Improving the electron transfer in oxygen reduction reaction by N/S

co-doping for high-performance of Zn-air batteries

Jiawei Wei[‡], Ping Li[‡], Jing Shi, Minghua Huang, Weiqian Tian^{*}, Huanlei Wang^{*} School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P.R. China.

E-mail: huanleiwang@gmail.com; tianweiqian@ouc.edu.cn

‡ These co-first authors contributed equally to this work.

Electrochemical measurements

The electron transfer numbers (n) were calculated by the K-L equations as follows

$$\frac{1}{j} = \frac{1}{j_L} + \frac{1}{j_K} = \frac{1}{B\omega^{0.5}} + \frac{1}{j_K}$$
$$B = 0.62nFC_0 D_0^{\frac{2}{3}} V^{-\frac{1}{6}}$$

where *j* is the measured current density, j_K and j_L are the kinetic and limiting current densities, ω is the angular velocity of the disk, *n* is the overall number of electrons transferred in oxygen reduction, *F* is the Faraday constant (96485 C mol⁻¹), C_0 is the bulk concentration of O₂ (1.2 × 10⁻⁶ mol cm⁻³), D_0 is the diffusion coefficient of O₂ in 0.1 M KOH (1.9 × 10⁻⁵ cm² s⁻¹), and *V* is the kinematic viscosity of the electrolyte (0.01 cm² s⁻¹).

For the RRDE test, the disk electrode was scanned at a rate of 10 mV s⁻¹ at a rotating speed of 1600 rpm, and the ring potential was kept at 1.4 V versus RHE. The peroxide percentage (H₂O₂%) and the electron transfer number (*n*) were determined by the following equations

$$H_2 O_2 = \frac{200 \times I_r}{N \times I_d + I_r}$$
$$n = \frac{4 \times I_d}{I_d + \frac{I_r}{N}}$$

where I_d is disk current, I_r is ring current, and N is current collection efficiency of the Pt ring. N was determined to be 0.37.

Fig. S1 SEM of NSC-800

Fig. S2 SEM of SC-800

Fig. S3 SEM of NC-800

Fig. S4 DTG curves of carrageenan with melamine; carrageenan and melamine.

Fig. S5 CV tests for NSC-800, SC-800, NC-800, and Pt/C under Ar and O_2 saturated 0.1 m KOH.

Fig. S6 CV curves in the region of 1.0-1.1 V at scan rates from 2 to 12 mV s⁻¹ for (a) NSC-800, (b) SC-800, (c) NC-800, and (d) NC-800-KOH.

Fig. S7 Linear fitting of capacitive current for NSC-800, SC-800, NC-800 and NC-

800-KOH.

Fig. S8 Nyquist plots of NSC-800, SC-800 and NC-800, with the inset showing the equivalent circuit for fitting the experimental data.

Fig. S9 SEM image of NC-800-KOH

Fig. S10 (a) Nitrogen adsorption and desorption isotherms, and (b) pore size distribution curve of NC-800-KOH

Fig. S11 (a) XPS survey spectra. High-resolution XPS spectra of (b) C 1s and (c) N 1s peaks for NC-800-KOH.

Fig. S12 CV tests for NC-800-KOH under Ar and O_2 saturated 0.1 M KOH.

Fig. S13 ORR polarization curves for NC-800-KOH.

Fig. S14 H_2O_2 yield together with the electron transfer numbers for NC-800-KOH.

Fig. S15 The galvanostatic discharge-voltage curve of aqueous ZAB with NSC-800 at 50 and 100 mA cm⁻².

Fig. S16 The galvanostatic discharge-voltage curve of aqueous ZAB with NSC-800 at

10 mA cm⁻².

sample	$S_{ m BET}$	$V_{\rm P} ({\rm cm}^3~{\rm g}^{-1})$	pore volume (%)		
	$(m^2 g^{-1})$		pore < 2nm	pore > 2nm	
NSC-800	1069.4	0.88	63.55	36.45	
SC-800	1775.8	2.03	35.70	64.30	
NC-800	337.8	0.33	63.23	36.77	
NC-800-KOH	1220.3	1.12	41.58	58.42	

Table S1 Physical properties of NSC-800, SC-800, NC-800 and NC-800-KOH.

 Table S2 Elemental composition of different samples from XPS spectra.

	-	-	
sample	C /at. %	N /at. %	S /at. %
NSC-800	85.32	8.88	0.57
SC-800	94.10		0.86
NC-800	82.91	10.60	
NC-800-KOH	87.05	8.83	

Table S3 The content of surface carbon species in different samples from high-

Sample	sp ² C /C _{total} (%)	sp ³ C /C _{total} (%)	C-N /C _{total} (%)	C-S /C _{total} (%)	C-O /C _{total} (%)	C-O=C /C _{total} (%)
NSC-800	59.88	13.17	10.18	4.79	5.39	6.59
SC-800	66.23	13.25		9.27	3.97	7.28
NC-800	60.24	10.84	12.05		13.25	3.62
NC-800-	67 11	0.40	0.40		0.72	5 27
КОН	0/.11	9.40	9.40		8.72	3.37

resolution C1s XPS spectra.

