## A Novel Mixed Ether-based Electrolyte for Lithium-sulfur Batteries with Li Anode Protection by Dual Salt

Xirui Kong<sup>1</sup>, Yichen Kong<sup>2</sup>, Xiaobin Liao<sup>3</sup>, Sheng Liu<sup>1,\*</sup>, Yan Zhao<sup>1,\*</sup>

<sup>1</sup> *The Institute of Technological Sciences, Wuhan University, Wuhan 430000, China.* 

<sup>2</sup> School of electrical engineering, Northeast Electric Power University, Jilin 132000, China.

<sup>3</sup> State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and

Engineering, Wuhan University of Technology, Wuhan 430000, China.

\* Corresponding author: victor liu63@vip.126.com (S. Liu); yan2000@whut.edu.cn (Yan Zhao)

ElementHCNSSeWeight ratio (%)1.438.314.041.84.5

Table S1. Element composition of the SeSPAN powder

Table S2. Compositions (Molar Ratio) of the THF-DPE Electrolytes

| Name of Electrolyte | LiTFSI | LiFSI | THF | DPE |
|---------------------|--------|-------|-----|-----|
| L1L2TE-4082         | 4      | 0     | 8   | 2   |
| L1L2TE-3182         | 3      | 1     | 8   | 2   |
| L1L2TE-2282         | 2      | 2     | 8   | 2   |
| L1L2TE-1382         | 1      | 3     | 8   | 2   |
| L1L2TE-0482         | 0      | 4     | 8   | 2   |
|                     |        |       |     |     |

| Electrolyte | LDD | L1L2TE-1382 | L1L2TE-2282 | L1L2TE-1382 |
|-------------|-----|-------------|-------------|-------------|
| 0.15 C      | 678 | 700         | 702         | 705         |
| 0.23C       | 557 | 650         | 661         | 667         |
| 0.75 C      | 352 | 607         | 648         | 646         |
| 1.5 C       | 206 | 580         | 582         | 616         |
| 3 C         | 110 | 393         | 467         | 575         |
| 7.5 C       | 76  | 62          | 92          | 300         |

Table S3. Specific capacity of SeSPAN with different electrolytes in rate test (mAh g<sup>-1</sup>)



**Figure S1.** a) Coulombic efficiency of Li || Cu half-cells with the LDD, L1L2TE-4082, L1L2TE-3182, L1L2TE-2282, L1L2TE-1382 and L1L2TE-0482 electrolytes. b) Long-time cycling test of Li || Li symmetry-cells with the L1L2TE-3182, L1L2TE-2282 and L1L2TE-1382 electrolytes. See Table S1 for the details of the compositions of

the electrolytes.



Figure S2. Corresponding voltage-capacity profiles of Li-SeSPAN cells on different cycle a) LDD, b) L1L2TE-

3182, c) L1L2TE-2282, d) L1L2TE-1382.



Figure S3. Capacity-voltage curves of the corresponding cells at various charge/discharge rate, a) LDD, b)

L1L2TE-3182, c) L1L2TE-2282, d) L1L2TE-1382.



**Figure S4.** a-d) Voltage-time profiles for the storage test of cells with different electrolytes. All these cells were discharged to 1.9 V and kept for 10 d before resuming cycling.



**Figure S5.** The EDS images of electrode surface, for, a) the original cathode, b) the cathode cycled in LDD, c) the cathode cycled in L1L2TE-1382. The content of elements on the electrode surface, for d) the original cathode, e) the cathode cycled in LDD, f) the cathode cycled in L1L2TE-1382.



Figure S6. XPS spectra of N 1s of the SEI layers formed in Li-SeSPAN cells with different electrolytes after 50

cycles, for a) LDD, b) L1L2TE-3182, c) L1L2TE-2282, d) L1L2TE-1382.



**Figure S7.** XPS spectra of F 1s of the SEI layers formed in Li-SeSPAN cells with different electrolytes after 50 cycles, for a) LDD, b) L1L2TE-3182, c) L1L2TE-2282, d) L1L2TE-1382.



Figure S8. EIS spectra of the Li-SeSPAN cells with L1L2TE electrolytes cycled after 50 cycles, for a) L1L2TE-4082, b) L1L2TE-3182, c) L1L2TE-2282, d) L1L2TE-1382.