Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2022

Supporting information

Well-controlled Pt-CeO₂-nitrogen doped carbon triple-junction catalysts with enhanced activity and durability for oxygen reduction reaction

Qizi Lu,[#] Zhili Wang,[#] Yuanting Tang, Chaojun Huang, Aimin Zhang, Feng Liu,

Xiao Liu,^{*} Bin Shan, Rong Chen,^{*}

Qizi Lu and Zhili Wang contributed equally to this work.

* Corresponding authors: <u>xiaoliu@hust.edu.cn</u> (Xiao Liu); <u>rongchen@mail.hust.edu.cn</u> (Rong Chen)

Fig. S1. TEM images of different contents of CeO₂ on the nitrogen-doped carbon (NC) substrate. (a) 0.2CeO₂/NC, (b) 0.3CeO₂/NC, (c) 1.0CeO₂/NC. The average size of CeO₂ on the surface of NC became larger with the increase of the mass ratio of CeO₂ and NC. High resolution TEM images of (d) 0.2CeO₂/NC, (e) 0.3CeO₂/NC, (f) 1.0CeO₂/NC. The specific lattice fringe of 0.31 nm corresponding to CeO₂(111) was labeled.

Fig. S2. TEM and HADDF images of (a-b) 0.3CeO₂/C; (c-d) Pt/0.3CeO₂/C.

Fig. S3. LSV curves of Pt/NC, Pt/C, Pt/0.3CeO₂/NC, Pt/0.3CeO₂/C and commercial Pt/C for ORR obtained at a rotating rate of 1600 rpm in 0.1 M HClO₄ solution.

Fig. S4. Electrochemical performance test. Cyclic voltammogram (CV) curves of the catalysts $Pt/xCeO_2/NC$ (x = 0.2, 0.3, 1.0) and commercial Pt/C in N₂-saturated and O₂-saturated 0.1 M HClO₄ solution. The electrochemical measurements were performed in a CHI 760E electrochemical workstation from 0 to 1.2 V vs. RHE with scan rate of 50 mV s⁻¹.

Fig. S5. Linear scan voltammetry (LSV) curves from 400 to 2500 rpm and the corresponding K-L curves of ((a) and (b)) $Pt/0.2CeO_2/NC$, ((c) and (d)) $Pt/0.3CeO_2/NC$, ((e) and (f)) $Pt/1.0CeO_2/NC$ and ((g) and (h)) commercial Pt/C from 0 to 1.2 V vs. RHE with scan rate of 10 mV s⁻¹ in O₂-saturated 0.1 M HClO₄ solution.

Fig. S6. The ring and disk LSV curves on RRDE of ((a) and (b)) Pt/0.3CeO₂/NC ((c) and (d)) commercial Pt/C in O₂-saturated 0.1 M HClO₄ solution at 400-2500 rpm.

Fig. S7. Accelerated durability test CV curves of the catalyst $Pt/0.3CeO_2/NC$ in O_2 -saturated 0.1 M HClO₄ solution after 10000 cycles of ADT at 0.6-1.0 V *vs*. RHE with the scanning rate of 100 mV s⁻¹.

Fig. S8. Accelerated durability test CV curves of commercial Pt/C in O_2 -saturated 0.1 M HClO₄ solution after 5000 cycles of ADT at 0.6-1.0 V *vs*. RHE with the scanning rate of 100 mV s⁻¹.

Fig. S9. TEM image of (a) commercial Pt/C; (b) commercial Pt/C after 10000 cycles ADT with corresponding size distribution is inserted.

Table S1. The ratios of different valence states of O 1s, Ce 3d and Pt 4f for the catalysts $Pt/xCeO_2/NC$ (x = 0.2, 0.3, 1.0), 0.3CeO_2/NC and Pt/NC. The XPS spectra of O 1s were split into three O species including O_a (lattice oxygen), O_b (chemically adsorbed oxygen), and O_c (physically adsorbed oxygen), respectively. And the relative content of O_b has a positive influence on the ORR performance. The XPS spectra of Ce 3d were split to Ce³⁺ and Ce⁴⁺ into the prepared catalysts, the presences of which help with the swift transition of electrons. The XPS spectra of Pt 4f were split into Pt⁴⁺, Pt²⁺and Pt⁰. The content of Pt²⁺ in Pt/0.3CeO_2/NC is larger than that of Pt/0.2CeO_2/NC and Pt/1.0CeO_2/NC.

