Flexible methanol and hydrogen production with negative emissions

Supplementary material

The supplementary material includes the following:

- <u>Appendix A</u>: tables with properties of the main streams of the four assessed plants, process modelling assumptions, comparison of calculated syngas compositions with literature.
- <u>Appendix B</u>: method for the economic analysis with assumption tables and breakdown of capital costs.

Figure A1 – Block diagram of the direct gasification-based Biomass-to-Methanol plant.

Stream #	1	2	ŝ	3	4	5	6	7	8	9	10	1	1	12	13	14
Stream description	As- received biomass	Dried biomass	Steam	input ¹	Inerts	Oxygen to gasifier	Bio- char ²	Raw syngas	Oxygen to reformer	Reforme d syngas	Shifted syngas	Wa wa	iste ter	Syngas	Waste water	Syngas
Temperature, °C	25.0	80.0	200.0	200.0	25.0	108.4	870.0	870.0	108.4	915.0	265.4	104.1	30.0	30.0	40.1	40.0
Pressure, bar	1.0	1.0	5.9	5.9	4.5	4.5	4.0	3.8	4.5	3.6	3.3	3.2	3.0	3.0	9.5	30.0
Mass flow rate, kg/s	10.27	6.64	2.66	0.80	0.21	1.93	0.19	12.04	0.64	12.68	12.68	3.33	0.10	9.25	0.07	9.17
Mole flow rate, kmol/h	-	-	531	160	26	216	-	2058	71	2349	2349	656	21	1672	14	1657
Composition, % _{mol}	-	-														
H ₂ O	-	-	100	100	-	-	-	40.23	-	33.28	29.34	99.10	100	1.09	99.99	0.23
H ₂	-	-	-	-	-	-	-	19.95	-	29.93	33.87	-	-	47.59	-	48.00
CO ₂	-	-	-	-	-	-	-	17.22	-	15.82	19.76	0.87	-	27.42	0.01	27.66
СО	-	-	-	-	-	-	-	14.56	-	19.01	15.08	0.02	-	21.18	-	21.36
Methanol	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CH ₄	-	-	-	-	-	-	-	4.43	-	0.39	0.39	0.01	-	0.54	-	0.55
C _x H _y	-	-	-	-	-	-	-	1.99	-	-	-	-	-	-	-	-
O ₂	-	-	-	-	20.48	95.00	-	-	95.00	-	-	-	-	-	-	-
Ar	-	-	-	-	-	3.00	-	0.32	3.00	0.37	0.37	-	-	0.52	-	0.52
N ₂	-	-	-	-	79.52	2.00	-	1.28	2.00	1.18	1.18	-	-	1.66	-	1.67
Ethanol	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DME	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LHV, MJ/kg	9.74	16.37	-	-	-	-	-	7.19	-	6.66	6.57	-	-	9.01	-	9.08
Power, MW _{LHV}	100.0	108.76	-	-	-	-	-	86.58	-	84.39	83.34	-	-	83.30	-	83.30

 Table A1 - Plant stream properties DG-based Biomass-to-Methanol plant..

¹ The first row corresponds to the fluidization steam. The second row includes steam for sealing and cleaning purposes. ² The stream contains 67.42%wt of carbon and 32.58%wt of ashes.

Stream #	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Stream description	CO ₂ from MDEA	Syngas	Waste	Syngas to synthesi s	Purge from synthesi s	Methan ol to purificat ion	Purge from purificat ion	Waste water	Methan ol	Purge to ICE	Air to ICE	Flue gas from ICE	Waste water	Flue gas from MEA	CO ₂ from MEA	CO ₂ to compres sion	Compre ssed CO ₂
Temperature, °C	40.0	40.0	40.0	115.2	33.3	41.5	32.3	88.2	64.5	33.3	25.0	100.0	40.0	40.0	40.0	40.0	89.5
Pressure, bar	1.2	30.0	52.5	92.0	2.0	2.0	1.4	1.0	1.0	1.4	1.0	1.0	1.0	1.0	1.2	1.2	150.0
Mass flow rate, kg/s	5.32	3.85	0.02	3.83	0.37	3.47	0.09	0.11	3.27	0.45	2.39	2.85	0.30	2.35	0.20	5.52	5.52
Mole flow rate, kmol/h	435	1222	4	1218	77	398	10	20	368	88	298	369	60	293	16	452	452
Composition, % _{mol}																	
H ₂ O	-	0.32	100	-	0.02	4.77	0.04	90.59	0.21	0.02	1.00	16.26	100	-	-	-	-
H ₂	-	65.11	-	65.32	42.86	0.26	10.01	-	-	38.98	-	-	-	-	-	-	-
CO ₂	100	1.88	-	1.88	1.48	0.73	28.29	-	-	4.65	0.03	4.65	-	0.29	100	100	100
СО	-	28.98	-	29.07	1.88	0.02	0.82	-	-	1.76	-	-	-	-	-	-	-
Methanol	-	-	-	-	0.61	93.07	17.92	9.18	99.77	2.65	-	-	-	-	-	-	-
CH ₄	-	0.74	-	0.75	9.51	0.44	16.92	-	-	10.38	-	-	-	-	-	-	-
C _x H _y	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
O ₂	-	-	-	-	-	-	-	-	-	-	20.70	6.01	-	7.57	-	-	-
Ar	-	0.71	-	0.71	9.52	0.32	12.24	-	-	9.84	0.97	3.12	-	3.93	-	-	-
N ₂	-	2.27	-	2.28	34.11	0.35	13.59	-	-	31.68	77.30	69.97	-	88.21	-	-	-
Ethanol	-	-	-	-	-	0.03	-	0.23	0.02	-	-	-	-	-	-	-	-
DME	-	-	-	-	-	-	0.18	-	-	0.02	-	-	-	-	-	-	-
LHV, MJ/kg	-	21.63	-	21.74	11.05	19.11	9.26	-	19.90	10.71	-	-	-	-	-	-	-
Power, MW _{LHV}	-	83.30	-	83.30	4.06	66.21	0.80	-	65.07	4.86	-	-	-	-	-	-	_

 Table A2 - Plant stream properties DG-based Biomass-to-Methanol plant

Figure A2 – Block diagram of the indirect gasification-based Biomass-to-Methanol plant.

Stream #	1	2	3	2	4	5	6	7	8	9	10	11	12	13	14
Stream description	As- received biomass	Dried biomass	Biomass to gasifier	Steam	input ¹	Inerts	Biomass to combusto r	Air to combusto r	Olivine makeup ²	Flue gas from combusto r	Solid purge ²	Solids ²	Raw syngas	Oxygen to reformer	Reforme d syngas
Temperature, °C	25.0	80.0	80.0	400.0	180.0	25.0	80.0	270.0	25.0	140.1	910.0	140.1	815.0	150.0	800.0
Pressure, bar	1.0	1.0	1.0	3.9	3.9	1.6	1.0	1.6	1.0	1.1	1.4	1.1	1.2	2.0	1.1
Mass flow rate, kg/s	10.27	6.64	5.71	2.62	0.69	0.18	0.93	11.64	0.28	12.98	0.06	0.28	8.72	0.50	9.21
Mole flow rate, kmol/h	-	-	-	523	138	22	-	1452	-	1560	-	-	1707	56	1978
Composition, % _{mol}															
H ₂ O	-	-	-	100	100	-	-	1.00	-	8.21	-	-	36.25	-	27.05
H ₂	-	-	-	-	-	-	-	-	-	-	-	-	27.99	-	40.57
CO ₂	-	-	-	-	-	-	-	0.03	-	15.91	-	-	12.48	-	12.84
СО	-	-	-	-	-	-	-	-	-	-	-	-	14.47	-	17.90
Methanol	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CH ₄	-	-	-	-	-	-	-	-	-	-	-	-	6.07	-	0.52
C _x H _y	-	-	-	-	-	-	-	-	-	-	-	-	1.61	-	-
O ₂	-	-	-	-	-	20.48	-	20.70	-	2.99	-	-	-	95.00	-
Ar	-	-	-	-	-	-	-	0.97	-	0.90	-	-	-	3.00	0.08
N ₂	-	-	-	-	-	79.52	-	77.30	-	71.98	-	-	1.11	2.00	1.01
Ethanol	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DME	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_
LHV, MJ/kg	9.74	16.37	16.37	-	-	-	16.37	-	-	-	-	-	9.72	-	9.13
Power, MW _{LHV}	100.0	108.76	93.55	_	-	_	15.19	-	-	-	-	-	84.70	-	84.07

Table A3 - Plant stream properties IG-based Biomass-to-Methanol plant

¹ The first row corresponds to the fluidization steam. The second row includes steam for sealing and cleaning purposes.

