water and anhydrous ethanol and pumped to collect the precipitate. Afterwards, the precipitate was calcined in a tube furnace at 800 °C under an air atmosphere for 2 h to obtain the Y_2O_3/Co_3O_4 composite. Next, the obtained composite and acetylene black were added into anhydrous ethanol in a ratio of 4:6 for ultrasonic dispersion and stirring for 2 h. Finally, the $Y_2O_3/Co_3O_4/AB$ composite was obtained by filtration and drying at 60 °C for 10 h.

The synthesis process of Co_3O_4/AB composite was basically same as $Y_2O_3/Co_3O_4/A$ B composite except that yttrium nitrate hexahydrate (III) was not added at the beginni ng.

1.2 Material characterizations

The morphology and microstructure of $Y_2O_3/Co_3O_4/AB$ were measured by scanning electron microscope (SEM,) and transmission electron microscope (TEM, FEI Talos F200X, UAS). The crystal pattern of $Y_2O_3/Co_3O_4/AB$ and Co_3O_4/AB was gauged by X-ray diffraction (XRD, Rigaku Ultima IV) at 10-80° with the help of Cu Ka radiation. The specific surface area and pore size of $Y_2O_3/Co_3O_4/AB$, Co_3O_4/AB and AB were tested by Brunauer-Emmett-Teller method (BET, ASAP 2460). The AB content in the $Y_2O_3/Co_3O_4/AB$ and Co_3O_4/AB composite were obtained by thermogravimetric analysis (TGA, NETZSCH TG 209 F3). The chemical states of $Y_2O_3/Co_3O_4/AB$ were carried out by X-ray photoelectron spectroscopy (XPS, AXIS SUPRA).

1.3 Preparation of Y₂O₃/Co₃O₄/AB, Co₃O₄/AB and AB modified

separator

The modified separator was prepared by simple coating method. 80 wt% $Y_2O_3/Co_3O_4/AB$ composite and 20 wt% poly(vinylidene difluoride)(PVDF) were mixed uniformly in N-methy pyrrolidinone (NMP) .Then the slurry was coated onto the one side of blank Celgard 2400 separator. Next, the separator with $Y_2O_3/Co_3O_4/AB$ composite was dried in an oven at 60 °C for 12 h. Finally, the $Y_2O_3/Co_3O_4/AB$ modified separator was cut into wafers with a diameter of 19 mm to assemble coin cell. The fabrication of Co_3O_4/AB and AB modified separator was similar with the above. The separator loading containing material is approximately 0.26 mg cm⁻².

1.4 Preparation of sulfur cathode

First of all, 70 wt% powdered sulfur, 20 wt% AB and 10 wt% PVDF were mixed uniformly in NMP and stirring for 12 h under room temperature. Then the slurry was coated onto the one side of aluminum foil and then dried in oven at 60 °C for 12 h. Finally, the obtained cathode was cut into wafers with a diameter of 8 mm to assemble coin cell. The sulfur cathode loading is approximately 1-7 mg cm⁻².

1.5 Visual absorption measurement

Firstly, S and Li₂S were mixed up into the isometric DOL and DME with a molar ration of 5:1 to obtain 1.5 mM Li₂S₆ solution. Then, the $Y_2O_3/Co_3O_4/AB$, Co_3O_4/AB and AB composite with the same specific surface area were weighed and added to the same volume of 1.5 mM Li₂S₆ solution. Finally, the supernatant solution was

extracted to carry out UV-Visible spectrum after 24h.

1.6 Symmetric cell experiment

80 wt% $Y_2O_3/Co_3O_4/AB$ (Co₃O₄/AB or AB) and 20 wt% PVDF were dissolved into NMP to obtained a uniform slurry. Then the slurry was coated onto the aluminum foil. The foil was dried in an oven at 60 °C for 12 h and cut into wafers with a diameter of 8 mm. S and Li₂S were mixed with a molar ration of 5:1 into bis(trifluoromethanesulfonyl)imide lithium (LiTFSI) in 1,3-dioxolane (DOL) and 1,2dimethoxyethane (DME) (v/v=1:1) to obtain 0.5 M Li₂S₆ solution. The symmetric cell was assembled by identical cathode and anode which is the Y₂O₃/Co₃O₄/AB composite foil above with the electrolyte was 0.5 M Li₂S₆ solution above in an Arfilled glove box. The cyclic voltage (CV) measurements were carried out at a scan rate of 10 mV/s from -0.6 V to 0.6 V.¹

