Supplementary Materials

High-sulfur-doped hard carbon for sodium-ion battery anode with large capacity and high initial Coulombic efficiency

BaoShan Wan^a, Haiyan Zhang^{a,*}, Shuang Tang^a, Shengkai Li^a, Yan Wang^a, Daofeng Wen^a, Minglu Zhang^a, Zhenghui Li^{a,*}

^a School of Materials and Energy, Guangdong University of Technology, Guangzhou

510006, China

Fig. S1. A proposed reaction process for the synthesis of sulfonation reaction.

^{*} Corresponding author. E-mail: <u>hyzhang@gdut.edu.cn</u> (Haiyan Zhang); <u>lizhengh@gdut.edu.cn</u> (Zhenghui Li)

Fig. S2. FT-IR spectra of TTh and *s*-TTh.

Fig. S3. Narrow XPS spectra of *s*-TTh: (a) C1s narrow spectrum and (b) S2p narrow spectrum.

Fig. S4. (a, b) SEM images of SHC-500.

Fig. S5. (a) N₂ adsorption–desorption isotherms and (b) NLDFT pore size distributions of obtained SHC samples.

Fig. S6. SEM image of SHC-500 electrode after 100 cycles.

Fig. S7. (a, b) SEM images of SHC-500 electrode after 1000 cycles.

Fig. S8. TEM images of S-doped hard carbons prepared using Th-DS as starting materials: (a) Th-DS-500, (b) Th-DS-700 and (c) Th-DS-900.

Fig. S9. XRD patterns of Th-DS-500, Th-DS-700 and Th-DS-900.

Fig. S10. N₂ adsorption–desorption isotherms and NLDFT pore size distribution of Sdoped hard carbons prepared using Th-DS as starting materials.

Fig. S11. Narrow XPS spectra of Th-DS-500: (a) C1s narrow spectrum and (b) S2p narrow spectrum.

Fig. S12. (a, b) Galvanostatic charge/discharge profiles for the initial three cycles of

Th-DS-700 and Th-DS-900.

Fig. S13. Cycling performance of Th-DS-700 at a current density of 1 A g^{-1} .

Fig. S14. Cycling performance of Th-DS-900 at a current density of 1 A g^{-1} .

Sample	S content (%)	$C (mAh g^{-1})$		- ICE (%)	Dof	
		1 st discharge	1 st charge	ICE (70)	Kel.	
SHC-500	15.91	921	777	84.2	This	
SHC-700	5.67	788	667	84.5	work	
NSGHS	5.21	1000	386	38.6	[1]	
KEC-600	8.22	900	530	58.9	[2]	
OMCP-800-S10	-	-	405	-	[3]	
S-CNS	23	1211	708	58.4	[4]	
SNCNF	2.3	790	315	39.9	[5]	
3DSC-700	20.1	1088	526	48.4	[6]	
S-SG	21.8	878	488	55.6	[7]	
S-HC-p	6.3	870	488	56.1	[8]	
DC-S	26.9	887	561	63.2	[9]	

 Table S1. Sodium storage performance of recently reported S-doped carbons.

SC	15.2	655	482	73.6	[10]
SFG	16.7	676	330	48.8	[11]
SN-HCS	0.55	890	260	29.2	[12]

References

- 1 W. Chen, X. Chen, R. Qiao, Z. Jiang, Z.-j. Jiang, S. Papović, K. Raleva, D. Zhou, Carbon 2022, 187, 230-240.
- 2 X. Luo, L. Ma, Z. Li, X. Zhao, Y. Dong, Q. Yang, H. Liu, B. Wang, L. Zhi, Z. Xiao, *Journal of Materials Chemistry A* 2021, **9**, 24460-24471.
- 3 Z. Li, Y. Cao, G. Li, L. Chen, W. Xu, M. Zhou, B. He, W. Wang, Z. Hou, *Electrochimica Acta* 2021, **366**, 137466.
- 4 G. Zhao, D. Yu, H. Zhang, F. Sun, J. Li, L. Zhu, L. Sun, M. Yu, F. Besenbacher, Y. Sun, Nano Energy 2020, 67, 104219.
- 5 M. Yu, Z. Yin, G. Yan, Z. Wang, H. Guo, G. Li, Y. Liu, L. Li, J. Wang, Journal of Power Sources 2020, 449, 227514.
- 6 W. Zhong, X. Lv, Q. Chen, M. Ren, W. Liu, G. Li, J. Yu, M. Li, Y. Dai, L. Wang, ACS applied materials & interfaces 2019. 11. 37850-37858.
- 7 B. Quan, A. Jin, S. H. Yu, S. M. Kang, J. Jeong, H. D. Abruna, L. Jin, Y. Piao, Y. E. Sung, Adv Sci (Weinh) 2018, 5, 1700880.
- 8 Z. Hong, Y. Zhen, Y. Ruan, M. Kang, K. Zhou, J. M. Zhang, Z. Huang, M. Wei, Adv Mater 2018, e1802035.
- 9 W. Li, M. Zhou, H. Li, K. Wang, S. Cheng, K. Jiang, Energy & Environmental Science 2015, 8, 2916-2921.
- 10 L. Qie, W. Chen, X. Xiong, C. Hu, F. Zou, P. Hu, Y. Huang, Adv Sci (Weinh) 2015, 2, 1500195.
- 11 X. Deng, K. Xie, L. Li, W. Zhou, J. Sunarso, Z. Shao, Carbon 2016, 107, 67-73.
- 12 J. Ye, J. Zang, Z. Tian, M. Zheng, Q. Dong, Journal of Materials Chemistry A 2016, 4, 13223-13227.