² Olivine makeup stream contains 50%wt olivine Fe-based and 50%wt olivine Mg-based. Solid purge stream contains 48.80%wt olivine Fe-based,48.80%wt olivine Mg-based, and 2.40%wt ashes. Solids stream contains 40.06%wt olivine Fe-based,40.06%wt olivine Mg-based, and 19.87%wt ashes.

Table A4 - Plant stream properties IG-based Biomass-to-Methanol plant

Stream #	1	5	16	17	18	19	20	21	22	23	24	25	26	27
Stream description	Waste	e water	Syngas	Waste water	Syngas	CO ₂ from MDEA	Syngas	Waste water	Syngas to synthesis	Purge from synthesis	Methanol to purificatio n	Purge from purificatio n	Waste water	Methanol
Stream description														
Temperature, °C	74.1	30.0	30.0	40.1	40.0	40.0	40.0	40.0	115.0	34.6	41.7	34.1	89.2	64.5
Pressure, bar	1.1	1.1	1.1	3.2	30.0	1.2	30.0	52.5	92.0	2.0	2.0	1.4	1.0	1.0
Mass flow rate, kg/s	2.16	0.30	6.75	0.21	6.53	2.79	3.75	0.02	3.73	0.23	3.50	0.07	0.12	3.31
Mole flow rate, kmol/h	430	60	1487	43	1445	228	1217	3	1214	59	405	10	23	372
Composition, % _{mol}														
H ₂ O	99.75	100	3.08	100	0.23	-	0.27	100	-	0.02	5.51	0.06	91.85	0.21
H ₂	-	-	53.96	-	55.54	-	65.94	-	66.12	49.07	0.29	12.27	-	-
CO ₂	0.23	-	17.01	-	17.52	100	2.07	-	2.08	1.19	0.59	24.76	-	-
СО	0.01	-	23.80	-	24.50	-	29.08	-	29.16	1.47	0.02	0.69	-	-
Methanol	-	-	-	-	-	-	-	-	-	0.59	92.54	19.48	7.95	99.77
CH ₄	-	-	0.69	-	0.72	-	0.85	-	0.85	13.40	0.61	25.72	-	-
C _x H _y	-	-	-	-	-	-	-	-	-	-	-	-	-	-
02	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ar	-	-	0.11	-	0.12	-	0.14	-	0.14	2.31	0.08	3.21	-	-
N ₂	_	_	1.35	_	1.39	_	1.65	_	1.65	31.94	0.32	13.63	-	_
Ethanol	_	_	-	_	_	_	_	_	_	_	0.03	_	0.20	0.02
DME	_	_	-	_	_	_	_	_	_	_	_	0.19	_	_
LHV, MJ/kg	_	_	12.46	_	12.86	_	22.42	_	22.52	16.56	19.16	13.57	2.77	19.90
Power, MW _{LHV}	-	-	84.04	-	84.04	-	84.04	-	84.04	3.81	67.09	0.97	0.35	65.77

Stream #	28	29	30	31	32	33	34	35
Stream			Flue gas from		Flue gas from		CO ₂ to	Compressed
description	Purge to boiler	Air to boiler	boiler	Waste water	MEA	CO ₂ from MEA	compression	CO ₂
Temperature,	24.6	101.5	00.0	40.0	10.0	40.0	40.0	00 -
<u>°C</u>	34.6	131.5	80.0	40.0	40.0	40.0	40.0	89.5
Pressure, bar	1.4	1.0	1.0	1.0	1.0	1.2	1.2	150.0
Mass flow rate,								
kg/s	0.30	1.68	1.98	0.93	10.97	3.08	5.86	5.86
Mole flow rate, kmol/h	68	210	264	185	1387	252	479	479
Composition.	00	210	201	105	1507	232		175
% mol								
H ₂ O	0.03	1.00	21.70	100	-	-	-	-
H ₂	43.89	-	-		-	-	-	
CO ₂	4.51	0.03	6.32	-	0.95	100	100	100
СО	1.36	-	-		-	-	-	
Methanol	3.25	-	-	-	-	-	-	-
CH ₄	15.13	-	-	-	-	-	-	-
C _x H _y	-	-	-	-	-	-	-	-
O ₂	-	20.70	1.49	-	3.65	-	-	-
Ar	2.44	0.97	1.40	-	1.28	-	-	-
N ₂	29.36	77.30	69.09	-	94.11	-	-	-
Ethanol	-	-	-		-	-	-	-
DME	0.03	-	-	-	-	-	-	-
LHV, MJ/kg	15.85	-	-	-	-	-	-	-
Power, MW _{LHV}	4.79	-	-	-	-	-	-	-

 Table A5 - Plant stream properties IG-based Biomass-to-Methanol plant

Figure A3 – Block diagram of the direct gasification-based Biomass-to-Hydrogen plant

Stream #	1	2	3	3	4	5	6	7	8	9	10	11	1	2
Stream description	As- received biomass	Dried biomass	Steam	input ¹	Inerts	Oxygen to gasifier	Bio-char ²	Raw syngas	Oxygen to reformer	Reformed syngas	Shifted syngas	Shifted syngas	Waste	water
Temperature, °C	25.0	80.0	200.00	200.00	25.00	108.42	870.00	870.00	108.42	915.00	378.71	257.45	91.28	30.00
Pressure, bar	1.0	1.0	5.90	5.90	4.50	4.50	4.00	3.80	4.50	3.60	3.30	3.00	2.95	2.75
Mass flow rate, kg/s	10.27	6.64	2.66	0.80	0.21	1.93	0.19	12.04	0.64	12.68	12.68	12.68	1.64	0.13
Mole flow rate, kmol/h	-	-	531	160	26	216	-	2058	71	2349	2349	2349	320	26
Composition, % _{mol}														
H ₂ O	-	-	100	100	-	-		40.23	-	33.28	18.92	15.57	98.54	100
H ₂	-	-	-	-	-	-		19.95	-	29.93	44.29	47.64	-	-
CO ₂	-	-	-	-	-	-		17.22	-	15.82	30.17	33.53	1.45	-
со	-	-	-	-	-	-		14.56	-	19.01	4.66	1.31	-	-
Methanol	-	-	-	-	-	-		-	-	-	-	-	-	-
CH ₄	-	-	-	-	-	-		4.43	-	0.39	0.39	0.39	0.01	-
C _x H _y	-	-	-	-	-	-		1.99	-	-	-	-	-	-
O ₂	-	-	-	-	20.48	95.00		-	95.00	-	-	-	-	-
Ar	-	-	-	-	-	3.00		0.32	3.00	0.37	0.37	0.37	-	-
N ₂	-	-	-	-	79.52	2.00		1.28	2.00	1.18	1.18	1.18	-	-
Ethanol	-	-	-	-	-	-		-	-	-	-	-	-	-
DME	-	-	-	-	-	-		-	-	-	-	-	-	-
LHV, MJ/kg	9.74	16.37	-	-	-	-		7.19	-	6.66	6.35	6.28	-	-
Power, MW _{LHV}	100.0	108.76	-	-	-	-	-	86.58	-	84.39	80.54	79.64	-	-

 Table A6 - Plant stream properties DG-based Biomass-to-Hydrogen plant

¹ The first row corresponds to the fluidization steam. The second row includes steam for sealing and cleaning purposes. ² The stream contains 67.42%wt of carbon and 32.58%wt of ashes.

Stream #	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
Stream description	Syngas	Waste water	Syngas	Waste water	CO ₂ from MDEA	Syngas	Hydroge n	Purge to ICE	Air to ICE	Flue gas from ICE	Waste water	Flue gas from MEA	CO ₂ from MEA	CO ₂ to compress ion	Compres sed CO ₂
Temperature, °C	30.0	40.1	40.0	40.0	40.0	40.0	40.0	40.0	25.0	100.0	40.0	40.0	40.0	40.0	89.5
Pressure, bar	2.8	9.1	30.2	30.2	1.2	30.2	30.0	1.0	1.0	1.0	1.0	1.0	1.2	1.2	150.0
Mass flow rate, kg/s	10.91	0.10	10.81	0.02	9.09	1.70	0.56	1.13	5.41	6.54	0.68	4.94	0.92	10.01	10.01
Mole flow rate, kmol/h	2002	19	1983	5	744	1234	1007	227	675	831	137	619	75	819	819
Composition, % _{mol}															
H ₂ O	1.19	99.99	0.23	100	-	-	-	-	1.00	16.47	100	-	-	-	-
H ₂	55.90	-	56.44	-	-	90.66	100	49.24	-	-	-	-	-	-	-
CO ₂	39.11	0.01	39.49	-	100	3.17	-	17.23	0.03	9.53	-	0.64	100	100	100
СО	1.53	-	1.55	-	-	2.49	-	13.52	-	-	-	-	-	-	-
Methanol	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CH ₄	0.45	-	0.46	-	-	0.74	-	4.01	-	-	-	-	-	-	-
C _x H _y	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
O ₂	-	-	-	-	-	-	-	-	20.70	6.04	-	8.12	-	-	-
Ar	0.43	-	0.43	-	-	0.70	-	3.79	0.97	1.82	-	2.45	-	-	-
N ₂	1.39	-	1.40	-	-	2.25	-	12.21	77.30	66.14	-	88.79	-	-	-
Ethanol	-	_	-	-	-	-	-	_	-	-	-	-	-	-	-
DME	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LHV, MJ/kg	7.30	-	7.36	-	-	46.93	119.96	10.56	-	-	-	-	-	-	-
Power, MW _{LHV}	79.61	-	79.61	-	-	79.61	67.65	11.96	-	-	-	-	-	-	-

