Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2022

Supplementary Materials

Exploring Air stability of All-Inorganic Halide Perovskites in the presence of

Photogenerated Electrons by DFT and AIMD studies

Ming-Quan Cai[†], Dhana Lakshmi Busipalli[†], Shi-Hong Xu, Santhanamoorthi Nachimuthu^{*}, and Jyh-Chiang Jiang^{*}

Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan, R.O.C.

Corresponding authors: <u>santhanamoorthi@gmail.com</u> (S.N) jcjiang@mail.ntust.edu.tw (J.C.J)

Telephone: +886-2-27376653. Fax: +886-2-27376644

[†]These authors contributed equally to this work

Figure 1S. Optimized bulk model of orthorhombic phase of (a) CsPbCl₃, (b) CsPbBr₃, and (c) CsPbI₃ perovskites

Figure 2S. Total and projected density of states of the bulk orthorhombic phase of (a) CsPbCl₃,(b)CsPbBr₃,and(c)CsPbI₃perovskites.

Figure 3S. Simulated XRD patterns of the bulk orthorhombic phase of (a) CsPbCl₃, (b) CsPbBr₃, and (c) CsPbI₃ perovskites along with their experimental data.

Figure 4S. Side and top views of optimized geometries of most stable adsorption configuration of O_2 on (a) CsPbCl₃ (121), (b) CsPbBr₃ (112), and CsPbI₃ (220) perovskite surfaces with the photogenerated 1e⁻.

Figure 5S. Side and top views of optimized geometries of most stable adsorption configuration of O_2 on (a) CsPbCl₃ (121), (b) CsPbBr₃ (112), and CsPbI₃ (220) perovskite surfaces with the photogenerated 2e⁻.

Figure 6S. Side and top views of optimized geometries of most stable adsorption configuration of O_2 on (a) CsPbCl₃ (121), (b) CsPbBr₃ (112), and CsPbI₃ (220) perovskite surfaces with the photogenerated 1h⁺.

Figure 7S. Side and top views of optimized geometries of most stable adsorption configuration of O_2 on (a) CsPbCl₃ (121), (b) CsPbBr₃ (112), and CsPbI₃ (220) perovskite surfaces with the photogenerated 1h⁺.

Figure 8S. Top and side views of selected snapshots of the AIMD trajectory at different simulation times for O_2 adsorbed on the CsPbCl₃(121)perovskitesurfaceinneutral.

Figure 9S. Top and side views of selected snapshots of the AIMD trajectory at different simulation times for O_2 adsorbed on the CsPbBr3(112)perovskitesurfaceinneutral.

Figure 10S. Top and side views of selected snapshots of the AIMD trajectory at different simulation times for O_2 adsorbed on the CsPbI3(220)perovskitesurfaceinneutral.

Х	Site	Eads
	Top_Cs	-0.15
Cl	Top_Cl	-0.07
	Hollow	-0.16
	Top_Cs	-0.13
Br	Top_Br	-0.04
	Hollow	-0.08
Top_Pb	Top_Pb	-0.16
1	I Top_I	-0.14

Table 1S. Calcualted O_2 adsorption energies (E_{ads} in eV) for the least stable configurations on the CsPbX₃ (X=Cl, Br, I) perovskite surfaces.

X	E _{ads}	<i>d</i> ₀₂ -s	<i>d</i> ₀₋₀
Cl	-0.20	3.04	1.237
Br	-0.22	3.05	1.240
Ι	-0.17	3.71	1.235

Table 2S. Calculated O₂ adsorption energies (E_{ads} in eV) on the CsPbX₃ (X=Cl, Br, I) perovskite surfaces with four molecular layers, the shortest adsorption distance of O₂ to the surface (${}^{d_{O_2}-s}$ in Å), and the O₂ interatomic distances (${}^{d_{O_2}-o}$ in Å).