SUPPLEMENTARY INFORMATION

Conversion of Organosolv and Kraft lignins into value-added compounds assisted by an acidic deep eutectic solvent

Filipe H. B. Sosa^{1,2}, Ana Bjelić³, João A. P. Coutinho¹, Mariana C. Costa², Blaž Likozar³ Edita Jasiukaitytė-Grojzdek³, Miha Grilc³, Andre M. da Costa Lopes^{1,4}*

¹CICECO, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.

²School of Chemical Engineering (FEQ), University of Campinas (UNICAMP), Campinas, Brazil.

³Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia

⁴CECOLAB - Collaborative Laboratory Towards Circular Economy, R. Nossa Senhora da Conceição, 3405-155 Oliveira do Hospital

* Corresponding author. e-mail address: andremcl@ua.pt

S1 – 2D HSQC NMR characterization of initial Kraft and Organosolv lignins

Figure S1. 2D HSQC NMR spectra of (A) Kraft lignin and (B) Organosolv Lignin with corresponding assignments of lignin substructures.

Labels	δC	δH	Assignment			
Dβ	49.61	3.39	C_{β} -H _{β} in β -1' spirodienone substructures (D)			
Ββ	53.50	3.07	C_{β} -H _{β} in resinol substructures (B)			
Сβ	53.71	3.46	C_{β} -H _{β} in β -5 phenylcoumaran			
Β'β	54.20	2.82	C_{β} - H_{β} in epiresinol substructures (B)			
MeO	56.06	3.75	C-H in methoxyls			
Αγ	59.00	3.2	C_{γ} -H _{γ} in β -O-4' substructures (A)			
Αγ	59.87	3.71	C_{γ} -H _{γ} in β -O-4' substructures (A)			
Ηγ	61.59	4.11	C_{γ} -H _{γ} in p-hydroxycynnamyl alcohol			
Εα	63.16	4.64	C_{α} -H _{α} in p-hydroxycinnamyl alcohol			
Сү	63.26	3.89	C_{γ} -H _{γ} in β-5 phenylcoumaran			
X5	63.63	3.28	C ₅ -H ₅ in xylan			
Jγ	66.88	4.28	$C_{\gamma}\text{-}H_{\gamma}$ in $\beta\text{-}O\text{-}4'$ Ca- etherified with carbohydrate			
Dγ'	68.89	3.79	C_{γ} -H _{γ} in β -1' spirodienone substructures (D)			
Dγ'	68.92	3.13	C_{γ} -H _{γ} in β -1' spirodienone substructures (D)			
Β'β	70.56	4.09	C_{β} -H _{β} in epiresinol substructures (B)			
Βγ	71.07	3.79	C_{γ} -H _{γ} in resinol substructures (B)			
Βγ	71.14	4.2	C_{γ} -H _{γ} in resinol substructures (B)			
Αα	71.62	4.91	C_{α} -H _{α} in β -O-4' substructures (A)			
X4	72.85	3.06	C ₄ -H ₄ in xylan			
Fα	74.18	4.43	C_{α} -H _{α} in Ar-CHOH-COOH unit			
X3	74.28	3.28	C ₃ -H ₃ in xylan			
X2	75.84	3.53	C ₂ -H ₂ in xylan			
Β'α	81.36	4.78	C_{α} -H _{α} in epiresinol substructures (B)			
Сα	82.92	5.51	Ca-Ha in β -5 phenylcoumaran			
Ια	83.41	4.83	Ca-Ha in β -O-4' Ca- etherified with carbohydrate			
Αβ	83.96	4.31	(G) C β H β in β -O-4' linked to G units			
Αβ	83	5.2	C β -H β in β -O-4' substructures			
Βα	85.3	4.67	C_{α} -H _{α} in resinol substructures (B)			
Dβ'	86.89	4.44	C_{β} -H _{β} in β -1' spirodienone substructures (D)			
Β'α	87.22	4.33	C_{α} -H _{α} in epiresinol substructures (B)			
Αβ	87.23	3.69	(S) C_{β} -H _{β} in β -O-4' linked to S units			

 Table S1. Assignments of main lignin ¹H-¹³C correlation signals found in the HSQC spectra.

