Electronic Supplementary Information

Materials: Cobalt nitrate (Co(NO₃)₂·6H₂O, AR, 99.0%), sodium nitrate (NaNO₃, AR, 99.0%), sodium nitrite (NaNO₂, AR, 99.0%), sodium sulfate (Na₂SO₄, AR, 99.0%), ammonium chloride (NH₄Cl, AR, 99.5%), sodium hydroxide (NaOH, AR, 97%), sodium salicylate (C₇H₅NaO₃, AR, 99.5%), trisodium citrate dihydrate (C₆H₅Na₃O₇·2H₂O, AR, 99.0%), p-dimethylaminobenzaldehyde (C₉H₁₁NO, AR, 99.0%), sodium nitroferricyanide dihydrate (C₅FeN₆Na₂O·2H₂O, AR, 99.0%) and sodium hypochlorite solution (NaClO, available chlorine \geq 5.0%) were purchased from Aladdin Ltd. (Shanghai, China). Sulfuric acid (H₂SO₄, ~98%), hydrogen peroxide (H₂O₂, 30%), hydrochloric acid (HCl, ~37%), hydrazine monohydrate (N₂H₄·H₂O, 98%) and anhydrous ethyl alcohol (C₂H₅OH, 95%) were bought from Beijing Chemical Corporation (Chengdu, China). Carbon cloth (CC) was provided by Hongshan District, Wuhan instruments business. All chemicals were used as received without further purification. The ultrapure water used throughout all experiments was purified through a Millipore system.

Fig. S1. XRD patterns of $V_{\rm O}\text{-}Co_3O_4/CC$ and $Co_3O_4/CC.$

Fig. S2. SEM images of (a) Co₃O₄/CC and (b) V_O-Co₃O₄/CC.

Fig. S3. Chronoamperometry curves of V_0 -Co₃O₄/CC at different potentials in 0.1 M NaOH with 0.1 M NO₃⁻.

Fig. S4. (a) UV-vis absorption spectra and corresponding (b) calibration curve used for NH_3 quantification.

Fig. S5. Cyclic voltammograms of (a) Vo-Co₃O₄/CC and (b) Co₃O₄/CC at different scanning rates for double layer capacitance calculation.

Fig. S6. (a) UV-vis spectra and corresponding (b) calibration curve used for N_2H_4 quantification.

Fig. S7. (a) UV-vis spectra and corresponding (b) calibration curve used for NO_2^- quantification.

Fig. S8. UV-vis spectra of the electrolytes estimated by the method of Watt and Chrisp after electrolysis at each given potential for N_2H_4 detection.

Fig. S9. UV-vis spectra of the electrolytes after electrolysis colored with Griess reagent for NO_2^- detection.

Fig. S10. NH₃ yields and FEs of V_0 -Co₃O₄/CC for alternating cycle tests between NO₃⁻-containing and NO₃⁻-free 0.1 M NaOH at -0.5 V.

Fig. S11. Chronoamperometry curves for V_0 -CO₃O₄/CC during consecutive cycling tests toward NO₃RR at -0.5 V in 0.1 M NaOH with 0.1 M NO₃⁻.

Fig. S12. Long-term stability test of V_O -Co₃O₄/CC at -0.5 V for two cycles.

Fig. S13. (a) EPR spectrum and (b, c) XPS spectra of V_0 -Co₃O₄/CC after 12-h electrolysis.

Fig. S14. Chronoamperometry curves of V_O -Co₃O₄/CC at different potentials in alkaline wastewater.

Table S1. Comparison of catalytic performances comparison of V_O -Co₃O₄/CC with other reported NO₃RR electrocatalysts.