 Table A7 - Plant stream properties DG-based Biomass-to-Hydrogen plan

t

Figure A4 – Block diagram of the indirect gasification-based Biomass-to-Hydrogen plant

Stream #	1	2	3	2	1	5	6	7	8	9	10	11	12	13	14
Stream description	As- received biomass	Dried biomass	Biomass to gasifier	Steam	input ¹	Inerts	Biomass to combusto r	Air to combusto r	Olivine makeup ²	Flue gas from combusto r	Solid purge ²	Solids ²	Raw syngas	Oxygen to reformer	Reforme d syngas
Temperature, °C	25.0	80.0	80.0	400.0	180.0	25.0	80.0	270.0	25.0	140.1	910.0	140.1	815.0	150.0	800.0
Pressure, bar	1.0	1.0	1.0	3.9	3.9	1.6	1.0	1.6	1.0	1.0	1.4	1.0	1.2	2.0	1.1
Mass flow rate, kg/s	10.27	6.64	5.71	2.62	0.69	0.18	0.93	11.64	0.28	12.98	0.06	0.28	8.72	0.50	9.21
Mole flow rate, kmol/h	-	-	0	523	138	22	-	1452	-	1560	-	-	1707	56	1978
Composition, % _{mol}															
H ₂ O	-	-		100	100	-	-	1.00	-	8.21	-	-	36.25	-	27.05
H ₂	-	-		-	-	-	-	-	-	-	-	-	27.99	-	40.57
CO ₂	-	-		-	-	-	-	0.03	-	15.91	-	-	12.48	-	12.84
СО	-	-		-	-	-	-	-	-	-	-	-	14.47	-	17.90
Methanol	-	-		-	-	-	-	-	-	-	-	-	-	-	-
CH ₄	-	-		-	-	-	-	-	-	-	-	-	6.07	-	0.52
C _x H _y	-	-		-	-	-	-	-	-	-	-	-	1.61	-	-
O ₂	-	-		-	-	20.48	-	20.70	-	2.99	-	-	-	95.00	-
Ar	-	-		-	-	-	-	0.97	-	0.90	-	-	-	3.00	0.08
N ₂	-	-		-	-	79.52	-	77.30	-	71.98	-	-	1.11	2.00	1.01
Ethanol	-	-		-	-	-	-	-	-	-	-	-	-	-	-
DME	-	-		-	-	-	-	-	-	-	-	-	-	-	-
LHV, MJ/kg	9.74	16.37	16.37	-	-	-	16.37	-	-	-	-	-	9.72	-	9.13
Power, MW _{LHV}	100.0	108.76	93.55	-	-	-	15.19	-	-	-	-	-	84.70	-	84.07

Table A8 - Plant stream properties IG-based Biomass-to-Hydrogen plan

¹ The first row corresponds to the fluidization steam. The second row includes steam for sealing and cleaning purposes.

² Olivine makeup stream contains 50%wt olivine Fe-based and 50%wt olivine Mg-based. Solid purge stream contains 48.80%wt olivine Fe-based,48.80%wt olivine Mg-based, and 2.40%wt ashes. Solids stream contains 40.06%wt olivine Fe-based,40.06%wt olivine Mg-based, and 19.87%wt ashes.

Stream #		15	16	17	18	19	20	21	22	23	24	25
Stream description	Wast	e water	Syngas	Waste water	Syngas	Steam input	Shifted syngas	Shifted syngas	Waste water	CO ₂ from MDEA	Syngas	Hydrogen
Temperature, °C	74.1	30.0	30.0	40.1	334.0	250.0	418.2	238.6	40.0	40.0	40.0	40.0
Pressure, bar	1.1	1.1	1.1	3.3	33.0	33.0	32.8	31.4	30.2	1.2	30.2	30.0
Mass flow rate, kg/s	2.16	0.30	6.75	0.20	6.54	3.00	9.54	9.54	1.37	6.78	1.39	0.57
Mole flow rate, kmol/h	430	60	1487	41	1447	599	2046	2046	273	555	1218	1020
Composition, % _{mol}												
H ₂ O	99.75	100	3.08	100	0.34	100	18.55	13.34	100	-	-	-
H ₂	-	-	53.96	-	55.48	-	50.20	55.41	-	-	93.08	100
CO ₂	0.23	-	17.01	-	17.50	-	23.34	28.55	-	100	2.40	-
СО	0.01	-	23.80	-	24.47	-	6.34	1.13	-	-	1.89	-
Methanol	-	-	-	-	-	-	-	-	-	-	-	-
CH ₄	-	-	0.69	-	0.71	-	0.51	0.51	-	-	0.85	-
C _x H _y	-	-	-	-	-	-	-	-	-	-	-	-
O ₂	-	-	-	-	-	-	-	-	-	-	-	-
Ar	-	-	0.11	-	0.12	-	0.08	0.08	-	-	0.14	-
N ₂	-	-	1.35	-	1.38	-	0.98	0.98	-	-	1.64	-
Ethanol	-	-	-	-	-	-	-	-	-	-	-	-
DME	-	-	-	-	-	-	-	-	-	-	-	-
LHV, MJ/kg	-	-	12.46	-	12.85	-	8.54	8.41	-	-	57.68	119.96
Power, MW _{LHV}	-	-	84.04	-	84.04	-	81.48	80.26	-	-	80.26	68.53

Table A9 - Plant stream properties IG-based Biomass-to-Hydrogen plan

Stream #	26	27	28	29	30	31	32	33
Stream								
description	Purge to boiler	Air to boiler	Flue gas from boiler	Waste water	Flue gas from MEA	CO ₂ from MEA	CO_2 to compression	Compressed CO ₂
°C	40.0	128.0	80.0	40.0	40.0	40.0	40.0	89.5
Pressure, bar	1.0	1.0	1.0	1.0	1.0	1.2	1.2	150.0
Mass flow	0.82	2 70	4.61	1.22	12 (5	2 (1	10.20	10.20
rate, kg/s	0.82	3.79	4.61	1.33	12.65	3.01	10.39	10.39
rate, kmol/h	198	473	602	267	1600	295	850	850
Composition,								
% mol								
H ₂ O	-	1.00	23.03	100	-	-	-	-
H ₂	57.36	-	-	-	-	-	-	-
CO ₂	14.78	0.03	10.41	-	0.97	100	100	100
со	11.66	-	-	-	-	-	-	-
Methanol	-	-	-	-	-	-	-	-
CH ₄	5.23	-	-	-	-	-	-	-
C _x H _y	-	-	-	-	-	-	-	-
O ₂	-	20.70	1.50	-	3.48	-	-	-
Ar	0.84	0.97	1.04	-	1.27	-	-	-
N ₂	10.14	77.30	64.02	-	94.27	-	-	-
Ethanol	-	-	-	-	-	-	-	-
DME	-	-	-	-	-	-	-	-
LHV, MJ/kg	14.30	-	-	-	-	-	-	-
Power, MW _{LHV}	11.73	-	-	-	-	-	-	-

 Table A10 - Plant stream properties IG-based Biomass-to-Hydrogen plan

Assumptions	BtM DG	BtM IG	BtH ₂ DG	BtH ₂ IG
Input biomass (As received)			·	
LHV, MJ/kg _{AR}		9.7	4	
Moisture, % _{wt}		45	;	
Proximate analysis, % _{wt,dry}				
Fixed Carbon		18.8	34	
Volatile matter		80.	0	
Ash		1.1	6	
Ultimate analysis, % _{wt,dry}				
Carbon		51.1	19	
Hydrogen		6.0	8	
Nitrogen		0.2	2	
Chlorine		0.0	5	
Sulfur		0.0	2	
Oxygen		41.	3	
Ash		1.1	6	
Biomass pre-treatment				
Biomass moisture at dryer outlet, % _{wt}		15	;	
Biomass temperature at dryer outlet, °C		80)	
Specific heat consumption, MWh/t _{H2O}		1.()	
Specific power consumption kWh/t _{bio,dry}		32	2	
Gasification	1			
Gasifier outlet temperature, °C	870	815	870	815
Gasifier and combustor pressure, bar	4.00	1.43	4.00	1.43
Char conversion in the gasifier, % of inlet C	95.50	83.00	95.50	83.00
Fluidizing steam input temperature, °C	200	400	200	400
Gas injection for sealing and filters, kg/kg _{bio,dry}	$H_2O=0.12$ Air = 0.03	$H_2O=0.12$ Air = 0.03	$H_2O=0.12$ Air = 0.03	$H_2O=0.12$ Air = 0.03

