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Supporting Notes

Note S1. X-ray photoemission spectroscopy core level measurements. The following
calculations were performed to determine the valence band offset (AE,) of AgzPO4/SnS;

heterojunction [1]

_ SnsS; SnsS: Ag3PO0O, Ag3PO0, Ag3P04/SnSZ Ag3P04/STlSZ
AE, = |(E5n3§5/2 - EVBMZ) - (EAgBds/z - EVBM )= (E5n3d5/2 ~ “Ag3ds); ) (D)

Where Eg&s ;5/2 and Efj;gg‘; are defined to a position of the core level at SnS> and AgzPOg4

. . SnSZ _ SnSZ Ag3PO4 _ Ag3PO4_
interface, respectively. ESn3d5/2 E, gy and EAg3d5/2 Evem terms depend on the

Ag3P04/SNS
£A9s 4/SNSz

binding energy difference between core level and valence band maximum. Eg;~;
5/2

Eﬁj;gso/‘;/ %2 term was calculated for the potential of interface state within the SnS and

Ag3zPO4 sampled region, thus this potential can correlate with the interface state or the sources
of band bending at the heterointerface. First, the experimental determinations of X-ray

photoemission spectroscopy (XPS) core level and VBM fitting results were presented in Figure

S8. Egyza, — Eypy term was calculated to be 484.88 eV (ie. 486.6-1.72). Ej72/0 —

Eyg * was calculated to be 36625 €V (i.e. 367.9-1.63) and Eg2sy 45" — pLdsiou/snse

was calculated to be 118.20 eV (i.e., 486.30-368.10). Accordingly, AE, was calculated to be
0.43 eV (i.e. 484.88-366.25-118.20). Finally, the conduction band offset (AE,) was derived
from the bandgap values of SnS; (2.56 eV) and AgzPO4(2.47 V), which were obtained from

UV-visible spectra (Figure 1a in the main manuscript).
AE, = (E}9"% + AE,—E;™), (2)

So, AE,. was determined to be 0.34 eV.
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Figure S1. Non-normalized UV-vis absorption spectra of Ag3POs, SnS> and Ag3P0O4/SnS»

samples
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Figure S2. TEM images of Ag3PO4 with different magnifications (a) 15 kX, (b) 50 kX, and (c)

800 kX.
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Figure S3. TEM images of SnS, with different magnifications (a) 15 kX, (b) 50 kX, and (¢)

800 kX.

Figure S4. HAADF-STEM image and energy dispersive X-ray spectroscopy (EDS) elemental

mapping of Sn, S, Ag, P, O for the Ag3PO4/SnS; sample.
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Figure S6. SEM images of the as-prepared Agi;PO4/SnS; heterostructures with different

Ag3P0O4—to—-SnS; ratios. (a) 50-to—50, (b) 60—to—40, (c) 70—to—30, (d) 80—to—20.
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Figure S7. XRD patterns for the AgzPO4/SnS> and the pristine Ag3PO4/SnS; sample after

the photocatalytic CO; reduction stability test.
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Figure S8. XPS spectra of (a) Ag 3d, (b) P 2p, and (c) O 1s, (d) Sn 3d, and (e) S 2p of

Ag3P0O4/SnS; before and after the photocatalytic CO> reduction stability test.