1.7 The nucleation and dissolution experiment of Li₂S

Li₂S nucleation measurement: S and Li₂S were dissolved with a molar ration of 5:1 in DME/DOL (v/v = 1/1) under stirring continuously for 24 h to obtain the 0.2 M Li₂S₈ solution. Then the slurry containing 90 wt% Y₂O₃/Co₃O₄/AB (Co₃O₄/AB or AB) and 10 wt% PVDF was dissolved into NMP was coated onto the carbon cloth. After 60 °C for 12 h in oven, the carbon cloth was cut into wafers with a diameter of 8 mm as the working electrode, and the lithium foil was used as the counter electrode with the blank Celgard 2400 separator. Notably, 20 μ L 0.2 M Li₂S₈ solution as the catholyte was instilled on the cathode side, 20 μ L DME/DOL (v/v = 1/1) solution as the anolyte was added on the anode side. Potentiistatic intermittent titration technique (PITT) measurements were gauged on a CHI660E electrochemical workstation. Firstly, the as-assembled cell was galvanostatically discharged at 0.112 mA until the voltage reduced to 2.06 V. Then the cell was potentiostatically discharged at 2.05 V until the current lessened to 10⁻⁵ A.

 Li_2S dissolution measurement: The as-assembled cell was galvanostatically discharge at 0.112 mA until the potential decrease to 1.7 V. Then the cell was potentiostatically charged at 2.4 V until the current was reduced to 10^{-5} A.^{2,3}

1.8 Electrochemical measurements

CR 2032 cells were assembled using the above cathode, the as-prepared modified separators ($Y_2O_3/Co_3O_4/AB$, Co_3O_4/AB and AB) and the lithium metal foil as anode in an Ar-filled glove box (O_2 , $H_2O < 0.01$ ppm). The electrolyte made of 1 M LiTFSI dispersed in DOL/DME (v/v=1:1) with an additive of 0.1 M LiNO₃. The galvanostatic discharge/charge measurement was gauged by the Neware battery test system. The cyclic voltage (CV) measurements at the scanning rate of 0.1-1.0 mV s⁻¹ in potential from 1.8 to 2.8 V (vs. Li/Li⁺). The frequency range of electrochemical impedance spectroscopy (EIS) test was from 100 KHz to 0.01 Hz. The CV and EIS tests were analyzed by the CHI660E electrochemical workstation.

Figure.S1. Pore size distribution of Y₂O₃/Co₃O₄/AB, Co₃O₄/AB and AB.

Figure.S2. XPS survey spectra of Y₂O₃/Co₃O₄/AB.

Figure.S3. Linear relationship between peak current I_p and the square root of scan rate $v^{0.5}$ of (a)Y₂O₃/Co₃O₄/AB, (b)Co₃O₄/AB and (c)AB.

Figure.S4. Comparison of diffusion coefficients at different peak currents of $Y_2O_3/Co_3O_4/AB$, Co_3O_4/AB and AB.

Figure.S5. t_{Li^+} of (a)Y₂O₃/Co₃O₄/AB, (b)Co₃O₄/AB and (c)AB.

Separator	$I_0/\mu A$	$I_{\rm s}/\mu{ m A}$	$\Delta V / \mathrm{mV}$	R_0/Ω	$R_{ m s}/\Omega$	$t_{\rm Li^+}$
PP	13	1.2	10	220	300	0.07
AB	193	93	10	41	53	0.20
Co ₃ O ₄ /AB	124	56	10	22	30	0.39
$Y_2O_3/Co_3O_4/AB$	290	150	10	13	15	0.42

Table S1. *t*_{Li+} of Y₂O₃/Co₃O₄/AB, Co₃O₄/AB and AB

Figure.S6. The specific capacity of cell with the $Y_2O_3/Co3O_4/AB$ heterostructure as the electrode and the lithium foil as the counter electrode.

Reference

- C.-X. Zhao, X.-Y. Li, M. Zhao, Z.-X. Chen, Y.-W. Song, W.-J. Chen, J.-N. Liu, B. Wang, X.-Q. Zhang, C.-M. Chen, B.-Q. Li, J.-Q. Huang and Q. Zhang, *J. Am. Chem. Soc.*, 2021, 143, 19865-19872.
- T. T. Sun, X. M. Zhao, B. Li, H. B. Shu, L. P. Luo, W. L. Xia, M. F. Chen, P. Zeng, X. K. Yang, P. Gao, Y. Pei and X. Y. Wang, *Adv. Funct. Mater.*, 2021, 31, 2101285-2101296.
- 3. F. Y. Fan, W. C. Carter and Y. M. Chiang, Adv. Mater., 2015, 27, 5203-5209.