Combustor exit temperature, °C	-	910	-	910
Oxygen concentration in combustor flue gases, % _{mol}	-	3.0	-	3.0
Combustor air temperature, °C	-	270	-	270
Overall pressure drop from combustor to stack, % of gas pressure at valve outlet	-	4.5	-	4.5
Total solid purge, % of inlet biomass	-	1.0	-	1.0
Combustor air fan isentropic/mechel efficiency, %	-	80/94	-	80/94
Gasifier/reformer oxygen compressor isentropic/mechel efficiency, %	80/94	-	80/94	-
Loss of solids from the BFB gasifier, % of the circulating solids	-	0.01	-	0.01
Combustor cyclone separation efficiency, %	-	Solids: 99.9; Ash:99	-	Solids: 99.9; Ash:99
Gasifier/combustor thermal losses, % of total thermal input	1.0	1.0/1.0	1.0	1.0/1.0
Syngas purification, conditioning and compression				
Reformer exit temperature, °C	915	800	915	800
CH ₄ conversion in the reformer, %	90	90	90	90
S/C at reformer inlet	1.0	1.0	1.0	1.0
Oxygen purity, % _{mol}	95	95	95	95
Oxygen temperature at ASU outlet, °C	15	15	15	15
Oxygen pressure at ASU outlet, bar	2.0	2.0	2.0	2.0
Oxygen preheating temperature, °C	- 1	150	- 1	150
Minimum syngas temperature upstream water scrubber, °C ²	220	220	220	220
Scrubber pump hydraulic/mechel efficiency, %	75/90	75/90	75/90	75/90
Electric consumption of the desulfurization unit, kWh/kg _{H2S,removed}	1.35	1.35	1.35	1.35
Syngas compressor 1 stages	4	6	4	6
Syngas compressor 1 outlet pressure, bar	30.0	30.0	30.2	33.6
Syngas compressor 2 stages	2	2	-	-
Syngas compressor 2 outlet pressure, bar	92	92	-	-
Intercoolers outlet temperature, °C	40	40	40	40
Syngas compressors isentropic/mechel efficiency, %	72/92	72/92	72/92	72/92
1 st WGS reactor inlet temperature, °C	220	-	220	300
1 st WGS reactor pressure, bar	3.5	-	3.5	33.0

2 nd WGS reactor inlet temperature, °C	-	-	220	180		
2 nd WGS reactor pressure, bar	-	-	3.2	31.6		
CO ₂ absorber pressure, bar	30	30	30	30		
CO ₂ separation efficiency, % of inlet CO ₂	95	90	95	95		
Methanol synthesis		1		•		
Reactor pressure, bar	90).0	-			
Tube length, m	6	.0	-			
Tube diameter, mm	40).0	-			
Boiling water temperature, °C	2	38	-			
Catalyst density, kg/m ³	17	/12	-			
Catalyst diameter (cylinder), mm	6	.0	-			
Catalyst height (cylinder), mm	3	.5	-			
Bed voidage degree	0.	39	-			
Flash unit temperature, °C	4	0	-			
GHSV in enhanced operation, h ⁻¹	50	000	-			
RR in enhanced operation, molar basis	5	.0	-			
Syngas recycle compressor isentropic/mechel efficiency, %	80	/94	-			
Methanol purification	·					
Stabilizing column pressure, bar	1.3	1.3	-			
Stabilizing column number of stages	20	20	-			
Concentration column pressure, bar	1.0	1.0	-			
Concentration column number of stages	40	40	-			
Final product methanol purity, % _{wt}	99.85	99.85	-			
Hydrogen production	1					
Hydrogen separation efficiency, %		-	91	0		
Final product hydrogen purity, %vol	- 99.9					
Hydrogen pressure, bar			31	0		
CO ₂ separation and compression						
MDEA regeneration thermal duty, MJ/kg _{CO2,removed}		1.0				
MEA regeneration thermal duty, MJ/kg _{CO2,removed}						

MDEA electric consumption, kWh/ kg _{CO2,removed} 0.012						
MEA electric consumption, kWh/ kg _{CO2,removed}		0.02	25			
CO ₂ compressor stages		5				
CO ₂ compressor outlet pressure, bar		80)			
CO ₂ compressors isentropic/mechel efficiency, %		80/9	92			
Intercoolers outlet temperature, °C	40					
Supercritical CO ₂ pump hydraulic/mechel efficiency, %	75/90					
Supercritical CO ₂ pump outlet pressure, bar		15	0			
Thermal integration						
ICE flue gas outlet temperature,°C	400	-	400	-		
ICE flue gas temperature at the stack, °C	100 - 100 -					
Boiler flue gas cooler exit temperature, °C	s cooler exit temperature, °C - 160 -					
Boiler hot side air pre-heater exit temperature, °C	-	80	-	80		

¹ The oxygen stream is not preheated, since it reaches 108°C after compression up to the gasification pressure. ² Minimum syngas temperature to avoid condensation of residual tars upstream their complete removal within the water scrubber.

	Direct	gasifier	Indirect	gasifier
Syngas composition, % _{mol} dry, N ₂ , Ar free	This work	Reference ¹	This work	Reference ²
CH ₄	7.6	7.5	9.7	9.1
C _x H _y	3.4	3.0	2.6	2.4
СО	25.0	25.4	23.1	25.3
CO ₂	29.6	32.8	19.9	21.0
H ₂	34.3	31.3	44.7	42.2

Table A12 - Comparison of simulated syngas composition with literature data for direct and indirect gasification.

Figure A5 – TQ diagram of the BtM DG plant (recovering heat from ICE flue gas is not necessary).

Figure A6 - TQ diagram of the BtM IG plant (flue gas from boiler available at 1880°C).

Figure A7 - TQ diagram of the $BtH_2 DG$ plant.

Figure A8 - TQ diagram of the BtH₂ IG plant. (flue gas from boiler available at 1933°C).

Appendix **B**

Part of the equipment cost estimate derives from in-house estimation in the framework of the FLEDGED project ^{3,4}. The purchase equipment delivered is increased to the fixed capital investment by using the Lang factors computed from Table B1. The remaining capital cost estimates are selected from scientific literature. The total direct cost of the equipment is obtained from the references, later the fixed capital investment is computed by means Lang factors derived from Table B1. The heat exchanger cost of the steam/water loops is computed by using the area as scaling parameter. The values of the global heat transfer coefficient (U) depending on the thermodynamic characteristics of the working fluids are reported in Table B9. The product of the area and the overall heat transfer coefficient (UA) is divided by U to compute the heat transfer area which is used in the economic evaluation.

	Percent of delivered-equipment cost for								
	Solid processing plant	Solid-fluid processing plant	Fluid processing plant						
Direct costs									
Purchased equipment delivered	100	100	100						
Purchased equipment installation	45	39	47						
Instrumentation and controls (installed)	18	26	36						
Piping (installed)	16	31	68						
Electrical systems (installed)	10	10	11						
Buildings (including services)	25	29	18						
Yard improvements	15	12	10						
Service facilities (installed)	40	55	70						
Total direct plant cost	269	302	360						
Indirect costs									
Engineering and supervision	33	32	33						
Construction expenses	39	34	41						
Legal expenses	4	4	4						
Contractors fee	17	19	22						
Contingency	35	37	44						
Total indirect plant cost	128	126	144						
Fixed capital investment	397	428	504						
Working capital	70	75	89						
Total capital investment	467	503	593						

Table B1 - Multiplying factors for estimating the total capital investment based on delivered-equipment cost.

	X7 1
Economic parameters	Value
Discount rate, %	10.0
Lifetime, y	20
Capital Charge Factor, %	11.75
Annual availability, h/year	7884
Variable Opex	
Biomass feedstock cost, €/t	45.72
2019 Denmark average electricity price, €/MWh	38.49
CO ₂ transport and injection/storage costs, €/t	13.39
Fixed Opex	
Maintenance and repairs, % FCI	5
Operating supplies, % FCI	0.5
Operating labor, % Opex	10
Laboratory costs, % Opex	2.5
Local taxes, % FCI	1
Insurance, % FCI	1
Catalyst cost, €/kg	18.12
Catalyst lifetime, v	4

Table B2 – Parameters and assumptions for the evaluation of the LCOF.