Sample	pyridinic-N /N _{total} (%)	pyrrolic-N /N _{total} (%)	graphitic-N /N _{total} (%)	N-oxides /N _{total} (%)
NSC-800	35.69	39.22	18.82	6.27
NC-800	38.61	32.43	21.62	7.34
NC-800-	22.00	22.24	21.77	11.00
КОН	55.00	55.54	21.07	11.99

Table S4 The content of surface nitrogen species in different samples from high-resolution N1s XPS spectra.

Table S5 The content of surface sulfur species in different samples from high-resolution S2p XPS spectra.

Sample	S 2p _{3/2} /S _{total} (%)	S 2p _{1/2} /S _{total} (%)	S-oxides /S _{total} (%)
NSC-800	57.14	29.14	13.72
SC-800	60.98	31.10	7.92

sample	E _{onset} (V)	E _{1/2} (V)	Ref.
NSC-800	0.980	0.890	This work
CMD-900-4	0.930	0.850	1
NVG-30	0.910	0.800	2
NBCNT-10	0.958	0.820	3
NFPC-1100	0.960	0.850	4
NOPHC ₁₀ -900	0.900	0.770	5
HPNHC	0.980	0.870	6
C_{KI}	0.944	0.828	7
N,P-HCNF-8	0.930	0.820	8
N-CNSP	0.960	0.850	9
N-GPp	0.960	0.830	10
h-NCT-900	0.970	0.863	11
Fe SA-NSC-900	0.940	0.860	12
FeCo-N-HCN	0.980	0.860	13
CoN-PCNS	0.930	0.860	14

Table S6 The electrocatalytic activities of the recently reported metal-free and transition-metal catalysts for ORR in the 0.1M KOH solutions.

Table S7 EIS spectra fitting results for NSC-800, SC-800 and SC-800.

sample	$R_{s} \left(\Omega \text{ cm}^{-2}\right)$	$R_{ct} \left(\Omega \text{ cm}^{-2}\right)$
NSC-800	2.94	130.5
SC-800	3.49	132.4
NC-800	3.01	141.4

, , , , , , , , , , , , , , , , , , , ,		5	
Electrode material	OCP(V)	Power Density (mW cm ⁻²)	Ref.
NSC-800	1.530	166.05	This work
DAP ₁ -NDA _{0.5} -DBU _{0.5}	1.480	149.00	15
N,P-FC	1.420	148.30	16
NPS-G-2	1.372	151.00	17
1100-CNS	1.490	151.00	18
NFGD	1.180	86.00	19
N,P-NC-1000	1.480	146.00	20
CoS _x /Co-NC-800	1.400	103.00	21
Fe _{Fe-O-Fe-} UP/CA	1.490	140.10	22
Fe-N-HPC	1.480	164.80	23
4Fe ₃ O ₄ @PCN-800	1.423	156.80	24
MNSs@NGA	1.520	115.00	25
Fe ₃ C-FeN/NC-2	1.410	166.00	26
g-SA-Mn-900	1.442	147.00	27

Table S8 The OCP and peak power density of the reported Zn-air batteries prepared bythe ORR catalyst using liquid alkaline electrolytes.

