Plasmonic Au Nanoparticles Sandwiched CuBi2O4/Sb2S3 Photocathode with Multi-Mediated Electron Transfer for Efficient Solar Water Splitting

Mohit Kumar¹, Chandi Charan Ghosh¹, Bhagatram Meena¹, Tianyi Ma^{2,*} Challapalli Subrahmanyam^{1,*}

¹Department of Chemistry, Indian Institute of Technology Hyderabad, Hyderabad, Telangana, 502285, India

²Centre for Translational Atomaterials, Swinburne University of Technology, John Street,

Hawthorn, VIC 3122, Australia

³School of Science, RMIT University, Melbourne, VIC 3000, Australia

*Corresponding author:

Challapalli Subrahmanyam, Tel: +91-40-23016253, Email address: csubbu@iith.ac.in

Tianyi Ma, Email: tianyima@swin.edu.au

1.1 Materials and chemicals

Copper nitrate trihydrate(Cu(NO₃)₂.3H₂O), Bismuth nitrate pentahydrate(Bi(NO₃)₃.5H₂O), Chloroauric acid(HAuCl₄), Antimony chloride(SbCl₃), and FTO-coated glass(13 Ω sq⁻¹) were purchased from Sigma Aldrich and used as received. Cetyltrimethylammonium bromide (CTAB) was purchased from Loba Chemie PVT. LTD. AgNO₃, Na₂S₂O₃.3H₂O procured from Fisher Scientific. Ascorbic acid and anhydrous Na₂SO₄ were purchased from Avra Synthesis PVT. LTD.

1.2 Characterization

Crystal structure and phase identification of the as-prepared samples were examined by X-ray diffraction technique(XRD, Rigaku Pro, Cu K α radiation $\lambda = 1.5406$ Å, 40kV, 200 mA) over a Bragg's angle of $20 \le 2\theta \le 70^\circ$. The Field emission-scanning electron microscope (FE-SEM) (JEOL JSM 7800 FE-SEM) was used to characterize the morphological and compositional aspects of the samples. A transmission electron microscope(TEM) (JEOL F200) was used to measure the insights of the composite and crystalline morphology of the samples. Highresolution transmission microscopy(HRTEM) images, Scanning tunneling microscopic(STEM) micrographs, and selective area electron diffraction(SAED) tests were carried out at an acceleration voltage of 200 kV. The energy-dispersive X-ray mapping(EDX) was obtained on JEOL JSM 7800 FE-SEM. The UV-Vis absorption spectrum was acquired by a UV-Vis spectrophotometer (T90+, PG Instruments). The XPS scans were performed using an (AXIS Supra-Kratos analytical) spectrophotometer having a monochromatic X-ray source, Al Ka, of 1486.6 eV to measure the composition and oxidation state. The photoluminescence spectra of thin films were obtained from Horriba spectrophotometer to observe the recombination profile of the fabricated electrodes. IPCE measurements were done in Oriel IQE-200 in unbiased condition. Hydrogen gas was evaluated using a gas chromatograph(Mayura Analytical) equipped with a TCD detector.

1.3 Photoelectrochemical measurement

PEC measurements were performed in a three-electrode configuration using PGSTAT302N workstation(Metrohm instruments) for the with a Pt wire and saturated Ag/AgCl electrode as

counter electrode(CE) and reference electrode(RE), respectively. The working electrodes(WE) were having materials coated over FTO and these WE were illuminated with AM1.5 simulated solar light generated from a 150 W LED source, the incident light was calibrated to 100 mW.cm⁻². The photoelectrodes were illuminated from the front side with an area of 0.25 cm² exposed to illumination. Electrochemical impedance spectroscopy(EIS) measurements were performed at 0 V vs RHE with an AC amplitude of 5 mV and a frequency region from 0.1 Hz to 1 MHz in a 0.5 M Na₂SO₄ solution. H₂SO₄(pH=1) was used as an electrolyte for electrochemical measurements in acidic medium. All the potentials were converted to reversible hydrogen electrode (RHE) scale using the following equation:

$$E(V \text{ vs RHE}) = E(V \text{ vs Ag/AgCl}) + 0.197 + 0.059 \text{ pH}$$

Fig.S1 (a) XRD pattern of CuBi₂O₄ film with JCPDS #72-0493. (b) PXRD pattern of Au NPs with JCPD #04-0784. (c) XRD pattern of Sb₂S₃ with JCPDS #78-1347.