Catalyst	Electrolyte	Performance	Ref.
V ₀ -Co ₃ O ₄ /CC	0.1 M NaOH (0.1 M NO₃ [−])	NH ₃ yield rate: 12,157 μ g h ⁻¹ cm ⁻² FE _{NH3} : 96.9 %	This work
TiO _{2-x}	0.5 M Na ₂ SO ₄ (50 ppm NO ₃ ⁻)	NH ₃ yield rate: 850 μ g h ⁻¹ cm ⁻² FE _{NH3} : 85.0 %	1
PTCDA/O-Cu	0.1 M PBS (500 ppm NO ₃ ⁻)	NH ₃ yield rate: $436 \pm 85 \ \mu g \ h^{-1} \ cm^{-2}$ FE _{NH3} : 85.9 %	2
Co/CoO NSA	3.28 mM Na ₂ SO ₄ (200 ppm NO ₃ ⁻)	NH ₃ yield rate: 3305 μ g h ⁻¹ cm ⁻¹ FE _{NH3} : 93.8 %	3
Co ₃ O ₄ @NiO HNTs	0.5 M Na ₂ SO ₄ (200 ppm NO ₃ ⁻)	NH ₃ yield rate: 6.93 mmol h ⁻¹ g ⁻¹ FE _{NH3} : 54.97 %	4
NiPc complex	0.1 M KOH, in the presence of NO ₃ ⁻	NH ₃ yield rate: n/a FE _{NH3} :85 %	5
Cu nanosheets	1 М КОН	NH ₃ yield rate: 390.1 μ g h ⁻¹ mg ⁻¹ FE _{NH3} :99.7 %	6
Cu ₅₀ Ni ₅₀	1 M KOH (10 mM KNO ₃)	NH ₃ yield rate: n/a FE _{NH3} :84 \pm 2 %	7
Ti/GC	KOH (~0.1 to 0.6 M NO ₃ ⁻)	NH ₃ yield rate: n/a FE _{NH3} :82 %	8
NTEs	NaCl (0.65 mM NaNO_3)	NH ₃ yield rate: n/a FE _{NH3} :5.6 %	9
CoO@NCNT/GP	0.1 M NaOH (0.1 M NO3⁻)	NH ₃ yield rate: 9041.6 \pm 370.7 $\mu g \ h^{-1} \ cm^{-2}$ FE _{NH3} : 93.8 \pm 1.5 %	10
ZnCo ₂ O ₄	0.1 M KOH (0.1 M NO ₃ [−])	NH3 yield rate: 2100 μ g h ⁻¹ mg ⁻¹ FE _{NH3} :95.4 %	11
PP-Co	0.1 M NaOH (0.1 M NO ₃ -)	NH ₃ yield rate: 1.1 mmol μ g h ⁻¹ mg ⁻¹ FE _{NH3} :90.1 %	12
Co _{0.5} Cu _{0.5}	1 M KOH (50 mM KNO ₃)	NH ₃ yield rate: n/a FE _{NH3} :95 %	13
Co ₂ AlO ₄	0.1 M PBS (0.1 M NO ₃ ⁻)	NH ₃ yield rate: 7.9 mg h ⁻¹ cm ⁻² FE _{NH3} :92.6 %	14

References

- R. Jia, Y. Wang, C. Wang, Y. Ling, Y. Yu and B. Zhang, ACS Catal., 2020, 10, 3533-3540.
- G. Chen, Y. Yuan, H. Jiang, S. Ren, L. Ding, L. Ma, T. Wu, J. Lu and H Wang, *Nat. Energy*, 2020, 5, 605–613.
- 3 Y. Yu, C. Wang, Y. Yu, Y. Wang and B. Zhang, *Sci. China Chem.*, 2020, **63**, 1469-1476.
- 4 Y. Wang, C. Liu, B. Zhang and Y. Yu, *Sci. China Mater.*, 2020, **63**, 2530–2538.
- 5 N. Chebotareva and T. Nyokong, J. Appl. Electrochem., 1997, 27, 975–981.
- X. Fu, X. Zhao, X. Hu, K. He, Y. Yu, T. Li, Q. Tu, X. Qian, Q. Yue and M. R.
 Wasielewski, *Appl. Mater. Today*, 2020, 19, 100620.
- Y. Wang, A. Xu, Z. Wang, L. Huang, J. Li, F. Li, J. Wicks, M. Luo, D. H. Nam, C. Tan, Y. Ding, J. Wu, Y. Lum, C. T. Dinh, D. Sinton, G. Zheng and E. H. Sargent, *J. Am. Chem. Soc.*, 2020, 142, 5702–5708.
- J. M. McEnaney, S. J. Blair, A. C. Nielander, J. A. Schwalbe, D. M. Koshy, M. Cargnello and T. F. Jaramillo, ACS Sustainable Chem. Eng., 2020, 8, 2672–2681.
- X. Ma, M. Li, C. Feng, W. Hu, L. Wang and X. Liu, J. Electroanal. Chem., 2016, 782, 270–277.
- Q. Chen, J. Liang, L. Yue, Y. Luo, Q. Liu, N. Li, A. A. Alshehri, T. Li, H.
 Guo and X. Sun, *Chem. Commun.*, 2022, 58, 5901–5904.
- P. Huang, T. Fan, X. Ma, J. Zhang, Y. Zhang, Z. Chen and X. Yi, *ChemSusChem*, 2022, 15, e202102049.
- Q. Chen, J. Liang, Q. Liu, K. Dong, L. Yue, P. Wei, Y. Luo, Q. Liu, N. Li, B. Tang, A. A. Alshehri, M. S. Hamdy, Z. Jiang and X. Sun, *Chem. Commun.*, 2022, 58, 4259–4262.
- T. H. Jeon, Z.-Y. Wu, F.-Y. Chen, W. Choi, P. J. J. Alvarez and H. Wang, *The J. Phys. Chem. C*, 2022, **126**, 6982–6989.

Z. Deng, J. Liang, Q. Liu, C. Ma, L. Xie, L. Yue, Y. Ren, T. Li, Y. Luo, N. Li,
B. Tang, A. Ali Alshehri, I. Shakir, P. O. Agboola, S. Yan, B. Zheng, J. Du, Q.
Kong and X. Sun, *Chem. Eng. J.*, 2022, 435, 135104.