References

- 1 Z. Xing, R. Jin, X. Chen, B. Chen, J. Zhou, B. Tian, Y. Li and D. Fan, *Chem. Eng. J.*, 2021, **410**, 128015.
- 2 Z. Wu, Y. Zhang, L. Li, Y. Zhao, Y. Shen, S. Wang and G. Shao, *J. Mater. Chem. A*, 2020, **8**, 23248-23256.
- 3 P. Wei, X. Li, Z. He, X. Sun, Q. Liang, Z. Wang, C. Fang, Q. Li, H. Yang, J. Han and Y. Huang, *Chem. Eng. J.*, 2021, **422**, 130134.
- 4 Y.-N. Sun, J. Yang, X. Ding, W. Ji, A. Jaworski, N. Hedin and B.-H. Han, *Appl. Catal. B: Environ.*, 2021, **297**, 120448.
- 5 S. Huang, Y. Meng, Y. Cao, S. He, X. Li, S. Tong and M. Wu, *Appl. Catal. B: Environ.*, 2019, **248**, 239-248.
- 6 Y. Cheng, Y. Wang, Q. Wang, Z. Liao, N. Zhang, Y. Guo and Z. Xiang, *J. Mater. Chem. A*, 2019, **7**, 9831-9836.
- 7 W.-J. Liu, Y.-Q. Wen, J.-W. Wang, D.-C. Zhong, J.-B. Tan and T.-B. Lu, *J. Mater. Chem. A*, 2019, **7**, 9587-9592.
- Y. Gao, Z. Xiao, D. Kong, R. Iqbal, Q.-H. Yang and L. Zhi, *Nano Energy*, 2019, 64, 103879.
- 9 L. Zong, W. Wu, S. Liu, H. Yin, Y. Chen, C. Liu, K. Fan, X. Zhao, X. Chen, F. Wang, Y. Yang, L. Wang and S. Feng, *Energy Storage Mater.*, 2020, 27, 514-521.
- 10 N. Komba, Q. Wei, G. Zhang, F. Rosei and S. Sun, *Appl. Catal. B: Environ.*, 2019, **243**, 373-380.
- 11 L. Zhao, X.-L. Sui, Q.-Y. Zhou, J.-Z. Li, J.-J. Zhang, G.-S. Huang and Z.-B. Wang, J. Mater. Chem. A, 2018, 6, 6212-6219.
- 12 M. Wang, W. Yang, X. Li, Y. Xu, L. Zheng, C. Su and B. Liu, *ACS Energy Lett.*, 2021, **6**, 379-386.
- 13 H. Li, Y. Wen, M. Jiang, Y. Yao, H. Zhou, Z. Huang, J. Li, S. Jiao, Y. Kuang and S. Luo, *Adv. Funct. Mater.*, 2021, **31**, 2011289.
- 14 Y. Chen, X. Li, W. Liao, L. Qiu, H. Yang, L. Yao and L. Deng, *J. Mater. Chem. A*, 2021, **9**, 3398-3408.
- 15 D. Lyu, S. Yao, Y. Bahari, S. W. Hasan, C. Pan, X. Zhang, F. Yu, Z. Q. Tian and P. K. Shen, *Appl. Mater. Today*, 2020, **20**, 100737.
- 16 X. Xue, H. Yang, T. Yang, P. Yuan, Q. Li, S. Mu, X. Zheng, L. Chi, J. Zhu, Y. Li, J. Zhang and Q. Xu, J. Mater. Chem. A, 2019, 7, 15271-15277.
- 17 X. Zheng, J. Wu, X. Cao, J. Abbott, C. Jin, H. Wang, P. Strasser, R. Yang, X. Chen and G. Wu, *Appl. Catal. B: Environ.*, 2019, **241**, 442-451.
- 18 Z. Pei, H. Li, Y. Huang, Q. Xue, Y. Huang, M. Zhu, Z. Wang and C. Zhi, *Energy Environ. Sci.*, 2017, 10, 742-749.
- 19 S. Zhang, Y. Cai, H. He, Y. Zhang, R. Liu, H. Cao, M. Wang, J. Liu, G. Zhang, Y. Li, H. Liu and B. Li, *J. Mater. Chem. A*, 2016, 4, 4738-4744.
- H. Luo, W.-J. Jiang, Y. Zhang, S. Niu, T. Tang, L.-B. Huang, Y.-Y. Chen, Z. Wei and J.-S. Hu, *Carbon*, 2018, **128**, 97-105.
- 21 Q. Lu, J. Yu, X. Zou, K. Liao, P. Tan, W. Zhou, M. Ni and Z. Shao, Adv. Funct.

Mater., 2019, 29, 1904481.

- 22 J. Shi, X. Shu, C. Xiang, H. Li, Y. Li, W. Du, P. An, H. Tian, J. Zhang and H. Xia, *J. Mater. Chem. A*, 2021, **9**, 6861-6871.
- 23 D. Wang, H. Xu, P. Yang, L. Xiao, L. Du, X. Lu, R. Li, J. Zhang and M. An, *J. Mater. Chem. A*, 2021, **9**, 9761-9770.
- 24 H.-M. Zhang, Y. Zhao, Y. Zhang, M. Zhang, M. Cheng, J. Yu, H. Liu, M. Ji, C. Zhu and J. Xu, *Chem. Eng. J.*, 2019, **375**, 122058.
- 25 H. Zhao, R. Jiang, Y. Zhang, B. Xie, J. Fu, X. Yuan, W. Yang, Y. Wu and R. Zhang, J. Mater. Chem. A, 2021, 9, 5848-5856.
- F. Zhou, P. Yu, F. Sun, G. Zhang, X. Liu and L. Wang, J. Mater. Chem. A, 2021, 9, 6831-6840.
- 27 Q. Zhou, J. Cai, Z. Zhang, R. Gao, B. Chen, G. Wen, L. Zhao, Y. Deng, H. Dou, X. Gong, Y. Zhang, Y. Hu, A. Yu, X. Sui, Z. Wang and Z. Chen, *Small Methods*, 2021, 5, 2100024.