32.0
099 1. 100 5
100- Py 110,
] ; 3
90 g 60
N 2
. ; 40
. 807 %20{
X ] e A 180
~ B 0
Q 707 s 10 15 20 25 a0 a5 40 45 s
% ] m/z
< 7
_8 GOE 100 - 28.0
< ! S 13CO 13CO
QL g5 §80— 29.0
= 7 c
© B S 60
o l g 60 320
4 2
40 @ 40
7 g
] S 204
307 & 14.0
- 0 T T T T T T T T 1
B 5 10 15 20 25 30 35 40 45  5C
20— 4 m/z
E 86 3.17 4.19 425 4.30
104 0.60 0.94 e 2 D =9V 465 517 543 576 6.17 6.39 6.97
e B B s B B B B By B B B B B B B B
0.0 0.5 1.0 15 2.0 2.5 3.0 35 4.0 4.5 5.0 55 6.0 6.5 7.0
(b) Time (min)
146 150
100 1L
] lOOi 28.0
] 157 ] Blank test
90 1.01 1.01 o 80
i - 8 ]
i | R [ B » ]
- I
80— o 60
- a2 1
S ] < 40
o 707 g 32,0
g s
g S 20
2 60 x ]
3 ] 1 14.0
g ] O L o e T L B B o e T I L B o B o S |
Q 504 5 10 15 20 25 30 35 40 45 50
B ] miz
° ]
X 404
30
] 1.73
20
1 2% 958 L0,
104 0.29 0.95 322 410 4.42 472 4.89 554 570 6.27 6.79
L e e e e e e e e e e

0.0 0.5 1.0 1.5 2.0 25 3.0 35 4.0 45 5.0 55 6.0 6.5 7.0
Time (min)

Figure S9. Isotope tracer analysis. Total ion chromatogram and relative mass spectra of (a)
isotope tracer '3CO, measurement with O, and '3CO detection from photocatalytic CO

reduction over Ag3P04/SnS», and (b) air blank test measurement over AgzPO4/SnSo.
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Figure S10. (a) The Sn 3d core level and valence band spectra for SnS,. (b) The spectra of Ag

3d core level and valence band for pristine Ag3POs. (¢) The spectra of Sn 3d and Ag 3d core

levels for AgsPO4/SnS; heterostructure.
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Figure S11. Schematic illustration of band offset at AgsPO4/SnS; heterointerface.
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Figure S12. TEM and corresponding HRTEM images after photodeposition of (a—b) Pt

and (c—d) PbO> nanoparticles on AgzPO4/SnS; heterostructure.
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Figure S13. High-resolution XPS analysis for (a) Ag 3d and (b) Sn 3d of Ag3PO4/SnS; in the

dark or under 50 W halogen lamp irradiations.
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Figure S14. Normalized EPR spectra of SnS, and AgzPO4/SnS, samples. (The spectra were
measured at 77 K in the presence of a vacuum, and the peak intensity has been normalized with

the weight of the SnS> component in the samples)
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Supporting Tables

Table S1. Tabulated elemental analysis of AgzPO4/SnS> measured by the XPS. It shows the
composition of the orthophosphate semiconductor is Agsz (POsx)i.y where x = 1.8 and y =

0.15.

Elements Atomic %
Ag 37.0
P 10.5
O 22.8
Sn 9.9
S 19.8
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Table S2. AQEveran of photocatalytic CO> reduction over Ag3PO4/SnS» heterostructure under

visible wavelength (400—800 nm)

Light source Solar simulator (AM1.5)
| Photon flux (cm?s™) | 1.78 x 107 |
CO evolution (umol) 2.2
Acetaldehyde evolution (umol) 0.114
Irradiation area (cm?) 4
Irradiation time (h) 6
AQEoverail (%) 0.021

The quantity AQE,,erqu 1s calculated by the following equation, AQE, eran =

NeX(mole of hydrocarbon fuel)x(6.02x10%3)
(Photon flux xIrradiation areaXIrradiation time)

X 100% where the N, is number of reaction

electron, and the detail calculation of AQE,,erqan; for AgsPO4/SnS; heterostructure.
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Table S3. The fitting constants of the time-resolved photoluminescence (TRPL) curves

recorded at wavelength of 505 nm.

Sample Ay (%) T (ns) Ay (%) T2 (nS) Tape (NS)
AgPO, 522 2.45 47.8 10.4 6.25
SnS, 41.5 0.76 58.5 7.04 4.43
AgPO,/SnS, 65.2 0.77 34.8 0.87 0.80
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