	Cost scaling	Reference	Scaling	Reference purchase	Plant	Lang		Fixed capital
Capital costs	parameter	capacity	exponent	equipment delivered, M€	capacity	factor	Reference	investment, M€
Biomass-to-syngas island								95.54
							Hannula 2016 ⁵	
Feedstock handling ¹	Feed, MWth	157	0.31	6.94	100	1.48	(2010€)	8.91
							Hannula 2016 ⁵	
Belt dryer ¹	Water evap., kg/s	0.342	0.28	2.49	3.62	1.48	(2010€)	7.11
$ASU(O_2 at 1.05 bar) (air$							Kreutz 2005 ⁶	
compr. included) ¹	Pure oxygen, t/d	1839.00	0.5	47.96	221.79	1.40	(2002 \$)	23.32
Oxygen compressor (from	Compressor work,						In-house estimate	
1.05 bar)	MWel	0.41	0.67	0.44	0.46	5.04	^{3,4} (2019 €)	2.35
Pressurized O_2 CFB							Hannula 2016 ⁵	
gasifier ¹	Dry biom., kg/s	17.80	0.75	49.38	5.65	1.42	(2010€)	29.58
							Hannula 2016 ⁵	
Ceramic hot-gas filter ¹	Syngas, kmol/s	1.47	0.67	8.91	0.57	1.48	(2010 €)	6.99
							Hannula 2016 ⁵	
Catalytic reformer ¹	Syngas, kmol/s	2.037	0.67	28.55	0.57	1.42	(2010 €)	17.27
Cleaning and								
conditioning island	~							50.71
	Syngas at cleaning		0.67	0.050	0.65		In-house estimate	1.00
Scrubber	inlet, kmol/s	0.64	0.67	0.270	0.65	5.04	^{3,4} (2019€)	1.38
T 1 1	Syngas at cleaning	0.64	0.67	0.565	0.65	5.04	In-house estimate	2.00
Liquid redox	inlet, kmol/s	0.64	0.6/	0.565	0.65	5.04	^{3,∓} (2019€)	2.90
C 1	Compressor work,	7.01	0.07	7.501	1.40	5.04	In-house estimate $\frac{34}{2010}$	1450
Syngas compressor 1	M wei	/.01	0.67	/.501	4.49	5.04	^{3,} (2019€)	14.56
S	Compressor work,	7.01	0.67	7.501	1.00	5.04	In-nouse estimate $34(2010 \text{ C})$	7.40
Syngas compressor 2		/.01	0.07	/.301	1.00	5.04	^{3,1} (2019€)	/.49
Activated carbon	inlet kmol/s	0.64	0.67	0.002	0.65	3 07	$3.4 (2010 \in)$	0.37
Activated carbon		0.04	0.07	0.092	0.05	5.97	In house estimate	0.57
Waste water treatment	Waste water m ³ /h	22.56	0.67	0.453	12.45	5.04	$3,4$ (2010 \in)	1.53
waste water treatment	waste water, III/II	22.30	0.07	0.455	12.43	5.04	In house estimate	1.55
WGS reactor	Syngas kmol/s	0.263	0.67	1.60	0.18	4 28	^{3,4} (2010 €)	5 30
CO2 removal pre-	byingus, kinol/s	0.205	0.07	1.00	0.10	4.20	IFAGHG 2017 7	5.50
combustion (MDEA) ¹	CO ₂ captured kg/h	46600	0.67	16.69	19168	1 40	(2015 €)	12.89
CO ₂ removal post-			0.07	10.07	1,100	1.10	IEAGHG 2017 7	12.09
combustion (MEA) ¹	CO ₂ captured, kg/h	80048	0.67	72.17	717	1.40	(2015 €)	4.29

Table B3 – BtM DG plant capital costs detail.

Syngas-to-methanol								10.99
	Syngas molar flow,						In-house estimate	10.77
Methanol synthesis BWR	kmol/s	2.20	0.67	1.72	2.0	4.28	^{3,4} (2019 €)	6.97
	Compressor work,						In-house estimate	
Recycle compressor	MWel	0.41	0.67	0.44	0.385	5.04	^{3,4} (2019 €)	2.10
	Raw methanol,						In-house estimate	
Stabilizing column	kmol/s	0.15	0.67	0.10	0.11	5.04	^{3,4} (2019 €)	0.41
	Raw methanol,						In-house estimate	
Concentration column	kmol/s	0.14	0.67	0.36	0.11	5.04	^{3,4} (2019 €)	1.52
Heat recovery island								2.97
CHP internal combustion							Zatti 2018 8	
engine ¹	Fuel input, kWth	13783	0.95	2.480	4861	1.40	(2017€)	1.29
							Elsido 2021 9	
ECO (WGS)	Area, m ²	10000	0.68	0.957	107	5.04	(2019€)	0.22
							Elsido 2021 9	
EVA (WGS)	Area, m ²	5000	0.79	1.164	839	5.04	(2019€)	1.44
							Elsido 2021 9	
SH (WGS)	Area, m ²	505	0.74	0.127	8	5.04	(2019€)	0.03
CO ₂ compression island								14.40
CO_2 compression and	Compressor work,						IEAGHG 2017 ⁷	
dehydration unit ¹	MWel	3.005	0.67	12.97	2.1	1.40	(2015 €)	14.40
Fixed capital investment								174.60
Working capital								30.75
Total capital investment								205.35

	Cost scaling	Reference	Scaling	Reference purchase	Plant	Lang		Fixed capital
Capital costs	parameter	capacity	exponent	equipment delivered, M€	capacity	factor	Reference	investment, M€
Biomass-to-syngas island								92.22
							Hannula 2016 ⁵	
Feedstock handling ¹	Feed, MWth	157	0.31	6.94	100	1.48	(2010 €)	8.91
							Hannula 2016 ⁵	
Belt dryer ¹	Water evap., kg/s	0.342	0.28	2.49	3.62	1.48	(2010 €)	7.11
$ASU(O_2 at 1.05 bar (air)$							Kreutz 2005 ⁶	
compr. included) ¹	Pure oxygen, t/d	1839.00	0.5	47.96	42.86	1.40	(2002 \$)	10.25
	Compressor work,						In-house estimate	
Oxygen compressor	MWel	0.41	0.67	0.44	0.04	5.04	^{3,4} (2019 €)	0.43
							Hannula 2016 ⁵	
Atm steam CFB gasifier ¹	Dry biom., kg/s	17.80	0.75	24.75	4.86	1.42	(2010 €)	13.25
Combustor with fluegas							Hannula 2016 ⁵	
treatment ¹	Fuel input, MWth	5.9	0.65	7.727	29.06	1.42	(2010 €)	30.87
							Hannula 2016 ⁵	
Ceramic hot-gas filter ¹	Syngas, kmol/s	1.47	0.67	8.91	0.47	1.48	(2010 €)	6.17
							Hannula 2016 ⁵	
Catalytic reformer ¹	Syngas, kmol/s	2.037	0.67	28.55	0.47	1.42	(2010 €)	15.24
Cleaning and								
conditioning island								65.39
	Syngas at cleaning						In-house estimate	
Scrubber	inlet, kmol/s	0.64	0.67	0.270	0.55	5.04	^{3,4} (2019 €)	1.23
	Syngas at cleaning						In-house estimate	
Liquid redox	inlet, kmol/s	0.64	0.67	0.565	0.55	5.04	^{3,4} (2019 €)	2.58
	Compressor work,						In-house estimate	
Syngas compressor 1	MWel	7.01	0.67	7.501	5.77	5.04	^{3,4} (2019 €)	17.23
	Compressor work,						In-house estimate	
Syngas compressor 2	MWel	7.01	0.67	7.501	1.66	5.04	^{3,4} (2019 €)	7.48
	Syngas at cleaning					a a -	In-house estimate	
Activated carbon	inlet, kmol/s	0.64	0.67	0.092	0.55	3.97	^{3,4} (2019 €)	0.33
							In-house estimate	
Waste water treatment	Waste water, m ³ /h	22.56	0.67	0.453	10.14	5.04	^{3,4} (2019 €)	1.34
CO_2 removal pre-		1000	0.7-		10005	1.40	IEAGHG 2017 /	0.0
combustion (MDEA) ¹	CO_2 captured, kg/s	46600	0.67	16.69	10027	1.40	(2015 €)	8.35
CO_2 removal post-		00040	0.77		11072	1 40	IEAGHG 2017 /	26.05
combustion (MEA) ¹	CO_2 captured, kg/s	80048	0.67	72.17	110/3	1.40	(2015€)	26.85
Syngas-to-methanol								10.00
island								10.98

Table B4 – BtM IG plant capital costs detail.