		Pt/0.2CeO2/NC	Pt/0.3CeO2/NC	Pt/1.0CeO ₂ /NC	0.3CeO ₂ /NC	Pt/NC
O 1s	Oa	16.46%	10.39%	20.43%	18.64%	/
	O_{b}	56.80%	70.79%	54.51%	60.14%	/
	Oc	26.74%	18.82%	25.06%	21.22%	/
Ce 3d	Ce ³⁺	40.79%	59.75%	51.35%	44.4%	/
	Ce ⁴⁺	59.21%	40.25%	48.65%	55.6%	/
Pt 4f	Pt ⁰	27.55%	21.46%	30.10%	/	44.15%
	Pt^{2+}	58.18%	68.07%	57.05%	/	41.63%
	Pt ⁴⁺	14.27%	10.47%	12.85%	/	14.22%

 $HCIO_4$ solution. MA is the mass activity at 0.9 V vs. RHE. $E_{1/2}$ Pt MA Jm Catalyst loading (V (mA cm⁻²) $(mA mg_{Pt}^{-1})$ (µg cm⁻²) vs. RHE) Pt/NC 47.8 10.02 0.757 6.15

0.846

0.876

0.834

0.872

5.57

6.65

4.78

5.64

6.2

4.98

5.42

20

188.8

593.6

104.1

97.0

Pt/0.2CeO2/NC

Pt/0.3CeO₂/NC

Pt/1.0CeO₂/NC

Commercial Pt/C

Table S2. The ORR performance of the prepared catalysts. Pt loading is the specific
figure of the relative content of Pt on the working electrode. $E_{1/2}$ represents the half-
wave potential and J_m is the limited diffusion current density in O ₂ -saturated 0.1 M
$HClO_{\rm solution}$ MA is the mass activity at 0.0 V vs. PHF

Catalysts	Pt loading (µg cm ⁻²)	E _{1/2} (V)	MA (mA mg ⁻¹)	$\Delta E_{1/2}$ after ADT	ADT (cycles)	Ref.	
Pt/0.3CeO ₂ /NC	4.98	0.876	593.6	5mV	10000	This	
Pt/C	20	0.872	97.0	43mV	10000	work	
Pt/CeO ₂ /CNT-A	26.2	0.865	186	7mV	5000	[1]	
Pt/CeO ₂ /CNT-W	39.3	0.85	396	22mV	5000		
Pt-CeO ₂ -CN	20.4	0.79	122.5	/	/	[2]	
Pt@CeO ₂ @CNT	120	0.884	/	16mV	2000	[3]	
Pt/20CeO ₂ /C	17	0.86	52.09	/	/	[4]	
Pt-CeO ₂ -C	20	0.86	165	30	6000	[5]	
Pt-CeO _x NW/C	5.6	0.75	159	/	/	[6]	
20Pt-10CeO ₂ /C	2038	0.785	/	/	/	[7]	

Table S3. The performance comparison towards ORR of the Pt/CeO_2 catalysts in the relative references with our prepared catalysts.

References

- 1 J. Chen, Z. Li, Y. Chen, J. Zhang, Y. Luo, G. Wang, R. Wang, *Chem. Phys. Letters*, 2020, **755**, 137793.
- 2 W. Wang, Y. Dong, Y. Yang, D. Chai, Y. Kang, Z. Lei, *Int. J. Hydrogen Energy*, 2018, **43**, 12119-12128.
- 3 K.R. Yoon, J.M. Kim, K.A. Lee, C.K. Hwang, S.G. Akpe, Y.J. Lee, J.P. Singh, K.H. Chae, S.S. Jang, H.C. Ham, J.Y. Kim, *J. Power Sources*, 2021, **496**, 229798.
- 4 F. Xu, D. Wang, B. Sa, Y. Yu, S. Mu, Int. J. Hydrogen Energy, 2017, 42, 13011-13019.
- 5 C. Du, X. Gao. C. Cheng, Z. Zhuang, X. Li, W. Chen, *Electrochim. Acta*, 2018, **266**, 348-356.
- 6 S. Chauhan, T. Mori, T. Masuda, S. Ueda, G.J. Richards, J.P. Hill, K. Ariga, N. Isaka,
 G. Auchterlonie, J. Drennan, ACS Appl. Mater. Interfaces, 2016, 8, 9059-9070
- 7 D.H. Lim, W.D. Lee, D.H. Choi, H.I. Lee, Appl. Catal. B: Environ., 2010, 94, 85-96.