X1	101.8	4.29	C ₁ -H ₁ in xylan
S'2.6	104.88	7.07	C _{2.6} - H _{2.6} in oxidized Syringyl units (S')
S2.6	105.22	6.47	C _{2.6} - H _{2.6} in Syringyl units (S)
G2	111.00	6.95	C ₂ -H ₂ in Guaiacyl units (G)
G2'	111.04	7.33	C ₂ -H ₂ in oxidized Guaiacyl units (G)
G5	115.00	6.75	C ₅ -H ₅ in Guaiacyl units (G)
G6	119.00	6.75	C ₆ -H ₆ in Guaiacyl units (G)
G6'	120.14	7.24	C ₆ -H ₆ in oxidized Guaiacyl units (G)
Н	122.98	7.56	Cynnamyl alcohols. aldehydes or acids (aromatic and end groups)
Н	125.53	7.79	Cynnamyl alcohols. aldehydes or acids (aromatic and end groups)
Н	126.16	4.00	Cynnamyl alcohols. aldehydes or acids (aromatic and end groups)
Н	127.01	7.35	Cynnamyl alcohols. aldehydes or acids (aromatic and end groups)
Н	128.42	8.09	Cynnamyl alcohols. aldehydes or acids (aromatic and end groups)
Н	131.29	8.23	Cynnamyl alcohols. aldehydes or acids (aromatic and end groups)
Н	145.73	8.8	Cynnamyl alcohols. aldehydes or acids (aromatic and end groups)

S2 – Characterization of lignin depolymerized fraction

 Table S2. Main compounds identified in the GC-MS.

Entry	Molecular structure	Entry	Molecular structure
1	OH	2	ОН
3	HO HO	4	CI OH

C

Figure S2. Gas chromatogram of lignin depolymerisation products obtained after treatment of Kraft lignin with (a) [Ch]Cl:Oxa/H₂SO₄ and (b) [Ch]Cl:Oxa/H₂O₂ and Organolsolv lignin with (c) [Ch]Cl:Oxa/H₂SO₄ and (d) [Ch]Cl:Oxa/H₂O₂. The reactions were performed at 80 °C for 3 h. Methyl benzoate was used as a standard compound.

Figure S3. Relative abundance (%) of lignin depolymerisation products from (a) KL and (b) OL treatments at 80 °C for 1 hour with (\blacksquare) [Ch]Cl:Oxa, (\blacksquare) [Ch]Cl:Oxa/H₂SO₄ and (\blacksquare) [Ch]Cl:Oxa/H₂O₂.

Figure S4. Relative abundance (%) of lignin depolymerisation products from (a) KL and (b) OL treatments at 80 °C for 6 hours with (■) [Ch]Cl:Oxa, (■) [Ch]Cl:Oxa/H₂SO₄ and (■) [Ch]Cl:Oxa/H₂O₂.

Figure S5. GPC analysis of lignin depolymerisation products from OL treatment at 80 °C during (a) 1 h and (b) 6 h with (\blacksquare) [Ch]Cl:Oxa, (\blacksquare) [Ch]Cl:Oxa/H₂SO₄ and (\blacksquare) [Ch]Cl:Oxa/H₂O₂.

Figure S6. Relative peak area of identified compounds after (a) KL and (b) OL depolymerisation at 80 °C for (■) 1 h, (■) 3 h and (■) 6 h with [Ch]Cl:Oxa.

S4 - Structural characterization of regenerated lignin samples

	Kraft Lig	Orga	Organosolv Lignin						
Sample	Mw Mn		PDI	Mw		Mn	PDI		
Untreated	2500±90	1200±38	2.1±0.0	3300	±111	1500±10	2.2±0.1		
1 hour									
[Ch]Cl:Oxa	2200±126	1100±14	2.0±0.1	2900	±83	1300±20	2.2±0.0		
[Ch]Cl:Oxa +H ₂ SO ₄	2300±82	1150±29	2.0±0.0	3000	±87	1400±28	2.1±0.0		
$[Ch]Cl:Oxa + H_2O_2$	2400±149	1100±18	2.2±0.1	2800	±69	1250±17	2.2±0.0		
		3	hours						
[Ch]Cl:Oxa	2500±104	1250±14	2.0±0.1	3300±	=81	1400±37	2.4±0.0		
[Ch]Cl:Oxa/H ₂ SO ₄	2600±38	1250±24	2.1±0.0	3500∃	-94	1400±42	2.5±0.0		
[Ch]Cl:Oxa/H ₂ O ₂	3600±131	1450±36	2.5±0.0	4100	=118	1600±30	2.6±0.0		
6 hours									
[Ch]Cl:Oxa	1800±80	1050±23	1.7±0.1	2100	±77	1100±22	1.9±0.1		
[Ch]Cl:Oxa +H ₂ SO ₄	2100±57	1050±14	2.0±0.0	2600	±74	1100±17	2.4±0.1		
[Ch]Cl:Oxa + H ₂ O ₂	2000±100	1000±13	2.0±0.1	2600	±64	1100±10	2.4±0.1		

Table S3. Molecular weight average (Mw), molecular number average (Mn) weights (g.mol⁻¹) and polydispersity (Mw/Mn) of lignin with corresponding deviations.

