Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2022

Supplementary data

Determination of bulk Li⁺ ion diffusion coefficient by Cyclic voltammetry •

From Randles Sevcik Equation

$$D = \left[\frac{slope}{26800 \times n^{3/2} \times A \times C}\right]^{2}$$

Diffusion coefficient,
$$D = \left[\frac{slope}{26800 \times n^{3/2} \times A \times C}\right]^{2}$$

Anodic slope = $0.00249 \frac{A}{(Vs^{-1})^{1/2}}$ [figure S4(b)]
Cathodic slope = $0.00264 \frac{A}{(Vs^{-1})^{1/2}}$ [figure S4(b)]
 $n \rightarrow number of electrons trensferred in the redox event = 3$
 $A \rightarrow electrode area in cm^{2} = 1.5 cm^{2}$
 $C \rightarrow Concentration of electrolyte, 1M LiPF_{6} = 10^{-3} mol cm^{-3}$
 $D_{Li^{+}}$ lithiation = $1.5 \times 10^{-10} cm^{2} s^{-1}$
 $D_{Li^{+}}$ delithiation = $1.42 \times 10^{-10} cm^{2} s^{-1}$

Determination of bulk Li⁺ ion diffusion coefficient from Warburg tail of EIS Nyquist

plot

$$D_{Li^{+}} = \frac{R^2 T^2}{2A^2 n^4 F^4 C^2 \sigma^2}$$

 $R \rightarrow gas \ constant = 8.314 \ J \ mol^{-1} K^{-1}$

 $T \rightarrow absolute \ temperature = 298.16 \ K$

 $A \rightarrow electrode area in cm^2 = 1.5 cm^2$

 $C \rightarrow Concentration of electrolyte, 1M LiPF_6 = 10^{-3} mol cm^{-3}$

 $n \rightarrow number of electrons trensferred in the redox event = 3$

 $F \rightarrow Faraday \ constant = 96,485 \ Cmol^{-1}$

 $\sigma \rightarrow Warburg \ coefficient$ = slope of the graph between the real impedance and the inverse square root of a = 76.947 \Omega s^{-1}

[figure S4(d)]

 $D_{Li^+} = 3.28 \times 10^{-14} \, cm^2 \, s^{-1}$

• Solid-state diffusion coefficient of Li within the particle at different levels of

prelithiation

$$D_{Li^{+}} = \frac{R^2 T^2}{2A^2 n^4 F^4 C_{Li^{+}}^2 \sigma^2}$$

 $C_{i,i}^{+} \rightarrow Concentration of Li^{+} in the solid phase of electrode$

$$C_{Li^{+}} = \frac{4 + 3x}{459.08 \ gmol^{-1}} \times 3.38 \ gcm^{-3}$$

459.08 $gmol^{-1} \rightarrow Molecular$ weight of LTO

 $3.38 \text{ gcm}^{-3} \rightarrow \text{Density of } LTO$

 $x \rightarrow$ stoichiometric amount of Li inserted in LTO corresponding to % DOD

Prelithiation level	Value of x	C _{Li} +(mols cm ⁻³)	$\begin{bmatrix} D_{Li} + (\mathbf{cm}^2 \mathbf{s}^{-1}) \\ \text{[figure S5(b)]} \end{bmatrix}$
No prelithiation ($Li_4Ti_5O_{12}$)	0	0.0294	1.74×10^{-17}
30 min (Li ₅ Ti ₅ O ₁₂)	0.33	0.0368	7.7×10^{-18}
60 min (Li ₆ Ti ₅ O ₁₂)	0.66	0.044	7.04 × 10 ⁻¹⁸
Complete Prelithiation (Li ₇ Ti ₅ O ₁₂)	1	0.515	1.7×10^{-17}

Formulas used for the assembly of AC/LTO LICs

• Preparation of the AC electrode:

• According to the Mass loading formula

 $Q = q_{positive} * m_{positive} = q_{negative} * m_{negative}$

Where Q=Discharge (mAh)

q=Specific capacity in second discharge cycle (mAh g⁻¹)

m=mass of active material in the electrode

• Energy and Power Density calculation:

- Charge Q, (mAh) = Current (mA) * time (h)
- Capacity C, $(mAh g^{-1}) = Q/m$
 - m= total mass of active material in both the electrodes
- The energy density $(Wh kg^{-1}) = C^*V$
 - V= Intersecting voltage of the second charge-discharge curve.
- Power Density= Energy density/time (h)

Figure S1: The XRD pattern of commercial LTO material along with Rietveld refinement.

Figure S2: Cyclic stability of Li/LTO half-cells at a current density of 1 A g^{-1} .

Figure S3: CV profile of Li/LTO half-cell within the potential window of 1-2.75 V vs. Li⁺/Li at 0.1 mV s⁻¹ (first four cycles).

Figure S4: (a) CV profile of Li/LTO half-cell at different scan rates (0.1-1 mV s⁻¹), (b) plot of anodic and cathodic peak current $({}^{i}p)$ versus square root of scan rate (\sqrt{v})), (c) EIS Nyquist plot of Li/LTO half-cell within the frequency range of 10 kHz to 1 Hz, and (d) Real impedance versus inverse square root of angular frequency in the Warburg tail region.

Figure S5: (a) EIS Nyquist plot of Li/LTO half-cell with different levels of prelithiation (0, 30, 60 & 90 min) within the frequency range of 10 kHz to 10mHz, and (b) Real impedance versus inverse square root of angular frequency in the Warburg tail region.

Figure S6: (a, b, c & d) Potential vs. time graph of the assembled LICs at different current rates (0.05-2 A g⁻¹), and (e, f, g, h) the CV profile of assembled LICs at different scan rates (1, 3 & 5 mV s⁻¹).

Figure S7: Equivalent circuit model used to fit EIS Nyquist plots recorded for the assembled LIC configurations within the frequency limit of 10 kHz to 10 mHz