One-pot two-step synthesis of alkyl levulinates directly from furfural by combining Ni₃Sn₂ alloy nanoparticles and montmorillonite K10

Nobutaka Yamanaka,*a Daiki Abe,^a Masaiku Miwaka-Saiga,^a Kenji Yasunaga,^a Hiroshi Yamada^a and Shogo Shimazu^b

^a Department of Applied Chemistry, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan. E-mail: yamanaka@nda.ac.jp.

^b Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan.

Table S1 Effect of alcohol solvent on the alcoholysis of furfuryl alcohol by montmorillonite K10 in long-chain alcohol solvents^{*a*}

Entry	Alcohol solvent	Conv. / %	Yield ^b / %
1	1-Pentanol	>99	47
2	1-Hexanol	>99	38

^{*a*} Reaction conditions: montmorillonite K10, 50 mg; furfuryl alcohol, 0.30 mmol; naphthalene, 0.30 mmol; solvent, 3.0 mL; N₂ pressure, 1.0 MPa; reaction temperature, 393 K; reaction time, 12 h. ^{*b*} Corresponding alkyl levulinate yield was identified and quantified using ¹H NMR.

Table S2 Comparison of the catalytic results obtained for the alcoholysis of furfuryl alcohol to ethyl levulinate by montmorillonite K10 and other Brønsted acid catalysts.

Entry	Catalyst	Reaction temperature / K	Reaction time / h	Yield / %	References
1	Montmorillonite K10	393	8	73	This work
2	Al-TUD-1	413	2	48	[1]
3	$H_3PW_{12}O_{40}$	393	2	63	[2]
4	GCC	423	1	67	[3]
5	Purolite CT151	353	5	71	[4]

Table S3 The catalytic activity of Ni_3Sn_2 alloy nanoparticles for the chemoselective hydrogenation of furfural to furfuryl alcohol compared with various alcohol parameters

Alcohol solvent	Time / h	\mathcal{E}^{a}	π^{*b}	α^c	β^{d}
Methanol	20	32.7	0.60	0.93	0.66
Ethanol	4	24.6	0.54	0.83	0.75
1-Propanol	28	20.1	0.52	0.78	0.84
1-Butanol	30	17.8	0.47	0.79	0.88
2-Propanol	26	19.9	0.48	0.76	0.95

^{*a*} Dielectric constant [5,6]. ^{*b*} Dipolarity/polarizability [7]. ^{*c*} Hydrogen-bond donor capability [7]. ^{*d*} Hydrogen-bond acceptor capability [5,7].

Fig. S1 Furfural hydrogenation by Ni_3Sn_2 alloy nanoparticles in 2-propanol solvent. Reaction conditions: Ni_3Sn_2 alloy nanoparticles, 2.75 mg; furfural, 0.30 mmol (furfural/Ni molar ratio = 15); *n*-dodecane, 0.30 mmol; 2-propanol, 3.0 mL; H₂ pressure, 1.0 MPa; reaction temperature, 453 K.

Fig. S2 Alcoholysis of the in situ formed furfuryl alcohol by montmorillonite K10 in 2-propanol solvent. Reaction conditions: Ni_3Sn_2 alloy nanoparticles, 2.75 mg; montmorillonite K10, 50 mg; furfural, 0.30 mmol; *n*-dodecane, 0.30 mmol; N_2 pressure, 1.0 MPa; reaction temperature, 393 K; reaction time, 12 h.

Fig. S3 Time profile for the alcoholysis of furfuryl alcohol by montmorillonite K10 in ethanol solvent (6.0 mL). Reaction conditions: montmorillonite K10, 50 mg; furfuryl alcohol, 0.30 mmol; *n*-dodecane, 0.30 mmol; ethanol,

6.0 mL; N₂ pressure, 1.0 MPa; reaction temperature, 393 K.

References

- [1] P. Neves, S. Lima, M. Pillinger, S. M. Rocha, J. Rocha and A. A. Valente, Catal. Today, 2013, 218-219, 76.
- [2] D. Song, S. An, Y. Sun and Y. Guo, J. Catal., 2016, 333, 184.
- [3] G. Zhao, M. Liu, X. Xia, L. Li and B. Xu, *Molecules*, 2019, 24, 1881.
- [4] M. Annatelli, G. Trapasso, L. Lena and F. Aricò, Sustain. Chem., 2021, 2, 493.
- [5] H. Wan, A. Vitter, R. V. Chaudhari and B. Subramaniam, J. Catal., 2014, 309, 174.
- [6] Y.-C Wu and Y.-C Tai, J. Nanopart. Res., 2013, 15, 1686.
- [7] M. J. Kamlet J.-L. M. Abboud, M. H. Abraham and R. W. Taft, J. Org. Chem., 1983, 48, 2877.