Vibrational band (cm ⁻¹)	Assignments			
3200-3500	O-H vibrations ¹			
2844-2980	Aliphatic C-H and CH2 stretching vibrations ¹			
1775-1750	C=O of esters, ketones, aldehydes and acids. (C=O stretching, non conjugated ²			
1731	C=O stretching in xylan, C=O stretching of acetyl or carboxylic acid ^{3,4}			
1700	Unconjugated C=O (ketone, carboxyl or ester stretching) ^{3,5}			
1600 - 1690	Aromatic skeletal vibration ^{6–8}			
1514	Aromatic skeletal vibration ^{6–8}			
1456	Aromatic skeletal vibration and C-H deformations ⁶⁻⁸			
1425	Aromatic skeletal vibrations combined with C-H in-plane deformation ^{6–8}			
1370-1365	Phenolic hydroxyl group ^{9,10}			
1327 - 1365	Syringyl unit breathing with C=O stretching and condensed Guaiacyl rings ⁶⁻⁸			
1241	Guaiacyl ring breathing C–O stretch in lignin and for C–O linkage in guiacyl aromatic methoxyl groups ¹¹			
1212	C-C plus C-O plus C=O stretch; Guaiacyl condensed > Guaiacyl etherified ⁶⁻⁸			
1152	C–O–C vibration (Cellulose and hemicellulose) ¹¹			
1109	β -O-4 ether bond (Ether-O-) ^{12,13}			
1040	Aromatic C H in-plane deformation (Guaiacyl > Syringyl) plus C-O deformation in primary alcohols plus C=O stretch (unconjugated) ^{6–8}			
979	C–O valance vibration; aromatic C–H in plane deformation ¹⁴			
925	Aromatic C-H out-of-plane ⁶			
838	Aromatic C-H out-of-plane deformation in Guaiacyl and Syringyl units ¹⁵			

 Table S4. FTIR vibrational bands/regions and corresponding assignments for lignin.

Table S5. Elemental characterization and ash content of Kraft lignin (KL), Organosolv lignin (OL) and recovered lignins from depolymerization reactions with [Ch]Cl:Oxa, [Ch]Cl:Oxa/H₂SO₄, and [Ch]Cl:Oxa/H₂O₂ at 80 °C for 1, 3 and 6 hours.

