Supporting Information

Rational engineering of 1D NiMoO₄/0D CdS heterostructure for efficient photocatalytic hydrogen generation under visible light

Mohamed AbdEl-Aal^{1†}, Mahmoud R. Saleh^{2†*}, Haitham M. El-Bery^{2*}

¹Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt.

²Advanced Multifunctional Materials Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt.

*Corresponding Author Email: <u>Haitham.El-Bery@aun.edu.eg</u>

†These authors are equally contributed

Fig. S1. Time course of H₂ evolution over CdS-NiMoO₄ and NiMoO₄ composites using different Xe filters of AM 1.4, UVCUT400, and UVCUT420. (Reaction conditions: 100 mg of sample, pH~12.6, and reaction time is 3h)

Fig. S2. UV–vis DRS of NiMoO₄@CdS_X, where X referred to the mass percent of NiMoO₄ in the composite.

Fig. S3. Photocurrent responses of CdS, and NiMoO₄@CdS electrodes by using LSV.

Fig. S4. Photocurrent response of NiMoO₄ photoelectrode by using CAM.