	Syngas molar flow,						In-house estimate	
Methanol synthesis BWR	kmol/s	2.20	0.67	1.72	2.0	4.28	^{3,4} (2019 €)	6.95
	Compressor work,						In-house estimate	
Recycle compressor	MWel	0.41	0.67	0.44	0.381	5.04	^{3,4} (2019 €)	2.09
	Raw methanol,						In-house estimate	
Stabilizing column	kmol/s	0.15	0.67	0.10	0.11	5.04	^{3,4} (2019 €)	0.41
	Raw methanol,						In-house estimate	
Concentration column	kmol/s	0.14	0.67	0.36	0.11	5.04	^{3,4} (2019 €)	1.53
Heat recovery island								2.52
							Zatti 2018 8	
Boiler ¹	Fuel input, kWth	10000	0.92	0.598	4789	1.40	(2017 €)	0.43
							Elsido 2021 9	
EVA 1 (syngas cooler)	Area, m ²	5000	0.79	1.164	682	5.04	(2019€)	1.22
							Elsido 2021 9	
EVA2 (flue gas cooler)	Area, m ²	5000	0.79	1.164	376	5.04	(2019€)	0.76
SH (GAS 1) (flue gas							Elsido 2021 9	
cooler)	Area, m ²	505	0.74	0.127	40	5.04	(2019€)	0.10
SH (GAS 2) (flue gas							Elsido 2021 9	
cooler)	Area, m ³	505	0.74	0.127	1	5.04	(2019 €)	0.01
CO ₂ compression island								14.98
CO_2 compression and	Compressor work,						IEAGHG 2017 ⁷	
<i>dehydration unit</i> ¹	MWel	3.005	0.67	12.97	2.3	1.40	(2015€)	14.98
Fixed capital investment								186.09
Working capital								32.77
Total capital investment								218.86

	Cost scaling	Reference	Scaling	Reference purchase	Plant	Lang		Fixed capital
Capital costs	parameter	capacity	exponent	equipment delivered, M€	capacity	factor	Reference	investment, M€
Biomass-to-syngas island								95.54
							Hannula 2016 ⁵	
Feedstock handling ¹	Feed, MWth	157	0.31	6.94	100	1.48	(2010€)	8.91
							Hannula 2016 ⁵	
Belt dryer ¹	Water evap., kg/s	0.342	0.28	2.49	3.62	1.48	(2010€)	7.11
$ASU(O_2 at 1.05 bar) (air$							Kreutz 2005 ⁶	
compr. included) ¹	Pure oxygen, t/d	1839.00	0.5	47.96	221.79	1.40	(2002 \$)	23.32
Oxygen compressor (from	Compressor work,						In-house estimate	
1.05 bar)	MWel	0.41	0.67	0.44	0.46	5.04	^{3,4} (2019 €)	2.35
Pressurized O ₂ CFB							Hannula 2016 ⁵	
gasifier ¹	Dry biom., kg/s	17.80	0.75	49.38	5.65	1.42	(2010€)	29.58
							Hannula 2016 ⁵	
Ceramic hot-gas filter ¹	Syngas, kmol/s	1.47	0.67	8.91	0.57	1.48	(2010€)	6.99
							Hannula 2016 ⁵	
Catalytic reformer ¹	Syngas, kmol/s	2.037	0.67	28.55	0.57	1.42	(2010€)	17.27
Cleaning and								
conditioning island								84.40
	Syngas at cleaning						In-house estimate	
Scrubber	inlet, kmol/s	0.64	0.67	0.270	0.65	5.04	^{3,4} (2019 €)	1.38
	Syngas at cleaning						In-house estimate	
Liquid redox	inlet, kmol/s	0.64	0.67	0.565	0.65	5.04	^{3,4} (2019 €)	2.90
	Compressor work,						In-house estimate	
Syngas compressor	MWel	7.01	0.67	7.501	5.58	5.04	^{3,4} (2019 €)	16.84
	Syngas at cleaning		o (=			• • -	In-house estimate	
Activated carbon	ınlet, kmol/s	0.64	0.67	0.092	0.65	3.97	^{3,4} (2019 €)	0.37
		22.54	0.67	0.450	6 70		In-house estimate	1.00
Waste water treatment	Waste water, m ³ /h	22.56	0.67	0.453	6.79	5.04	^{3,4} (2019€)	1.02
WCS magatoms ²	Sungas Imal/s	0.262	0.67	4.00	0.65	1 28	In-house estimate $34(2010 f)$	21.49
CO nomoval pro	Syngas, Kinol/s	0.203	0.07	4.00	0.05	4.20	IEAGHC 20177	51.40
CO_2 removal pre-	CO contured leg/s	16600	0.67	16.60	27727	1.40	$\frac{12A010}{(2015 f)}$	19.44
COmbustion (MDEA)	CO ₂ captured, kg/s	40000	0.07	10.09	32732	1.40	(2013 C) IEAGHG 2017 7	10.44
CO_2 removal posi-	CO contured ka/s	80048	0.67	72.17	3310	1.40	$\frac{12}{(2015 f)}$	11.06
Sungas_to_bydrogan	CO_2 captured, kg/s	00040	0.07	/2.1/	5510	1.40	(2013 €)	11.90
island								3 63
							Riva 2018	5.05
PSA ¹	Syngas, m ³ /s	4.63	1.00	39.49	0.30	1.42	(2017€) ¹⁰	3.63

Table $B5 - BtH_2 DG$ plant capital costs detail.

Heat recovery island								5.55
CHP internal combustion							Zatti 2018 ⁸	
engine ¹	Fuel input, kWth	13783	0.95	2.480	11962	1.40	(2017€)	3.03
							Elsido 2021 ⁹	
EVA 1 (WGS 1st reactor)	Area, m ²	5000	0.79	1.164	945	5.04	(2019€)	1.58
							Elsido 2021 ⁹	
EVA2 (WGS 2nd reactor)	Area, m ²	5000	0.79	1.164	489	5.04	(2019€)	0.94
CO ₂ compression island								21.44
CO_2 compression and	Compressor work,						IEAGHG 2017 7	
dehydration unit ¹	MWel	3.005	0.67	12.97	3.9	1.40	(2015€)	21.44
Fixed capital investment								210.56
Working capital								37.07
Total capital investment								247.63

² The cost of the reference purchase equipment delivered has been modified in such a way that the cost for single-stage system is 40% of the cost of the two-stage system as indicated in ¹¹.

	Cost scaling	Reference	Scaling	Reference purchase	Plant	Lang		Fixed capital
Capital costs	parameter	capacity	exponent	equipment delivered, M€	capacity	factor	Reference	investment, M€
Biomass-to-syngas island								92.22
							Hannula 2016 ⁵	
Feedstock handling ¹	Feed, MWth	157	0.31	6.94	100	1.48	(2010€)	8.91
							Hannula 2016 ⁵	
Belt dryer ¹	Water evap., kg/s	0.342	0.28	2.49	3.62	1.48	(2010€)	7.11
ASU (O_2 at 1.05 bar (air							Kreutz 2005 ⁶	
compr. included) ¹	Pure oxygen, t/d	1839.00	0.5	47.96	42.86	1.40	(2002 \$)	10.25
	Compressor work,						In-house estimate	
Oxygen compressor	MWel	0.41	0.67	0.44	0.04	5.04	^{3,4} (2019 €)	0.43
							Hannula 2016 ⁵	
Atm steam CFB gasifier ¹	Dry biom., kg/s	17.80	0.75	24.75	4.86	1.42	(2010 €)	13.25
Combustor with fluegas							Hannula 2016 ⁵	
treatment ¹	Fuel input, MWth	5.9	0.65	7.727	29.06	1.42	(2010 €)	30.87
							Hannula 2016 ⁵	
Ceramic hot-gas filter ¹	Syngas, kmol/s	1.47	0.67	8.91	0.47	1.48	(2010€)	6.17
							Hannula 2016 ⁵	
Catalytic reformer ¹	Syngas, kmol/s	2.037	0.67	28.55	0.47	1.42	(2010 €)	15.24
Cleaning and conditioning island								97.24
	Syngas at cleaning						In-house estimate	
Scrubber	inlet, kmol/s	0.64	0.67	0.270	0.55	5.04	^{3,4} (2019 €)	1.23
	Syngas at cleaning						In-house estimate	
Liquid redox	inlet, kmol/s	0.64	0.67	0.565	0.55	5.04	^{3,4} (2019 €)	2.58
	Compressor work,						In-house estimate	
Syngas compressor	MWel	7.01	0.67	7.501	5.98	5.04	^{3,4} (2019 €)	17.65
	Syngas at cleaning						In-house estimate	
Activated carbon	inlet, kmol/s	0.64	0.67	0.092	0.55	3.97	3,4 (2019 €)	0.33
		22.56	0.67	0.450			In-house estimate	1 50
Waste water treatment	Waste water, m ³ /h	22.56	0.67	0.453	14.51	5.04	^{3,4} (2019€)	1.70
		0.0(2)	0.77	1.000	0.57	4.20	In-house estimate	20.70
WGS reactors ²	Syngas, kmol/s	0.263	0.67	4.000	0.57	4.28	^{3,4} (2019€)	28.70
CO_2 removal pre-	CO	40000	0.77	16.00	24417.5	1.40	1EAGHG 2017 /	15 16
combustion (MDEA) ¹	CO_2 captured, kg/s	46600	0.67	16.69	12009 (1.40	(2015€) IEACHC 2017.7	15.16
CO_2 removal post-	CO continued 1/-	80049	0.67	70.17	12998.6	1.40	(2015 C)	20.90
combustion (MEA)	CO_2 captured, kg/s	80048	0.67	/2.1/	2	1.40	(2015€)	29.89
Syngas-to-hydrogen								3.59