Fig.S2 TEM micrograph of (a) $CuBi_2O_4$; (b) HRTEM image of $CuBi_2O_4$ (c)EDS elemental spectrum; (d) STEM image of $CuBi_2O_4$ rods; (e-g) Elemental analysis of Cu, Bi and O, respectively.

3 CuBi₂O₄ XPS spectra (a) Survey scan and, high resolution spectrum of (b) Cu 2p; (c) Bi 4f; (d) O 1s.

Fig.S4 CuBi₂O₄/Au composite high resolution XPS spectrum of (a) Cu 2p; (b) Bi 4f; (c) O 1s; (d) Au 4f.

Fig.S5 UV-Vis spectrum of (a) $CuBi_2O_4$ with Tauc's plot(inset) with bandgap 1.76 eV; (b) Sb_2S_3 with Tauc's plot(inset) with bandgap 1.7 eV.

Fig.S6 Transmittance spectra of thin gold film coated over glass slide

Fig.S7 Linear sweep voltammetry curves for the (a) $CuBi_2O_4/Au_{0.2}$, $CuBi_2O_4/Au_{0.4}$, $CuBi_2O_4/Au_{0.6}$, and $CuBi_2O_4/Au_{0.8}$ photoelectrodes in neutral electrolyte. (b) $CuBi_2O_4$, $CuBi_2O_4/Sb_2S_3$, $CuBi_2O_4/Au$ and $CuBi_2O_4/Au/Sb_2S_3$ photoelectrodes in H₂SO₄(pH=1).

Fig.S8 Impedance spectra of CuBi₂O₄, CuBi₂O₄/Sb₂S₃ photoelectrodes in 0.5 M Na₂SO₄ under illumination.

Fig.S9 Equivalent Circuit for the Nyquist plots of CuBi₂O₄, CuBi₂O₄/Au and CuBi₂O₄/Au/Sb₂S₃.

S. No.	Sample	$R_s(\Omega)$	R_{CT} (k Ω)	CPE (m Ω^{-1})
1.	CuBi ₂ O ₄	42.5	3.14	0.134
2.	CuBi ₂ O ₄ /Au	39	2.54	0.078
3.	CuBi ₂ O ₄ /Au/Sb ₂ S ₃	41.5	0.347	1.17

Table S1. Electrochemical impedance data fitting parameters of the pristine CIS, CIS/CdS, and CIS/CdS/MoS $_2$ photocathodes

Table S2. Summary for recently published reports for $CuBi_2O_4$ as photocathodic material for solar water splitting

S. No.	Photocathode	Electrolyte	J	Ons	Stabilit	Ligh	Ref.
	configuration		mA.cm ⁻²	et	У	t	
				V _{RH}			
				Е			
1	CuBi ₂ O ₄ /MoS ₂	0.1M NaOH	0.182 at 0.6	0.9	200s	AM	1
		pH=12.5	V_{RHE}			1.5G	
2	CuO/CuBi2O4/Pt	0.3M K ₂ SO ₄ , 0.1M	0.72 at 0	-	600s	AM	2
		Phosphate buffer	V_{RHE}			1.5G	
		pH=6.8					
3	CuBi ₂ O ₄ /Ag-	0.1M NaOH	0.6 at 0.5	1.1	30 m	AM	3
	CuBi ₂ O ₄ /Pt	pH=12.8	V_{RHE}			1.5G	
4	CuBi ₂ O ₄ /Au/N,Cu-C	0.3 M K2SO4/0.2	0.31 at 0.5	-	3000s	AM	4
		M phosphate buffer	V_{RHE}			1.5G	
		(pH 6.68)					
5	CBO/ZnSe/P25	0.3 M K ₂ SO ₄ /0.2 M	0.43 at 0.3	-	5000s	300	5
		phosphate buffer	$\mathbf{V}_{\mathrm{RHE}}$			W Xe	
		(pH=6.65)				lamp	
6	CBO/NiO/SrTiO ₃	0.1M KPi buffer	0.4 at 0 V_{RHE}	-	3h	AM	6
						1.5G	