	Reaction time						
Samples		С	Н	Ν	S	0	- Ash (%)
KL		58.65±0.13	5.29±0.16	0.19±0.01	2.08±0.54	32.31±0.26	1.47±0.10
	1h	58.69±0.35	5.83±0.01	0.56±0.01	1.89±0.28	32.82±0.03	0.22±0.02
[Ch]Cl:Oxa (KL)	3h	58.78±0.91	5.73±0.02	0.54±0.01	1.68 ± 0.07	32.85v0.50	0.42 ± 0.03
	6h	58.07±0.61	6.34±0.49	0.72 ± 0.04	1.16±0.17	33.03±0.45	0.68±0.03
	1h	59.57±0.26	5.27±0.1	0.37±0.01	1.79±0.27	32.63±0.04	0.38±0.03
[Ch]Cl:Oxa/H ₂ SO ₄ (KL)	3h	59.33±0.03	5.43±0.01	$0.47 \pm \! 0.02$	1.75 ± 0.07	32.16±0.04	0.86 ± 0.04
	6h	58.76±0.41	5.43±0.17	$0.59{\pm}0.05$	0.97 ± 0.02	33.57±0.32	0.68±0.03
	1h	50.05±0.73	4.27±0.16	0.51±0.02	1.02±0.25	43.98±0.33	0.19±0.03
[Ch]Cl:Oxa/H ₂ O ₂ (KL)	3h	48.53±0.84	4.32±0.27	0.76 ± 0.06	0.76±0.02	44.90±0.59	0.73 ± 0.05
	6h	50.55±0.38	4.87±0.1	0.74 ± 0.03	0.62±0.03	42.63±0.27	$0.59{\pm}0.04$
OL		61.88±0.16	5.35±0.03	0.23±0.01	$0.00{\pm}0.00$	32.13±0.10	0.42±0.06
	1h	60.30±1.41	5.35±0.10	0.41±0.00	$0.00{\pm}0.00$	33.81±0.75	0.14±0.02
[Ch]Cl:Oxa (OL)	3h	61.31±0.41	5.44±0.04	0.46±0.02	0.00 ± 0.00	32.44±0.23	0.36±0.04
	6h	59.79±0.23	5.34±0.07	0.51±0.02	0.00 ± 0.00	34.28±0.16	0.08 ± 0.01
	1h	60.58±0.07	5.59±0.05	0.32±0.01	$0.00{\pm}0.00$	33.27±0.01	0.24±0.03
[Ch]Cl:Oxa/H ₂ SO ₄ (OL)	3h	60.36±0.02	5.47±0.41	0.41 ± 0.01	$0.00{\pm}0.00$	33.28±0.05	0.48 ± 0.03
	6h	60.15±0.12	5.26±0.06	0.46±0.01	$0.00{\pm}0.00$	34.00±0.04	0.12±0.02
	1h	53.52±0.32	4.30±0.02	0.38±0.02	$0.00{\pm}0.00$	41.60±0.16	0.20±0.02
[Ch]Cl:Oxa/H ₂ O ₂ (OL)	3h	56.20±0.04	4.49±0.02	0.47 ± 0.01	$0.00{\pm}0.00$	38.49±0.01	0.35±0.01
× /	6h	53.53±0.49	4.55±0.04	0.65±0.01	$0.00{\pm}0.00$	40.89±0.22	0.39±0.03

REFERENCES

L. A. M. Nevrez, L. B. Casarrubias, A. Celzard, V. Fierro, V. T. Mũoz, A. C.
 Davila, J. R. T. Lubian and G. G. Snchez, *Science and Technology of Advanced Materials*, , DOI:10.1088/1468-6996/12/4/045006.

2 J. Rodrigues, O. Faix and H. Pereira, *Holzforschung*, 1998, **52**, 46–50.

- 3 S. Z. Chow, *Wood Science and Technology*, 1971, **5**, 27–39.
- K. Fackler, J. S. Stevanic, T. Ters, B. Hinterstoisser, M. Schwanninger and L.
 Salmén, *Enzyme and Microbial Technology*, 2010, 47, 257–267.
- 5 N. Cachet, S. Camy, B. Benjelloun-Mlayah, J. S. Condoret and M. Delmas, *Industrial Crops and Products*, 2014, **58**, 287–297.
- R. Prado, X. Erdocia, G. F. De Gregorio, J. Labidi and T. Welton, ,
 DOI:10.1021/acssuschemeng.6b00642.
- A. García, X. Erdocia, M. González Alriols and J. Labidi, *Chemical Engineering* and Processing: Process Intensification, 2012, 62, 150–158.
- 8 S. N. Sun, M. F. Li, T. Q. Yuan, F. Xu and R. C. Sun, *Industrial Crops and Products*, 2012, **37**, 51–60.
- 9 C. G. Boeriu, D. Bravo, R. J. A. Gosselink and J. E. G. Van Dam, *Industrial Crops and Products*, 2004, **20**, 205–218.
- S. Tabasso, G. Grillo, D. Carnaroglio, E. Calcio Gaudino and G. Cravotto, *Molecules*, 2016, 21, 2–9.
- K. K. Pandey and A. J. Pitman, *International Biodeterioration and Biodegradation*, 2003, **52**, 151–160.
- 12 A. A. M. A. Nada, M. A. Yousef, K. A. Shaffei and A. M. Salah, *Polymer Degradation and Stability*, 1998, **62**, 157–163.
- A. Casas, M. V. Alonso, M. Oliet, E. Rojo and F. Rodríguez, *Journal of Chemical Technology & Biotechnology*, 2012, 87, 472–480.
- M. Schwanninger, B. Hinterstoisser, N. Gierlinger, R. Wimmer and J. Hanger, *Holz als Roh - und Werkstoff*, 2004, 62, 483–485.
- O. Gordobil, R. Delucis, I. Egüés and J. Labidi, *Industrial Crops and Products*, 2015, 72, 46–53.