Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2022

Supporting information

The calculate the absorbed photocurrent density of the photoelectrode: J_{abs} is defined as the photocurrent density generated when the photoelectrode converts 100% of the absorbed photon energy into electrons and holes, representing the theoretical relationship that the absorbed photons completely convert the photocurrent. $P_{abs}(\lambda)$ (mW/(cm²·nm)) is integrated with the wavelength λ to obtain the total power (mW/cm²), that is, the power actually absorbed by the photoelectrode, which is then converted into the photocurrent J_{abs} according to equation (11):

$$J_{abs}(\frac{mA}{cm^2}) = \int_{\lambda_1}^{\lambda_2} \frac{\lambda(nm)}{1240(V \cdot nm)} \times \frac{P_{abs}(\lambda)}{10} (\frac{mW}{cm^2 \cdot nm}) d\lambda$$
(11)

In addition, Fig. S7 can be obtained from the UV/Vis absorption spectrum, which is the cutoff wavelength diagram of the photoelectrode light absorption under AM 1.5 G simulated sunlight illumination, and the arrow indicates the intrinsic absorption of the photoelectrode.

In the previous experiment, we controlled the grain size by hydrothermal time and temperature. The NaNbO₃ prepared by hydrothermal method was orthorhombic phase. As shown in the Fig. S11a-c, it can be clearly observed that when the hydrothermal time is 4 h, 6 h and 10 h, the grain size is ~0.5 μ m, ~1 μ m and ~2 μ m respectively. The grain size increases with the increase of hydrothermal time. According to the hydrothermal temperature gradient experiment (Fig. S11d-c), with the increase of hydrothermal temperature, the grains gradually grow and become more complete, showing a cube-shaped structure.

Using samples with different grain sizes synthesized in previous experiments, we compared the effects of different grain sizes on pyro-photo-electric catalytic properties. As shown in the Fig. S12, under the stimulation of light and thermal cycle, when the grain size of the sample is ~1 μ m, the current density reaches 0.38 mA/cm² at 1.23 V_{RHE}, higher than ~0.5 μ m and ~2 μ m samples. This indicates that when the grain size of the sample is ~1 μ m has better pyro-photo-electric catalytic properties. We speculate that the reason may be the difference of spontaneous polarization intensity^[60].

Fig. S1 EDS elemental analysis spectrum. (a) NaNbO₃ photoanode; (b) NaNbO₃/Co(OH)₂ composite electrode

Fig.S2 Cross-sectional SEM image of $NaNbO_3/Co(OH)_2$ composite electrode, showing the EDS line scan at which the atom distribution

Fig.S3 XPS spectra of survey

Fig.S4 UV-visible absorption spectrum of NaNbO₃, the inset is $(\alpha hv)^2$ versus photon energy (hv)

curve

Fig.S5 UV-visible absorption spectrum of NaNbO₃/Co(OH)₂, the inset is $(\alpha h\nu)^2$ versus photon

energy (hv) curve

Fig. S6 The mechanism of pyro-photo-electric catalysis process

Fig.S7 The light absorption cut-off wavelength diagram of NaNbO₃ electrode and NaNbO₃/Co(OH)₂ composite electrode under AM 1.5G simulated sunlight illumination (100 mW/cm²); (a) NaNbO₃ electrode; (b) NaNbO₃/Co(OH)₂ composite electrode; (c) AM 1.5G simulated sunlight illumination power density

Fig. S8 Schematic diagram of synergistic water splitting by pyroelectric and photoelectrochemical catalysis

Fig. S9 The ideal temperature curve for cold-hot thermal cycles

Fig. S10 Steady-state current curves of NaNbO₃ electrode and NaNbO₃/Co(OH)₂ composite electrode measured in 1.0 M Na₂SO₄ (pH=6.8) electrolyte under consistent one sun illumination for 3600 s

Fig. S11 The NaNbO₃ synthesized at different hydrothermal time and temperature; (a) 160 °C-4 h; (b) 160 °C-6 h; (c) 160 °C-10 h; (d) 120 °C-8 h; (e) 140 °C-8 h; (f) 180 °C-8 h

Fig. S12 The I-V curves of NaNbO3 samples with different grain sizes (Under the light +

 ΔT)

Fig. S13 The SEAD of NaNbO₃ and Co(OH)₂; (a) NaNbO₃; (b) Co(OH)₂

Tab. S1 Flat band potential (V_{fb}) and donor density (N_d) of electrodes deduced from

Mott-Schottky

Sample	NaNbO ₃			NaNbO ₃ /Co(OH) ₂		
conditions	light	ΔΤ	light +	light	ΔΤ	light +
			ΔΤ			ΔΤ
$V_{fb}(\mathbf{V})$	-0.01	0.1	-0.26	-0.21	-0.06	-0.36
Vs. RHE						
N_d (*10 ¹⁷ cm ⁻³)	7.7	6.9	10	14.1	10.2	20.6

Materials	pyro-photo-electric catalytic	Publishing year		
	properties			
BaTiO _{3-X} -5% ^[61]	0.77 mA/cm ²	2022		
Ba _{0.7} Sr _{0.3} TiO _{3-X} ^[62]	0.92 mA/cm ²	2022		
$K_x Na_{1-x} NbO_3^{[63]}$	0.528 mA/cm ²	2022		
NaNbO ₃ /Co(OH) ₂	1.68 mA/cm ²			

Tab. S2 the comparison of pyro-photo-electric catalytic properties of other composites