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1. Experimental section
1.1.  Oxidation of cellulose via periodate (OCell)

Cellulose (1.00 g, 6.16 mmol) was added to 40 mL of deionized water. NalO,4 (1.58 g, 7.38
mmol) was suspended on 10 mL into deionized water that vessel was covered with aluminum foil.
Then slowly add the NalO, solution to the suspension and the flask was covered with aluminum
foil to stop periodate decomposition induced by light. The reaction was conducted for 15 h at 55
°C. Then, ethylene glycol (4.1 mL, 73.8 mmol) was added to the dull red mixture to silence the
unreacted NalO,4. Subsequently, the reaction mixture was poured dropwise into 300 mL of ethanol
and afterward filtered. The resulting white precipitate was then washed several times with ice water
to remove the rest of the periodontium and by-products to obtain a pure product with a yield of

74% (Scheme S1).!
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Scheme S1. Preparation of Ocell

1.2. Preparation of cobalt (I1)-4,9,16,23-tetranitrophthalocyanine (Co-PcTN)

Deep eutectic solvent (DES) based on urea (360 mg, 6 mmol) and choline chloride (420 mg,
3 mmol) at 70 °C was generated and used without further purification. Afterward, a mixture of
CoCl,.6H,0 (165 mg, 0.70 mmol) and 4-nitro-phthalonitrile (520 mg, 3.00 mmol) in DES was
heated at 150 °C for 1 h. After ensuring the completion of the reaction, 10 ml of water was added
to the mixture of the reaction. The insolvable crude product was filtered under a vacuum and

washed sequentially with water and hot methanol and then dried. Subsequent, the product was



dissolved in the concentrated H,SO,4 (7 ml), precipitated from water (250 ml), filtrated off, washed
with water, and dried in an oven (70 °C) to give the Co-PcTN (422 mg, 75%) (Scheme S2), and to

be utilized in the continuation of the procedure.?
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Scheme S2. Preparation of Co-PcTN

1.3. Preparation of cobalt (1I) 2,9,16,23-tetra-amino phthalocyanine (Co-PcTA)

Working on the previous reports,? sodium sulfide (Na,S) (224 mg, 3.5 mmol) and Co-PcTN
(376 mg, 0.5 mmol) were added to a 40 mL flask containing distilled water (6 mL), and the reaction
vessel was covered and held for stirring at 40 °C for 24 h. Afterward, the Co-PcTA was filtered
under a vacuum and washed with hot water several times to extract unreacted Na,S. Then, it was
granted a 0.1 N HCIl wash several times followed by washing repeatedly with 0.1 N NaOH.
Eventually, the remnants were washed with hot water, filtered and the Co-PcTA dried under a

vacuum at 70 °C. The Co-PcTA isolated yield of this reaction was 85 % (267 mg) (Scheme ES3).
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Scheme S3. Preparation of Co-PcTA
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Figure S1. FE-SEM image and XRD of the reused biocatalyst (Re-Co-PcTA/OCell).

2. 'TH NMR data of isolated pure products

4-Phenyl-1,3-dioxolan-2-one (8a)



White solid: 'TH NMR (300 MHz, CDCl3) o: 4.37 (t,J = 6 Hz, 1H), 4.80-4.85 (m, 1H),

5.70 (t,J = 6 Hz, 1H), 7.34-7.48 (m, SHy,).
4-(Phenoxymethyl)-1,3-dioxolan-2-one (8b)

White solid: 'H NMR (300 MHz, CDCl3) 6: 4.22 (dd, J = 3 Hz, J = 12 Hz, 2H), 4.54-4.67 (m,
2H), 5.03-5.06 (m, 1H), 6.93 (d, J= 6 Hz, 2Hy,), 7.04 (t, J = 6 Hz, 2Hy,), 7.33 (t, J= 9 Hz,

2HAr)-
4-((Allyloxy)methyl)-1,3-dioxolan-2-one (8c)

White solid: "H NMR (300 MHz, CDCl3) &: 3.26 (t, J =9 Hz, 1H, 2H), 3.58-3.74 (m, 3H), 3.94-

4.01 (m, 1H), 4.18-4.21 (m, 2H), 5.56-5.58 (bs, 1H), 6.13-6.15 (bs, 1H).

Octahydrocycloocta[d][1,3]dioxol-2-one (8d)

Colorless oil: '"H NMR (300 MHz, CDCls) 8: 0.99-1.11 (m, 4H), 1.30-1.37 (m, 4H), 1.92 (d, J =
15 Hz, 4H), 3.18 (t, J = 15 Hz, 2H).

4-Butyl-1,3-dioxolan-2-one (8e)
Orange oil: 'H NMR (300 MHz, CDCls) 6: 0.73 (t, /= 6 Hz, 3H), 1.18-1.29 (m, 4H), 1.47-

1.57 (m, 2H), 3.91 (t, J= 9 Hz, 3H), 4.43 (t, /= 9 Hz, 1H), 4.59 (t, J= 9 Hz, 1H).

4-(Chloromethyl)-1,3-dioxolan-2-one (8f) White solid: '"H NMR (300 MHz, CDCls) 8: 3.78—
3.70 (ddd, /=3 Hz, J= 15 Hz, J= 27 Hz, 2 H, CH,Cl), 4.60 (m, 1 H, OCH,), 4.57-4.66 (m, 1 H,

OCH,), 4.97-5.04 (m, 1 H, OCH,).



3. TH NMR spectrum of products 8a-e
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Figure S2. 'H NMR spectrum of 4-phenyl-1,3-dioxolan-2-one (8a).
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Figure S3. 'H NMR spectrum of 4-(phenoxymethyl)-1,3-dioxolan-2-one (8b).
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Figure S4. 'H NMR spectrum of 4-((allyloxy)methyl)-1,3-dioxolan-2-one (8¢).
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Figure S5. 'TH NMR spectrum of octahydrocycloocta[d][1,3]dioxol-2-one (8d).
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Figure S6. 'H NMR spectrum of 4-butyl-1,3-dioxolan-2-one (8e).
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Figure S7. 'H NMR spectrum of 4-(chloromethyl)-1,3-dioxolan-2-one (8f).
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