Table $B6 - BtH_2$ IG plant capital costs detail.

island								
isiana								
							Riva 2018	
PSA ¹	Syngas, m ³ /s	4.63	1.00	39.49	0.30	1.42	(2017€) 10	3.59
Heat recovery island								3.72
					11729.5		Zatti 2018 8	
Boiler ¹	Fuel input, kWth	10000	0.92	0.598	37	1.40	(2017€)	0.97
							Elsido 2021 ⁹	
EVA 1 (syngas cooler)	Area, m ²	5000	0.79	1.164	440	5.04	(2019€)	0.86
							Elsido 2021 ⁹	
EVA2 (flue gas cooler)	Area, m ²	5000	0.79	1.164	373	5.04	(2019€)	0.76
EVA 3 (WGS 1st-2nd							Elsido 2021 9	
reactor)	Area, m ²	5000	0.79	1.164	51	5.04	(2019€)	0.16
							Elsido 2021 ⁹	
EVA 5 (WGS 2nd reactor)	Area, m ²	5000	0.79	1.164	83	5.04	(2019€)	0.23
							Elsido 2021 9	
EVA HP (syngas cooler)	Area, m ²	5000	0.79	1.164	290	5.04	(2019€)	0.62
SH (GAS 1) (flue gas							Elsido 2021 9	
cooler)	Area, m ²	505	0.74	0.127	40	5.04	(2019€)	0.10
SH (GAS 2) (flue gas							Elsido 2021 9	
cooler)	Area, m ²	505	0.74	0.127	1	5.04	(2019€)	0.01
SH (WGS) (flue gas							Elsido 2021 9	
cooler)	Area, m ³	505	0.74	0.127	3	5.04	(2019€)	0.01
CO ₂ compression island								21.99
CO_2 compression and	Compressor work,						IEAGHG 2017 ⁷	
dehydration unit ¹	MWel	3.005	0.67	12.97	4.0	1.40	(2015€)	21.99
Fixed capital investment								218.77
Working capital								38.50
Total capital investment								257.27

² The cost of the reference purchase equipment delivered has been modified in such a way that the cost for single-stage system is 40% of the cost of the two-stage system as indicated in ¹¹.

	Cost scaling	Reference	Scaling	Reference purchase	Plant	Lang		Fixed capital
Capital costs	parameter	capacity	exponent	equipment delivered, M€	capacity	factor	Reference	investment, M€
Biomass-to-syngas island								95.54
							Hannula 2016 ⁵	
Feedstock handling ¹	Feed, MWth	157	0.31	6.94	100	1.48	(2010€)	8.91
							Hannula 2016 ⁵	
Belt dryer ¹	Water evap., kg/s	0.342	0.28	2.49	3.62	1.48	(2010€)	7.11
$ASU(O_2 at 1.05 bar) (air$							Kreutz 2005 ⁶	
compr. included) ¹	Pure oxygen, t/d	1839.00	0.5	47.96	221.79	1.40	(2002 \$)	23.32
Oxygen compressor (from	Compressor work,						In-house estimate	
1.05 bar)	MWel	0.41	0.67	0.44	0.46	5.04	^{3,4} (2019 €)	2.35
Pressurized $O_2 CFB$							Hannula 2016 ⁵	
gasifier ¹	Dry biom., kg/s	17.80	0.75	49.38	5.65	1.42	(2010€)	29.58
							Hannula 2016 ⁵	
Ceramic hot-gas filter ¹	Syngas, kmol/s	1.47	0.67	8.91	0.57	1.48	(2010€)	6.99
	~	• • • •	o				Hannula 2016 5	
Catalytic reformer ¹	Syngas, kmol/s	2.037	0.67	28.55	0.57	1.42	(2010€)	17.27
Cleaning and								00.00
conditioning island							T 1	92.40
G 11	Syngas at cleaning	0.64	0.67	0.070	0.65	5.04	In-house estimate	1.20
Scrubber	inlet, kmol/s	0.64	0.67	0.270	0.65	5.04	^{3,4} (2019€)	1.38
Timuidanadan	Syngas at cleaning	0.64	0.67	0.5(5	0.65	5.04	In-house estimate $34(2010 \text{ C})$	2.00
Liquia reaox	inlet, kmol/s	0.64	0.67	0.565	0.65	5.04	^{3,4} (2019€)	2.90
Sungag computing on 1	Compressor work,	7.01	0.67	7 501	5 50	5.04	34(2010 C)	16.94
Syngus compressor 1	Comproseer work	/.01	0.07	7.301	5.58	5.04	In house estimate	10.04
Sungas compressor ?	MWel	7.01	0.67	7 501	1.66	5.04	$3.4(2010 \neq)$	7.40
Syngus compressor 2	Syngas at cleaning	/.01	0.07	7.501	1.00	5.04	In-house estimate	//
Activated carbon	inlet kmol/s	0.64	0.67	0.092	0.65	3 97	^{3,4} (2019 €)	0.37
		0.04	0.07	0.072	0.05	5.77	In-house estimate	0.57
Waste water treatment	Waste water m ³ /h	22.56	0.67	0 453	12.45	5.04	^{3,4} (2019 €)	1 53
			0.07		12.1.0	0.01	In-house estimate	1.00
WGS reactors ²	Svngas, kmol/s	0.263	0.67	4.00	0.65	4.28	^{3,4} (2019 €)	31.48
CO ₂ removal pre-	, , , ,						IEAGHG 2017 7	
combustion ($MDEA$) ¹	CO_2 captured, kg/s	46600	0.67	16.69	32732	1.40	(2015€)	18.44
CO ₂ removal post-							IEAGHG 2017 ⁷	
combustion (MEA) ¹	CO ₂ captured, kg/s	80048	0.67	72.17	3310	1.40	(2015€)	11.96
Syngas-to-methanol &								
hydrogen island								14.62

*Table B7 – BtMH*₂ *DG plant capital costs detail.*

	Syngas molar flow,						In-house estimate	
Methanol synthesis BWR	kmol/s	2.20	0.67	1.72	2.03	4.28	^{3,4} (2019 €)	6.97
	Compressor work,						In-house estimate	
Recycle compressor	MWel	0.41	0.67	0.44	0.39	5.04	^{3,4} (2019 €)	2.10
	Raw methanol,						In-house estimate	
Stabilizing column	kmol/s	0.15	0.67	0.10	0.11	5.04	^{3,4} (2019 €)	0.41
	Raw methanol,						In-house estimate	
Concentration column	kmol/s	0.14	0.67	0.36	0.11	5.04	^{3,4} (2019 €)	1.52
							Riva 2018	
PSA ¹	Syngas, m ³ /s	4.63	1.00	39.49	0.30	1.42	(2017€) 10	3.63
Heat recovery island								5.77
CHP internal combustion							Zatti 2018 8	
engine ¹	Fuel input, kWth	13783	0.95	2.480	11962	1.40	(2017€)	3.03
							Elsido 2021 9	
ECO (WGS)	Area, m ²	10000	0.68	0.957	107	5.04	(2019€)	0.22
							Elsido 2021 9	
EVA 1 (WGS 1st reactor)	Area, m ²	5000	0.79	1.164	945	5.04	(2019€)	1.58
							Elsido 2021 9	
EVA2 (WGS 2nd reactor)	Area, m ²	5000	0.79	1.164	489	5.04	(2019€)	0.94
CO ₂ compression island								21.44
CO_2 compression and	Compressor work,						IEAGHG 2017 ⁷	
dehydration unit ¹	MWel	3.005	0.67	12.97	3.9	1.40	(2015 €)	21.44
Fixed capital investment								229.77
Working capital								40.45
Total capital investment								270.22

² The cost of the reference purchase equipment delivered has been modified in such a way that the cost for single-stage system is 40% of the cost of the two-stage system as indicated in ¹¹.