7	CuBi ₂ O ₄	0.3 M K2SO4/0.2	2.66 at 0.6	> 1.0		AM	7
		M phosphate buffer	V_{RHE}			1.5G	
		(pH 6.65) with					
		H_2O_2					
8	O _v /CBO/Zn-CBO	0.3 M K2SO4/0.2	0.6 at 0.3	1	300s	300	8
		M phosphate buffer	V_{RHE}			W Xe	
		(pH 6.65)				lamp	
9	CuO/CBO	0.5M Na ₂ SO ₄	0.9 at 0.1	1	75%	250	9
		solution (pH= 7)	V_{RHE}		retention	W Xe	
					up to	lamp	
					2500s		
10	FTO/Au/CBO/Pt	0.1M Na ₂ SO ₄	1.24 at 0.1	-	3000s	300	10
		(pH = 6.8)	V_{RHE}			W Xe	
						lamp	
11	FTO/Textured CBO	1M NaOH	1.77 at 0.4	1	40s	AM	11
		(pH = 13.6)	V_{RHE}			1.5G	
12	ETO/Tayturad CBO	$0.1M N_{\odot} SO_{(nH-)}$	0.72 at 0.6	1	40c	<u> </u>	11
12	FIO/Textured CDO	6.11vi 1va ₂ 504 (pri–	0.72 at -0.0	1	405		
		0.8)	V Ag/AgCl			1.50	
13	CBO/Au/Sb2S3	0.5 M Na ₂ SO ₄	3.2 at 0 V _{RHE}	1	7200s	AM	This
						1.5G	work
		(pH = 6.65)					
14	CBO/Sb ₂ S ₃	0.5 M Na ₂ SO ₄	2.2 at 0 V vs	1	7200s	AM	This
			RHE			1.5G	work
		(pH = 6.65)					
*Note: Some values were roughly read from the corresponding given graphs							

Fig.S10 (a) H_2 evolution from the CuBi₂O₄, CuBi₂O₄/ Sb₂S₃ and CuBi₂O₄/Au/Sb₂S₃ photocathodes; (b) rate of H_2 evolution from the CuBi₂O₄, CuBi₂O₄/ Sb₂S₃ and CuBi₂O₄/Au/Sb₂S₃ photocathodes.

Fig.S11 PXRD pattern of the $CuBi_2O_4/Au/Sb_2S_3$ photoelectrode after PEC test in neutral electrolyte.

Fig.S12 Photocurrent density-voltage(J-V) curves of $CuBi_2O_4$, $CuBi_2O_4/Sb_2S_3$, $CuBi_2O_4/Au$ and $CuBi_2O_4/Au/Sb_2S_3$ photoelectrodes in $H_2SO_4(pH=1)$.

Fig.S13 XPS spectrum of CuBi₂O₄/Au/Sb₂S₃ composite (a) Cu 2p; (b) Bi 4f & S 2s; (c) Au 4f; (d) Sb 3d & O 1s.

Fig.S14 IPCE spectra of the photoelectrodes in unbiased condition¹².

References

- 1 K. Varunkumar and R. Sellappan, *Mater. Chem. Phys.*, 2021, 261, 124245.
- 2 H. S. Park, C. Y. Lee and E. Reisner, *Phys. Chem. Chem. Phys.*, 2014, 16, 22462–22465.
- 3 D. Kang, J. C. Hill, Y. Park and K. S. Choi, *Chem. Mater.*, 2016, **28**, 4331–4340.
- N. Xu, F. Li, L. Gao, H. Hu, Y. Hu, X. Long, J. Ma and J. Jin, ACS Sustain. Chem. Eng.,
 2018, 6, 7257–7264.
- 5 S. Wei, N. Xu, F. Li, X. Long, Y. Hu, L. Gao, C. Wang, S. Li, J. Ma and J. Jin, *ChemElectroChem*, 2019, **6**, 3367–3374.
- J. Lee, H. Yoon, K. S. Choi, S. Kim, S. Seo, J. Song, B. U. Choi, J. Ryu, S. Ryu, J. Oh, C. Jeon and S. Lee, *Small*, 2020, 16, 1–11.
- Y. Xu, J. Jian, F. Li, W. Liu, L. Jia and H. Wang, J. Mater. Chem. A, 2019, 7, 21997–22004.
- 8 S. Wei, C. Wang, X. Long, T. Wang, P. Wang, M. Zhang, S. Li, J. Ma, J. Jin and L. Wu, *Nanoscale*, 2020, **12**, 15193–15200.

- 9 S. Pulipaka, N. Boni, G. Ummethala and P. Meduri, J. Catal., 2020, 387, 17–27.
- 10 D. Cao, N. Nasori, Z. Wang, Y. Mi, L. Wen, Y. Yang, S. Qu, Z. Wang and Y. Lei, J. Mater. Chem. A, 2016, 4, 8995–9001.
- 11 J. Li, M. Griep, Y. Choi and D. Chu, *Chem. Commun.*, 2018, **54**, 3331–3334.
- J. Li, S. K. Cushing, P. Zheng, T. Senty, F. Meng, A. D. Bristow, A. Manivannan and N.
 Wu, J. Am. Chem. Soc., 2014, 136, 8438–8449.