Supplementary Information

Self-assembly induction of reduced graphene oxide decorated CdS nanoboxes for photocatalytic hydrogen evolution

Qiancheng Li^{a,1}, Di Ma^{a,1}, Xuetao Zhang^a, Qifang Lu^a, Enyan Guo^a, Mingzhi Wei^{a,b,*},

Yingping Pang^{c,*}

^aShandong Provincial Key Laboratory of Processing and Testing Technology of Glass

& Functional Ceramics, School of Material Science and Engineering, Qilu University

of Technology (Shandong Academy of Sciences), Jinan 250353, China

^bState Key Laboratory of Biobased Material and Green Papermaking, Qilu University

of Technology (Shandong Academy of Sciences), Jinan 250353, China

°Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of

Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China

^{*}Corresponding authors.

E-mail addresses: weimz2018@163.com (M. Wei), yppang@sdu.edu.cn (Y. Pang).

¹These authors contributed equally to this work.

Synthesis of CdCO₃ nanocubes

In a typical synthesis^[1], 0.5 mmol of $CdCl_2 \cdot 2.5H_2O$, and 1.5 g of polyvinylpyrrolidone (PVP) were dissolved in 10 mL of deionized water to form a transparent solution A. Then 20 mL of NaHCO₃ aqueous solution (0.05 M) was dropwise added into solution A, and stirred for 1 h. Finally, the white precipitates were collected by centrifugation and washed three times with deionized water and ethanol, and dried at 40 °C for 6 h.

Synthesis of CdS nanoboxes

Typically, 1 mmol of CdCO₃ nanocubes and 2 mmol of thiourea were firstly dispersed in 40 mL of deionized water with stirring for 30 min. Then the mixed solution were transferred into a 50 mL Teflon-lined stainless-lined autoclave, and kept static at 180 °C for 12 h. After naturally cooled down to room temperature, the final precipitation was centrifuged and washed three times with absolute ethanol and water, and dried at 40 °C for 12 h.

Synthesis of APS-CdS nanocomposites

Typically, 0.1 g of as-prepared CdS nanoboxes were firstly dispersed into 50 mL of ethanol by sonication for 30 min, followed by the addition of 2 mL of γ -aminopropyltriethoxysilane (APS) and refluxed at 60 °C for 12 h. After naturally cooled down to room temperature, the obtained products of APS treated CdS nanoboxes (APS-CdS) were collected by filtration, washed three times with ethanol, and then dried at 40 °C for 12 h.

Fig. S1 SEM image of CdCO₃ nanocubes.

Fig. S2 FT-IR spectra of GO, and rGO-CdS-3 photocatalysts.

Fig. S3 Band gap values from the $(\alpha h\nu)^{1/n}$ vs. hv plots of pure CdS nanoboxes, rGO-CdS-2, rGO-CdS-3, and rGO-CdS-4 photocatalysts.

Fig. S4 (a) Stability test of rGO-CdS-3 in six cycles. (b) XRD patterns of rGO-CdS-3 before and after the durability tests and the SEM image (inset) of rGO-CdS-3 after recycling.

Fig. S5 PL spectra of pure CdS nanoboxes, rGO-CdS-2, rGO-CdS-3, and rGO-CdS-4 photocatalysts.

Fig. S6 LSV curves at a scan rate of 10 mV s⁻¹ of pure CdS, and rGO-CdS-3 photocatalysts in 1.0 M KOH solutions.

Fig. S7 Mott-Schottky plots of CdS, and rGO-CdS-3 photocatalysts.

The valence band (VB) edge position and conduction band (CB) edge position of CdS and rGO-CdS-3 are calculated from the following equations ^[2]:

$$E_{CB}$$
 (NHE, pH = 0) = E_{fb} (Ag/AgCl) + 0.197 V (1)

$$E_{VB} = E_{CB} + E_g \tag{2}$$

where E_{CB} and E_{VB} are the CB and VB potential, E_{fb} is the flat band potential, and E_g is the bandgap energy. As shown in Fig. S7, the E_{fb} of CdS and rGO-CdS-3 is determined to be -0.86 and -0.85 V. The E_{CB} and E_{VB} of the CdS are calculated to be -0.66 and 1.51 V, while those values of rGO-CdS-3 are -0.65 V and 1.52 V.