	Cost scaling	Reference	Scaling	Reference purchase	Plant	Lang		Fixed capital
Capital costs	parameter	capacity	exponent	equipment delivered, M€	capacity	factor	Reference	investment, M€
Biomass-to-syngas island								92.22
							Hannula 2016 ⁵	
Feedstock handling ¹	Feed, MWth	157	0.31	6.94	100	1.48	(2010€)	8.91
							Hannula 2016 ⁵	
Belt dryer ¹	Water evap., kg/s	0.342	0.28	2.49	3.62	1.48	(2010€)	7.11
$ASU(O_2 at 1.05 bar (air)$							Kreutz 2005 ⁶	
compr. included) ¹	Pure oxygen, t/d	1839.00	0.5	47.96	42.86	1.40	(2002 \$)	10.25
	Compressor work,						In-house estimate	
Oxygen compressor	MWel	0.41	0.67	0.44	0.04	5.04	^{3,4} (2019 €)	0.43
							Hannula 2016 ⁵	
Atm steam CFB gasifier ¹	Dry biom., kg/s	17.80	0.75	24.75	4.86	1.42	(2010 €)	13.25
Combustor with fluegas							Hannula 2016 ⁵	
treatment ¹	Fuel input, MWth	5.9	0.65	7.727	29.06	1.42	(2010€)	30.87
							Hannula 2016 ⁵	
Ceramic hot-gas filter ¹	Syngas, kmol/s	1.47	0.67	8.91	0.47	1.48	(2010€)	6.17
	~						Hannula 2016 ⁵	
Catalytic reformer ¹	Syngas, kmol/s	2.037	0.67	28.55	0.47	1.42	(2010€)	15.24
Cleaning and								104.72
conditioning island	0 1 1						T 1 (*)	104./2
Southbar	Syngas at cleaning	0.64	0.67	0.270	0.55	5.04	In-house estimate $34(2010 \text{ G})$	1.22
Scrubber	Semana at all and a	0.04	0.07	0.270	0.55	5.04	^{3,1} (2019€)	1.23
Liquid rador	inlot kmol/s	0.64	0.67	0.565	0.55	5.04	3.4(2010 f)	2.59
	Compressor work	0.04	0.07	0.505	0.55	5.04	$\frac{1}{2019}$	2.30
Sungas compressor 1	MWel	7.01	0.67	7 501	5.98	5.04	3,4 (2010 €)	17.65
Syngus compressor 1	Compressor work	/.01	0.07	/.501	5.90	5.04	In-house estimate	17.05
Sungas compressor?	MWel	7.01	0.67	7 501	1.66	5.04	$^{3,4}(2019 \neq)$	7 48
Syngus compressor 2	Syngas at cleaning	7.01	0.07	7.501	1.00	5.04	In-house estimate	7.40
Activated carbon	inlet. kmol/s	0.64	0.67	0.092	0.55	3.97	^{3,4} (2019 €)	0.33
							In-house estimate	
Waste water treatment	Waste water, m ³ /h	22.56	0.67	0.453	14.51	5.04	^{3,4} (2019 €)	1.70
	,						In-house estimate	
WGS reactors ²	Syngas, kmol/s	0.263	0.67	4.000	0.57	4.28	^{3,4} (2019 €)	28.70
CO_2 removal pre-					24417.5		IEAGHG 2017 ⁷	
combustion ($\hat{M}DEA$) ¹	CO ₂ captured, kg/s	46600	0.67	16.69	2	1.40	(2015€)	15.16
CO ₂ removal post-					12998.6		IEAGHG 2017 ⁷	
combustion (MEA) ¹	CO ₂ captured, kg/s	80048	0.67	72.17	2	1.40	(2015€)	29.89

*Table B8 – BtMH*₂ *IG plant capital costs detail.*

Syngas-to-methanol & hydrogen island								14.57
	Syngas molar flow,						In-house estimate	
Methanol synthesis BWR	kmol/s	2.20	0.67	1.72	2.02	4.28	^{3,4} (2019 €)	6.95
Recvcle compressor	Compressor work, MWel	0.41	0.67	0.44	0.38	5.04	In-house estimate ${}^{3,4}(2019 \in)$	2.09
Stabilizing column	Raw methanol,	0.15	0.67	0.10	0.11	5.04	In-house estimate $3,4$ (2019 \in)	0.41
	Raw methanol	0.15	0.07	0.10	0.11	5.04	In-house estimate	0.41
Concentration column	kmol/s	0.14	0.67	0.36	0.11	5.04	^{3,4} (2019 €)	1.53
							Riva 2018	
PSA ¹	Syngas, m ³ /s	4.63	1.00	39.49	0.30	1.42	(2017€) 10	3.59
Heat recovery island								4.09
					11729.5		Zatti 2018 ⁸	
Boiler ¹	Fuel input, kWth	10000	0.92	0.598	37	1.40	(2017€)	0.97
					60		Elsido 2021 ⁹	
EVA I (syngas cooler)	Area, m ²	5000	0.79	1.164	682	5.04	(2019€)	1.22
EVA2 (flue and ecolor)	A mag	5000	0.70	1 164	276	5.04	Elsido 2021°	0.76
EVA2 (flue gas cooler)	Area, m ²	3000	0.79	1.104	570	5.04	(2019 E) Elsido 2021 9	0.70
<i>EVAS</i> (<i>WOS Isi-2nu</i> reactor)	Area m ²	5000	0.79	1 164	51	5 04	(2019 €)	0.16
	/ fied, iii	5000	0.75	1.104	51	5.04	Elsido 2021 9	0.10
EVA 5 (WGS 2nd reactor)	Area, m ²	5000	0.79	1.164	83	5.04	(2019 €)	0.23
							Elsido 2021 ⁹	
EVA HP (syngas cooler)	Area, m ²	5000	0.79	1.164	290	5.04	(2019€)	0.62
SH (GAS 1) (flue gas							Elsido 2021 9	
cooler)	Area, m ²	505	0.74	0.127	40	5.04	(2019€)	0.10
SH (GAS 2) (flue gas							Elsido 2021 ⁹	
cooler)	Area, m ²	505	0.74	0.127	1	5.04	(2019€)	0.01
SH (WGS) (flue gas							Elsido 2021 ⁹	
cooler)	Area, m ³	505	0.74	0.127	3	5.04	(2019€)	0.01
CO ₂ compression island								21.99
CO_2 compression and	Compressor work,						IEAGHG 2017 ⁷	
dehydration unit ¹	MWel	3.005	0.67	12.97	4.0	1.40	(2015 €)	21.99
Fixed capital investment								237.59
Working capital								41.82
Total capital investment								279.40

² The cost of the reference purchase equipment delivered has been modified in such a way that the cost for single-stage system is 40% of the cost of the two-stage system as indicated in ¹¹.

U [W/m ² K]	Fluids
60	Low pressure gas vs. water/steam
30	Low pressure gas vs. low pressure gas
400	High pressure gas vs. high pressure gas
500	High pressure gas vs. water/steam

Table B8 – Global heat transfer coefficients dependent on working fluid thermodynamic conditions.

References

- 1 J. Palonen, 2012.
- 2 H. Thunman, M. Seemann, T. Berdugo Vilches, J. Maric, D. Pallares, H. Ström, G. Berndes, P. Knutsson, A. Larsson, C. Breitholtz and O. Santos, *Energy Sci. Eng.*, 2018, **6**, 6–34.
- A. Poluzzi, G. Guandalini, S. Guffanti, C. Elsido, S. Moioli, P. Huttenhuis, G. Rexwinkel, E. Martelli, G. Groppi and M. C. Romano, *Fuel*, 2022, **310**, 122113.
- 4 A. Poluzzi, G. Guandalini, S. Guffanti, M. Martinelli, S. Moioli, P. Huttenhuis, G. Rexwinkel, J. Palonen, E. Martelli, G. Groppi and M. C. Romano, *Front. Energy Res.*, , DOI:10.3389/fenrg.2021.795673.
- 5 I. Hannula, *Energy*, 2016, **104**, 199–212.
- 6 T. Kreutz, R. Williams, S. Consonni and P. Chiesa, *Int. J. Hydrogen Energy*, 2005, **30**, 769–784.
- 7 IEAGHG, Tech. Rev. 2017-02, 2017, 286.
- 8 M. Zatti, M. Gabba, M. Rossi, M. Morini, A. Gambarotta and E. Martelli, *Environ. Eng. Manag. J.*, 2018, **17**, 2409–2419.
- 9 C. Elsido, E. Martelli and I. E. Grossmann, *Comput. Chem. Eng.*, 2021, 149, 107293.
- 10 L. Riva, I. Martínez, M. Martini, F. Gallucci, M. van Sint Annaland and M. C. Romano, *Int. J. Hydrogen Energy*, 2018, **43**, 15720–15738.
- 11 E. D. Larson, H. Jin and F. E. Celik, *Biofuels, Bioprod. Biorefining*, 2009, **3**, 174–194.