Catalysts	Scavengers	Light source	HER rate (μmol h ⁻¹ g ⁻¹)	Ref.
rGO/CdS	15 vol% lactic acid	300 W Xe	1502	This work
		$(\lambda > 420 \text{ nm})$		
CdS-Co ₃ O ₄	10 vol% lactic acid	350 W Xe	150.7	S3
		$(\lambda > 420 \text{ nm})$		
Ag ₂ S/CdS	10 vol% lactic acid	300 W Xe	777.3	S4
		$(\lambda > 420 \text{ nm})$		
NiPx/MoS ₂ /NiS/CdS	0.03 M glucose	300 W Xe	297	S5
		$(\lambda \ge 420 \text{ nm})$		
CdS/CuS	10 vol% TEOA	300 W Xe	295	S6
		$(\lambda \ge 420 \text{ nm})$		
CdS QDs/CeO ₂	0.31 M Na ₂ S/0.25 M	300 W Xe	101.1	S7
	Na_2SO_3	$(\lambda > 300 \text{ nm})$		
Ni(OH) ₂ /Ni ₃ S ₂ /Ni _x S ₆ -CdS	0.1 M Na ₂ S/0.1 M	300 W Xe	694	S 8
	Na_2SO_3	$(\lambda \ge 400 \text{ nm})$		
g-C ₃ N ₄ /CdS	0.1 M Na ₂ S/0.1 M	300 W Xe	718.6	S9
	Na ₂ SO ₃	$(\lambda \ge 420 \text{ nm})$		
CdS/Ni-MOF	6 vol% lactic acid	300 W Xe	2508	S 10
		$(\lambda > 420 \text{ nm})$		

 Table S1. Activity comparison of some representative photocatalysts for

 photocatalytic water splitting.

References

- [1] W. Yang, Y. Liu, Y. Hu, M. Zhou and H. Qian, J. Mater. Chem., 2012, 22, 13895-13898.
- [2] S. S. Yi, J. M. Yan, B. R. Wulan, S. J. Li, K. H. Liu and Q. Jiang, *Appl. Catal. B*, 2017, **200**, 477-483.
- [3] D. Lang, F. Cheng and Q. Xiang, Catal. Sci. Technol., 2016, 6, 6207-6216.
- [4] C. Lu, S. Du, Y. Zhao, Q. Wang, K. Ren, C. Li and W. Dou, *RSC Adv.* 2021, 11, 28211-28222.
- [5] X. Zheng, X. Wang, J. Liu, X. Fu, Y. Yang, H. Han, Y. Fan, S. Zhang, S. Meng and S. Chen, J. Am. Ceram. Soc., 2021, 104, 5307-5316.
- [6] X. Yang, G. Lu, B. Wang, T. Wang and Y. Wang, *RSC Adv.*, 2019, 9, 25142-25150.
- [7] Y. Ma, Y. Bian, Y. Liu, A. Zhu, H. Wu, H. Cui, D. Chu and J. Pan, ACS Sustainable Chem. Eng., 2018, 6, 2552-2562.
- [8] Y. P. Xie, Y. Zheng, Y. Yang, R. Jiang, G. Wang, Y. Zhang, E. Zhang, L. Zhao and C. Y. Duan, J. Colloid Interf. Sci., 2018, 514, 634-641.
- [9] X. Wang, Q. Li, Q. Lin, R. Zhang and M. Ding, J. Mater. Sci. Technol., 2022, 111, 204-210.
- [10] J. Guo, Y. Liang, L. Liu, J. Hu, H. Wang, W. An and W. Cui, *Appl. Surf. Sci.*, 2020, **522**, 146356.